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Abstract In metastatic renal cell carcinoma (mRCC), the
prognostic role of several tumor tissue biomarkers has been
evaluated, but the results were controversial. This study aims
to verify the prognostic importance of selected tumor tissue
biomarkers in patients with mRCC. The clinicopathological
features, immunohistochemical staining and scoring for select
tissue biomarkers, treatment, and outcome of patients with
mRCC treated with vascular endothelial growth factor recep-
tor (VEGFR) tyrosine kinase inhibitors (TKIs) between Ju-
ly 2006 and March 2011 at Asan Medical Center in Seoul,
South Korea, were reviewed. In total, 123 patients met the
inclusion criteria. Most patients had clear-cell carcinoma
(107 patients, 87.0 %). First-line VEGFRTKIs were sunitinib
(97 patients, 78.9 %), sorafenib (23 patients, 18.7 %), and
pazopanib (3 patients, 2.4%).With a median follow-up period
of 60.0 months (95 % confidence interval (CI), 56.3–63.6),
median overall survival (OS) and progression-free survival
(PFS) were 25.6 months (95 % CI, 19.2–32.0) and
12.2 months (95 % CI, 8.1–16.3), respectively. In the multi-
variable analysis for OS, carbonic anhydrase IX (CAIX;

47.5 % or less vs. more than 47.5 %, p=0.014), sarcomatoid
change (40 % or less vs. more than 40 %, p<0.001), tumor
necrosis (20 % or less vs. more than 20 %, p=0.006), and
Heng’s risk group (good vs. intermediate vs. poor, p=0.011)
were identified as independent prognostic factors. In the mul-
tivariable analysis for PFS, CAIX (p<0.001), phosphatase
and tensin homolog (PTEN; 45 % or less vs. more than
45 %, p=0.004), sarcomatoid change (p=0.002), and tumor
necrosis (p=0.001) were identified as independent factors af-
fecting PFS. CAIX and PTEN had prognostic importance for
mRCC patients receiving first-line VEGFR TKI. Future vali-
dation and mechanistic studies are required.
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Introduction

Until early 2000, immunotherapy using interferon or interleu-
kin was the de facto standard treatment for metastatic renal
cell carcinoma (mRCC). Unfortunately, immunotherapy
achieved only occasional responses, whereas substantial tox-
icities occurred invariably [1]. Limited treatment options and
nonspecific mechanisms of action behind immunotherapy re-
tarded vigorous biomarker investigations, preventing discrim-
ination between patients who are likely to respond and those
who are unlikely to respond.

Recent advances in understanding the molecular pathobi-
ology underlying RCC has lead to the introduction of agents
that target the vascular endothelial growth factor (VEGF) and
mammalian target of rapamycin (mTOR) signaling pathways,
resulting in huge changes in the management of this disease.
There are currently several effective approaches for treating
metastatic RCC [2–7]. Although VEGF receptor (VEGFR)
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tyrosine kinase inhibitors (TKIs) are rationally designed and
are most commonly used as first-line treatment for mRCC,
biomarkers that predict or prognosticate the treatment out-
come have not been well elucidated.

In addition to VEGF andmTOR signaling pathway, several
molecules have been investigated for their role in RCC path-
ogenesis. Von Hippel–Lindau (VHL) gene mutation leads to
hypoxia-inducible factor (HIF) disregulation and resultant
overexpression of VEGF that can lead to tumor angiogenesis
[8]. Hepatocyte growth factor receptor (HGFR, also known as
MET) is a receptor tyrosine kinase functions for cell prolifer-
ation, differentiation, angiogenesis, and tissue repair. It is also
a proto-oncogene with implication in various cancers [9].
MET expression was higher in all RCC subtypes than in ad-
jacent normal renal tissues in a series of more than 300 pa-
tients [10]. Carbonic anhydrases are metalloenzymes whose
function in solid tumors is a neutralization of the intracellular
milieu with a concomitant acidification of the extracellular
milieu [11]. Although carbonic anhydrase IX (CAIX) is not
expressed in healthy renal tissue, it is expressed in almost all
clear cell RCCs and its expression is influenced by activation
of the HIF-1α and the inactivation of the VHL gene [12, 13].

On the other hand, some proteins are shown to be involved
in inducing resistance to VEGF inhibitors. Interleukin-8 (IL-
8) is a member of the CXC family of chemokines and is a
potent proangiogenic factor. In a recent study, IL-8 was up-
regulated in sunitinib-resistant tumor xenograft and inhibition
of IL-8 re-sensitized these resistant tumors to sunitinib. Also,
IL-8 expression was elevated in human clear cell RCC having
intrinsic resistance to sunitinib therapy [14]. There are
some evidences that upregulation of fibroblast growth
factor (FGF) and FGF receptor (FGFR) may have a role
in introducing resistance to anti-VEGF therapy [15].
FGF2 (FGF-basic) can suppress sunitinib-induced retrac-
tion of endothelial tubules and thus regulates endothelial
sensitivity to sunitinib [16].

Several tumor tissue biomarkers such as von Hippel–
Lindau protein, HIF-1α/HIF-2α, VEGF (and related pro-
teins), or CAIX have been evaluated, but the results were
controversial and defective with respect to retrospective de-
sign, small sample size, and lack of validation [17].

Some prognostic models comprising several clinical char-
acteristics are widely used in practice [18, 19], but they are
population-based models that categorize patients into a few
prognostic groups (good, intermediate, or poor risk group);
are composed of only clinical and laboratory characteristics,
which are indicators of the general condition of the patients
and the burden of the disease; and are missing molecular path-
ologic characteristics reflecting tumor biology. Therefore, to
provide precision treatment, avoid futile treatment, and edu-
cate patients, the development of reliable biomarkers, which
can be integrated into established prognostic models, is eager-
ly required.

To verify the prognostic importance of selected tumor tis-
sue biomarkers in patients with mRCC, we performed immu-
nohistochemical (IHC) staining in tumor samples and statisti-
cal analyses of the results.

Patients and methods

Patient selection

The medical records of 520 consecutive patients with histo-
logically confirmed recurrent or metastatic RCC who were
treated with VEGFR TKIs at the Department of Oncology,
Asan Medical Center (Seoul, South Korea) from January
2006 to December 2013 were retrospectively reviewed.
Among these patients, the selection criteria for study inclusion
were as follows: patients who received VEGFRTKI as a first-
line systemic treatment, patients for whom pre-treatment tis-
sue samples were available, and patients who had undergone
proper imaging, including baseline imaging with at least one
follow-up image. We set liberal inclusion criteria in terms of
performance status, prognostic risk group, and histology.
Patients were excluded if the patients received immuno-
therapy, cytotoxic chemotherapy, or molecular targeted
agents other than VEGFR TKI prior to VEGFR TKI;
patients had inadequate clinicopathological data; insuffi-
cient tissue amount to perform pre-specified IHC; pa-
tients cannot be included in survival information due
to lost to follow-up.

Clinical data collection

Clinicopathological data, including age, sex, Karnofsky per-
formance status (KPS), tumor histology, pathological stage,
laboratory data, date of the initial diagnosis, disease status
(recurrent or metastatic), metastatic site, surgery (if per-
formed), and survival status, were collected. A comprehensive
reviewwas performed on baseline and follow-up radiographic
images, which were obtained every 6–8 weeks during treat-
ment. Target lesion selection and response evaluations were
performed retrospectively according to Response Evaluation
Criteria in Solid Tumors (RECIST) version 1.1. The
study was approved by the institutional review board
of Asan Medical Center.

Pathology review

Pre-treatment pathologic materials from each patient were
reviewed for diagnostic reassessment and histologic
subtyping according to the 2004 World Health Organization
Tumor Classification. Each tumor was graded according to the
Fuhrman grading system [20]. Pathologic materials, including
immunostained tissue microarray (TMA) slides, were
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assessed by a single pathologist (YMC) who was unaware of
the clinical variables and therapeutic outcomes.

TMA construction

A TMA construct with 1-mm-diameter cores was generated
from formalin-fixed paraffin-embedded tissue blocks of renal
cell carcinoma specimens using a tissue microarrayer (Bee-
cher Instruments, Silver Spring, MD). Three representative
cores were used to access each case.

IHC

The expression of FGFR 1, 2, 3, and 4, FGF-basic, HIF-1α
and HIF-2α, CAIX, mTOR, phosphatase and tensin ho-
molog (PTEN), IL8, phosphor-S6 (pS6), and HGFR/
MET was analyzed by IHC staining, which was per-
formed using an automated staining system (BenchMark
XT, Ventana Medical Systems, Tucson, AZ) and the
ultraView universal DAB detection kit (Ventana Medical
Systems). The primary antibodies used in the study,
their dilutions, and the subcellular localization of each
antigen are summarized in supplementary Table 1. Nu-
clei were counterstained with hematoxylin.

Assessment of IHC results

IHC staining was assessed using the semiquantitative
Beyeball^ measurement, and each core was scored based on
the percentage of positive cell staining and the intensity, which
was scored as negative, weak, moderate, or strong. Cases with
moderate staining (FGFR1, FGF base, and HIF-1α) or strong
staining (CAIX, mTOR, PTEN, FGFR2, FGFR3, FGFR4,
IL8, pS6, HIF2α, and HGFR/MET) were regarded as posi-
tive, and the average percentage of positive cells in all cores
was recorded.

Statistical analysis

The primary and secondary objectives of the present study
were to identify prognostic biomarkers for overall survival
(OS) and progression-free survival (PFS). OS was defined as
the time from the date of initiation of the first-line line treat-
ment to the date of death from any cause, and PFSwas defined
as the date of disease progression or death from any cause,
whichever comes first. Patient characteristics, histologic find-
ings, and IHC results were summarized descriptively, and
continuous clinical variables were dichotomized for con-
venience. Maxstat, a maximally selected rank statistics
in R 3.0.3 (R Development Core Team, Vienna, Austria,
http://www.R-project.org), was used to identify optimal
cutting points for each marker [21]. We performed
univariate analyses for survival using the log-rank test,

and the Cox proportional hazard model was performed
for factors that were significant in univariate analysis.
Statistical analyses were performed using PASW statistics
(version 20; IBM Co., Armonk, NY) and R. p values less than
0.05 (two-sided) were considered statistically significant.

Results

Patient characteristics

In total, 123 patients met the inclusion criteria (Table 1). The
median age was 57 years (range 17–85), and 88 patients
(71.5 %) were male. Most patients had clear-cell carcinoma
(107 patients, 87.0 %). Fuhrman’s nuclear grade (NG) was 2
in 21 (17.1 %), 3 in 49 (39.8 %), and 4 in 52 patients (42.3 %).
Sarcomatoid change and coagulative necrosis were found in
51 patients (41.5 %) and 58 patients (47.2 %), respectively.
Seventy-two patients (57.7 %) had initially metastatic disease,
whereas 52 patients (42.3 %) had recurrent disease. Nephrec-
tomy was performed in 120 patients (97.6 %), and
metastasectomy in 33 patients (26.8 %). Most patients had a
relatively good performance status, as 11 (8.9%), 51 (41.5 %),
and 50 patients (40.7 %) had 100, 90, and 80 % of KPS.
Common sites of metastases were the lung (74.8 %),
lymph node (24.4 %), bone (20.3 %), and liver
(11.4 %). Using Heng’s criteria, 20 (16.3 %), 87
(70.7 %), and 16 patients (13.0 %) belonged to the
favorable, intermediate, and poor risk groups, respec-
tively. First-line VEGFR TKIs prescribed were sunitinib
(97 patients, 78.9 %), sorafenib (23 patients, 18.7 %),
and pazopanib (3 patients, 2.4 %).

The best responses to first-line VEGFRTKI were complete
response (CR) in 1 patient (0.8 %), partial response (PR) in 44
(35.8 %), stable disease (SD) in 58 (47.2 %), and progressive
disease (PD) in 20 patients (16.3 %). Thus, the objective re-
sponse rate (CR or PR) was 36.6 %.

Impact of biomarkers on OS

For the primary endpoint, we analyzed OS with known clin-
ical prognostic factors and IHC staining results. Cutoff values
for statistical analyses were obtained by the maximally select-
ed rank statistics. With a median follow-up duration of
60.0 months (95 % confidence interval (CI), 56.3–
63.6 months), OS for all patients was 25.6 months (95 % CI,
19.2–32.0 months, Fig. 1). In the univariate analysis (Table 2),
CAIX (less than 47.5 vs. 47.5 % or more, p=0.001), HIF-2α
(negative vs. positive, p<0.001), mTOR (20 % or less vs.
more than 20 %, p=0.0032), Heng’s risk group (good
vs. intermediate vs. poor, p<0.001), sarcomatoid change
(40 % or less vs. more than 40 %, p<0.001), tumor
necrosis (20 % or less vs. more than 20 %, p<0.001),
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and Furhman NG (2 vs. 3 vs. 4, p=0.037) were statis-
tically significant. In the multivariable analysis
(Table 3), CAIX, Heng’s risk group, sarcomatoid
change, and tumor necrosis were identified as indepen-
dent prognostic factors related to OS.

Impact of biomarkers on PFS and response

Median PFS was 12.2 months (95 % CI, 8.1–
16.3 months, Fig. 1) for all patients. Using the same
cutoff value as in OS analyses, we performed univariate

analysis on PFS (Table 4). PTEN (40 % or less vs.
more than 40 %, p=0.012), CAIX (less than 47.5 %
vs. 47.5 % or more, p=0.001), Heng’s risk group (good
vs. intermediate vs. poor, p<0.014), sarcomatoid change
(40 % or less vs more than 40 %, p<0.001), tumor
necrosis (20 % or less vs more than 20 %, p<0.001),
and Furhman NG (2 vs. 3 vs. 4, p=0.003) were statis-
tically significantly associated with longer PFS. In the
multivariable analysis (Table 5), CAIX, PTEN,
sarcomatoid change, and tumor necrosis were identified
as independent factors affecting PFS.

Table 1 Patient characteristics

Characteristics n (%) Characteristics n (%)

Age, years, median (range) 57 (17–85) No. of metastasized organ

Sex 1 56 (45.5)

Male 88 (71.5) 2 44 (35.8)

Female 35 (28.5) 3 15 (12.2)

Histology 4≥ 8 (6.4)

Clear cell carcinoma 107 (87.0) Heng et al. risk groupa

Papillary carcinoma 11 (8.9) Favorable (0 factor) 20 (16.3)

Mixed histology 4 (3.2) Intermediate (1–2 factors) 87 (70.7)

chromophobe 1 (0.8) Poor (3–6 factors) 16 (13.0)

Unclassified carcinoma 1 (0.8) 1st line VEGFR TKI

Fuhrman’s nuclear grade Sunitinib 97 (78.9)

2 21 (17.1) Sorafenib 23 (18.7)

3 49 (39.8) Pazopanib 3 (2.4)

4 52 (42.3) IHC staining Positive/negative

% sarcomatoid change, median (range) 0 (0–95) FGF-basic 1/122

% Tumor necrosis, median (range) 0 (0–90) FGFR1 8/115

Disease status FGFR2 25/96

Recurrent 52 (42.3) FGFR3 0/123

Initially metastatic 71 (57.7) FGFR4 39/83

Nephrectomy 120 (97.6) HGFR/MET 5/117

Metastasectomy before TKI 33 (26.8) PTEN 61/60

Karnofsky performance status CAIX 93/27

100 11 (8.9) pS6 42/74

90 51 (41.5) HIF-1α 7/115

80 50 (40.7) HIF-2α 1/122

<80 11 (8.9) IL-8 18/102

Sites of metastases mTOR 98/24

Lung 92 (74.8)

Lymph node 30 (24.4)

Bone 25 (20.3)

Liver 14 (11.4)

Adrenal 10 ( 8.1)

VEGFR TKI vascular endothelial growth factor receptor tyrosine kinase inhibitor, IHC immunohistochemical staining, FGF fibroblast growth factor,
FGFR fibroblast growth factor receptor,HGFR hepatocyte growth factor receptor, PTEN phosphatase and tensin homolog,CAIX carbonic anhydrase IX,
pS6 phospho S6, HIF hypoxia-inducible factor, IL interleukin, mTOR mammalian target of rapamycin
a The Heng risk group was defined by six risk factors: neutrophilia, anemia, thrombocytosis, corrected hypercalcemia, poor Karnofsky performance
status, and a time from diagnosis to treatment of less than 1 year
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Discussion

In the present study, we examined the prognostic role of tissue
biomarkers in patients with mRCC treated with first-line
VEGFR TKIs. We found that a lower expression of CAIX, a
higher percentage of sarcomatoid change, abundant tumor ne-
crosis, and belonging to the poor Heng’s risk group were
independent adverse prognostic factors for OS. In addition,
lower expression of CAIX, higher expression of PTEN, higher
percentage of sarcomatoid change, and abundant tumor necro-
sis were independent adverse prognostic factors for PFS.

Heng’s risk group [18], sarcomatoid change [22], and tumor
necrosis [23] are well-known prognostic factors in mRCC. In
our study, all three factors were statistically significant in mul-
tivariable analysis for OS. However, CAIX, which was identi-
fied as a statistically significant prognostic factor for OS in our
study, has been controversial. CAIX is a cytosolic transmem-
brane protein that regulates cell proliferation under hypoxic
conditions and is expressed in the vast majority of clear-cell
RCCs but is absent in non-tumor kidney tissue [24]. CAIX
expression is mediated by the HIF transcriptional complex
and correlates with von Hippel–Lindau gene (VHL) inactiva-
tion, which has a central role in the pathogenesis of clear-cell
RCC [25]. In the pre-VEGFR TKI era, high CAIX expression
(>85 %) as determined by IHC was initially reported to be
associated with a higher response rate and a better survival in
mRCC patients undergoing immunotherapy [26, 27], but in a
prospective validation study, the SELECT trial failed to validate
its role as a predictive factor [28]. In theVEGFRTKI era, CAIX
was shown to be neither a predictive factor for response nor a
prognostic factor for survival in patients with mRCC receiving
VEGFR targeted therapy (mainly sunitinib or sorafenib), in
both retrospective [29] and prospectively maintained datasets
[30, 31] from the TARGET or renal EFFECT trial [2, 32].

Contrary to those studies that evaluated CAIX in the
VEGFRTKI era [29–31], CAIXwas an independent prognos-
tic factor for both OS and PFS in the present study. It is un-
certain why the prognostic role of CAIX differs between stud-
ies, but there were some differences between our study and
previous studies. Our study only included patients who were
administered VEGFR TKI as a first-line systemic treatment,
whereas many patients in the study by Choueiri et al. (2010)
had received previous systemic therapy. In total, 40 % of pa-
tients in the retrospective dataset received cytokines, vaccines,
chemotherapy, or thalidomide, and all patients in the prospec-
tively maintained dataset received cytokines [30]. In addition,
the cutoff value for dichotomizing patients was different. Both
studies by Choueiri et al. used 85 % as the cutoff point based
on a previous study [27], in which the cutoff value was calcu-
lated by using survival tree analysis. Because the 85 % cutoff
point was derived from patients who underwent immunother-
apy [27], it might be unreliable to adopt this cutoff point for
patients receiving VEGFR TKI. To solve this problem, we
determined a new cutoff value of 47.5 % by using the maxi-
mally selected rank statistics which can estimate and provide a
simple cutoff point, even for censored or tied observations
[21]. Recently, a more complicated scoring system of CAIX,
such as individual scores (percent of tumor expression, pre-
dominant intensity, focal score, and focal intensity) and com-
posite scores, was used, and four-group categorization also
failed to show any statistical and clinical significance [31].

In an analysis for PFS, we demonstrated that lower CAIX
expression, abundant PTEN expression, sarcomatoid change,
and abundant tumor necrosis were independent adverse prog-
nostic factors for PFS. PTEN inhibits phosphoinositide 3-
kinase (PI3K)/Akt signaling via its lipid phosphatase activity,
thereby controlling cell growth, survival, and metabolic pro-
cesses [33]. In addition, the PI3K/Akt/mTOR signaling path-
way positively regulates HIF-1α protein in certain cancer cells
[34–36]. Therefore, PTEN theoretically inhibits HIF-1α via
inhibition of PI3K/Akt/mTOR pathway. In patients with ad-
vanced RCC, positive PTEN was indicative of a good prog-
nosis with sunitinib (PFS, 15.1 vs. 6.5 months; p=.003) [37].
Therefore, our result that higher PTEN expression (>45 %) is
an independent adverse prognostic factor for PFS is contra-
dictory to that reported previously.

Although canonical role of PTEN with relation to inhibi-
tion of PI3K/Akt/mTOR pathway is plain, it is not clear how
PTEN correlates with HIFs. In recent years, it has emerged
that among HIFs, HIF-2α is more relevant in the development
and progression of RCC [38]. However, most studies have
focused on the relationship between the PI3K/Akt/mTOR
pathway and HIF-1α [34, 35]. On the other hand, the
PI3K/Akt/mTOR pathway has not been clearly shown to cor-
relate with HIF-2α [36]. One study suggested that HIF-2α is
upregulated by PTEN at both the transcriptional and posttran-
scriptional levels under hypoxic conditions in the embryonic

Fig. 1 Kaplan–Meier curves for overall survival (OS) and progression-
free survival (PFS) with first-line VEGFR TKI (n=123). With a median
follow-up period of 60.0 months (95 % CI, 56.3–63.6 months), median
OS and PFS were 25.6 months (95 % CI, 19.2–32.0 months) and
12.2 months (95 % CI, 8.1–16.3 months), respectively
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Table 2 Log-rank test for overall
survival Variables Category No. of patients Median OS (95 % CI) p value

Death Total

FGF-basic Negative 100 122 25.2 (18.3–32.1) 0.728
Positive 1 1 55.9

FGFR1 Negative 96 115 25.6 (19.4–31.8) 0.847
Positive 5 8 11.8 (0.0–50.7)

FGFR2 Negative 77 96 26.0 (16.3–35.6) 0.337
Positive 22 25 24.8 (13.7–35.9)

FGFR3 Negative 101 123 25.6 (19.2–32.0)
Positive 0 0

FGFR4 Negative 68 83 28.7 (20.6–36.7) 0.248
Positive 32 39 13.4 (0.9–25.9)

HGFR/MET Negative 96 117 26.0 (18.3–33.6) 0.270
Positive 4 5 7.9 (1.4–14.3)

PTEN ≤45 % 78 97 28.0 (20.6–35.3) 0.101
>45 % 21 24 15.6 (8.3–22.8)

CAIX ≤47.5 % 28 31 13.1 (10.6–15.7) 0.001
>47.5 % 70 89 30.8 (23.0–38.6)

pS6 ≤45 % 87 103 22.6 (15.8–29.4) 0.092
>45 % 8 13 55.9 (16.5–95.2)

HIF-1α Negative 95 115 25.6 (18.4–32.8) 0.805
Positive 5 7 33.7 (11.8–55.7)

HIF-2α Negative 100 122 25.6 (18.1–33.1) <0.001
Positive 1 1 3.0

IL-8 Negative 86 102 22.6 (14.7–30.4) 0.172
Positive 12 18 34.2 (25.5–42.9)

mTOR ≤20 % 49 55 18.4 (8.9–28.0) 0.032
>20 % 51 67 30.8 (19.8–41.7)

Heng risk group Favorable 14 20 41.3 (31.3–51.2) <0.001
Intermediate 81 87 26.0 (20.0–31.9)

Poor 16 16 10.1 (2.6–17.5)

Sarcomatoid change ≤40 % 82 103 30.8 (23.9–37.6) <0.001
>40 % 19 19 9.3 (5.7-12.9)

Tumor necrosis ≤20 % 78 98 30.8 (24.2–37.3) <0.001
>20 % 23 24 10.8 (5.5–16.1)

Furhman NG 2 15 21 33.7 (14.7–52.8) 0.037
3 40 49 34.2 (25.1–43.3)

4 46 52 17.1 (9.6–24.6)

OS overall survival, 95 % CI 95 % confidence interval, FGF fibroblast growth factor, FGFR fibroblast growth
factor receptor,HGFR hepatocyte growth factor receptor, PTEN phosphatase and tensin homolog,CAIX carbonic
anhydrase IX, pS6 phospho S6, HIF hypoxia-inducible factor, IL interleukin, mTOR mammalian target of
rapamycin, NG nuclear grade

Table 3 Cox proportional hazard
modeling for overall survival Variables B Exp(B) 95 % CI for Exp(B) p value

CAIX 0.598 1.818 1.131–2.922 0.014

Sarcomatoid change 1.055 2.871 1.607–5.130 <0.001

Tumor necrosis 0.709 2.031 1.225–3.368 0.006

Heng risk group 0.011

Good versus intermediate 0.260 1.298 0.704–2.390 0.403

Good versus poor 1.081 2.949 1.348–6.453 0.007

95 % CI 95 % confidence interval, CAIX carbonic anhydrase IX
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stem cell–derived embryoid body [39]. Although the exact
mechanisms underlying the regulation of HIF-2α by PTEN
have not been elucidated, yin yang 1 (YY1), a noble corepres-
sor of HIF-2α, may play a role in this pathway [40]. Thus, the
role of PTEN with respect to its relationship with HIF-1α and
HIF-2α under VHL inactivation conditions in the prog-
nosis of mRCC patients receiving VEGFR TKI needs
further evaluation.

Despite the considerable amount of effort that has been
expended by clinicians and researchers investigating tissue
biomarkers for RCC, unfortunately, no tissue biomarker has

Table 4 Log-rank test for
progression-free survival Variables Category No. of patients Median PFS (95 % CI) P value

Death Total

FGF-basic Negative 104 122 12.2 (8.1–16.3) 0.778
Positive 1 1 22.9

FGFR1 Negative 97 115 12.3 (8.1–16.4) 0.367
Positive 8 8 7.0 (3.7–10.4)

FGFR2 Negative 78 96 12.0 (7.1–17.0) 0.178
Positive 25 25 13.2 (10.4–16.0)

FGFR3 Negative 105 123 12.2 (8.1–16.3)
Positive 0 0

FGFR4 Negative 71 83 14.0 (11.2–16.8) 0.145
Positive 33 39 8.0 (4.1–11.9)

HGFR/MET Negative 99 117 13.2 (9.1–17.3) 0.268
Positive 5 5 5.9 (0.0–11.9)

PTEN ≤45 % 83 97 13.7 (11.0–16.3) 0.012
>45 % 22 24 5.9 (3.0–8.7)

CAIX ≤47.5 % 28 31 5.0 (2.6–7.4) 0.001
>47.5 % 75 89 14.9 (11.1–18.6)

pS6 ≤45 % 88 103 12.0 (7.8–16.3) 0.395
>45 % 11 13 17.8 (3.2–32.5)

HIF-1α Negative 97 115 12.2 (8.2–16.2) 0.968
Positive 7 7 16.9 (0.0–39.8)

HIF-2α Negative 104 122 12.3 (8.0–16.5) 0.081
Positive 1 1 3.0

IL-8 Negative 87 102 11.1 (6.5–15.8) 0.160
Positive 15 18 16.3 (11.4–21.2)

mTOR ≤20 % 46 55 11.1 (4.3–17.9) 0.989
>20 % 58 67 13.4 (7.8–18.9)

Heng risk group Favorable 17 20 18.8 (5.7–31.9) 0.014
Intermediate 74 87 12.3 (7.7–16.8)

Poor 14 16 5.3 (1.8–8.8)

sarcomatoid change ≤40 % 86 103 14.0 (10.7–17.3) <0.001
>40 % 18 19 3.4 (1.8–5.0)

Tumor necrosis ≤20 % 82 98 14.9 (11.8–17.9) <0.001
>20 % 22 24 3.8 (1.0–6.6)

Furhman NG 2 14 21 21.4 (11.7–31.0) 0.003
3 42 49 15.9 (10.6–21.2)

4 48 52 5.9 (2.1–9.6)

PFS progression-free survival, 95%CI 95% confidence interval, FGF fibroblast growth factor, FGFR fibroblast
growth factor receptor, HGFR hepatocyte growth factor receptor, PTEN phosphatase and tensin homolog, CAIX
carbonic anhydrase IX, pS6 phospho S6, HIF hypoxia-inducible factor, IL interleukin,mTORmammalian target
of rapamycin, NG nuclear grade

Table 5 Cox proportional hazard modeling for progression-free
survival

Variables B Exp(B) 95 % CI for Exp(B) p value

CAIX 1.125 3.079 1.877–5.051 <0.001

Sarcomatoid change 0.869 2.385 1.364–4.169 0.002

Tumor necrosis 1.124 3.077 1.854–5.109 <0.001

PTEN 0.718 2.049 1.254–3.349 0.004

95 % CI 95 % confidence interval, CAIX carbonic anhydrase IX, PTEN
phosphatase and tensin homolog
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been universally accepted as a predictive or prognostic factor
for mRCC [17]. Recently, the concept of intratumoral hetero-
geneity and branched evolution has arisen [41]. This concept
purports that genetic alterations or the protein expression pro-
file of only a part of a tumor might not be shared with and
representative of the whole cancer burden in the patient. This
constitutes a major challenge for the development of tissue
biomarkers, which usually reflect a limited part of the tumor.
For the time being at least, perhaps the priority should not be
tissue biomarker development or validation but, rather, the
invention of novel techniques that overcome intratumoral het-
erogeneity and clonal evolution.

There are some limitations in this study of note. First, this is
a retrospective study which included a limited number of pa-
tients who were treated at single institution over several years
and had available pre-treatment tissue sample. Therefore,
there could be potential biases inherent to this type of study,
such as information or selection bias. Second, pathologic ex-
amination and immunohistochemical staining were performed
on only limited part of tumor mass. Some of them were prior
nephrectomy specimen for the patients with recurrent disease,
while others are debulking nephrectomy specimen or core
needle biopsy specimen for the patients with initially metasta-
tic patients. Considering intratumoral heterogeneity and
branched evolution, our result may not reflect overall charac-
teristics of whole tumor burden.

Conclusions

Lower expression of CAIX, higher expression of PTEN,
higher percentage of sarcomatoid change, and abundant tumor
necrosis were independent adverse prognostic tissue bio-
markers for OS and/or PFS. Future validation and mechanistic
studies are required, and consideration should be given to
novel techniques for overcoming intratumoral heterogeneity
and branched evolution.
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