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Upregulation of RICTOR gene transcription
by the proinflammatory cytokines through NF-κB pathway
contributes to the metastasis of renal cell carcinoma
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Abstract Metastasis accounts for more than 50 % of deaths
among renal cell carcinoma (RCC) patients, and therefore, it is
important to study the biology of metastasis and identify
metastasis-associated biomarkers for risk prognosis and strat-
ification of patients for an individualized therapy of RCC. In
cultured RCC cells, knockdown of Rictor by short hairpin
RNA (shRNA) inhibited cell migration and invasion, proba-
bly due to impairments in activation of Akt. Pretreatment with
tumor necrosis factor α (TNFα) or interleukin 6 (IL-6) en-
hanced the expression of Rictor and the migration of renal
cancer cells. Mechanistic analysis showed that TNFα induced
the activation of NF-κB in RCC cells. Luciferase reporter
analysis revealed a NF-κB responding element (−301 to

−51 bp) at the promoter region of Rictor. Chromatin immuno-
precipitation (ChIP) analysis further confirmed that TNFα-
induced binding of p65 with the promoter of Rictor. In a
xenograft model, knockdown of Rictor-blocked RCC cells
metastasis to the mouse lungs and livers. Taken together, our
results suggest that the proinflammatory cytokine TNFα pro-
motes the expression of Rictor through the NF-κB pathway.
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Introduction

Renal cell carcinoma (RCC) accounts for two percent of all
cancers [1]. Its incidence has been increasing in the last three
decades [2].More than 30% of RCC patients are diagnosed as
metastatic disease and 20–30 % of patients will finally devel-
op metastases following surgery, immunotherapy, and
molecular-targeted therapy. Metastasis is the leading cause
of mortality in RCC [3]. Thus, the prevention and treatment
of metastasis is of critical importance during RCC therapies.

Chronic inflammation promotes tumorigenesis and is pro-
posed to be a hallmark of cancer [4, 5]. Reducing inflamma-
tion is a promising strategy for the prevention of cancers.
Clinical investigations reveal a repertoire of proinflammatory
cytokines elevated in tumor sites [6, 7]. Among them, TNFα
and IL-6 are closely associated with cancer cell metastasis in
several types of cancers [8–11]. In RCC, the elevation of
TNFα was also detected in the primary sites and linked to a
poor prognosis [12]. It has been proposed that TNFα is in-
volved in epithelial-mesenchymal transition and promotes
metastasis [8, 13]. However, the role and the mechanism of
TNFα-promoted RCC metastasis are still largely unknown.
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NF-κB, a transcription factor, plays a pivotal role in a spec-
trum of biological responses including inflammation and em-
bryonic development [4, 14]. Upon stimulation by extracellu-
lar factors such as cytokines, phosphorylation of IKK triggers
degradation of IκB which in turn activates downstream tran-
scription [15]. Recently, the role of NF-κB signaling has
emerged in cancer development and progression. As the
downstream of the TNF pathway, NF-κB provides a mecha-
nistic link between inflammation and tumorigenesis [16–18].
However, the details of the NF-κB pathway in inflammation-
related RCC metastasis remain largely unknown.

Metastasis is a multiple-step process which involves escap-
ing of primary tumor cells from the original tissue,
intravasating into a blood vessel, traveling through the circu-
latory system, and finally extravasating to secondary tissues
[14]. In breast cancer, epidermal growth factor (EGF)-induced
chemotaxis plays a pivotal role in the invasion and metastasis
of breast tumors [19]. EGF stimulation results in the activation
of PDK1-Akt signaling which, in turn, leads to cofilin-
mediated cytoskeleton rearrangement and enhances cell adhe-
sion through integrin [20–22]. Deregulation of the signaling
pathways regulated by growth factors and chemokines has
been linked to RCC metastasis [23]. However, the underlying
molecular mechanism is largely unknown.

The mammalian target of rapamycin (mTOR) plays a piv-
otal role in tumorigenesis and metastasis [24, 25]. mTOR
forms a rapamycin-sensitive mTORC1 complex and Rictor-
containing rapamycin insensitive mTORC2 complex [26].
mTORC1 is a central integrator and processor of intracellular
and extracellular signals, and controls cell growth, prolifera-
tion, survival, and metabolism [26, 27]. mTORC2 promotes
the activation of Akt signaling by phosphorylating Akt at
Ser473 and regulates cell migration by controlling the dynam-
ics of actin cytoskeletons [28–31]. Targeting mTOR is one of
the main current strategies for the development of anticancer
drugs, with numerous mTOR kinase inhibitors in preclinical
and clinic trials [32–34]. We previously discovered that Rictor
is an important mediator of chemotaxis and metastasis in
breast cancer cells [35]. In the present study, we investigated
the role and mechanism of Rictor in TNFα-promoted RCC
migration and metastasis.

Materials and methods

Cell culture

HUVEC, MCF-10A, MDA-MB-231, CRL1932, CRL1933,
ACHN, HEK293T cells were obtained from the American
Type Culture Collection. MDA-MB-231, CRL1932 and
CRL1933 cells were cultured in RPMI-1640. ACHN cells
were cultured in Minimum Essential Medium (MEM), while
HEK293T cells were grown in Dulbecco's Modified Eagle's

medium (DMEM). HUVEC cells were cultured in F-12KMe-
dium supplemented with 100 μg/ml heparin and 50 μg/ml
endothelial cell growth supplement (ECGS). MCF-10A cells
were cultured in DMEM/F12 medium supplemented with
10 μg/mL insulin, 500 ng/mL hydrocortisone, and 100 ng/
mL cholera toxin. All cell lines were grown in corresponding
medium supplemented with 10 % (v/v) fetal bovine serum
(FBS), penicillin G (100 units/ml) and streptomycin
(100 units/ml) in a 5 % CO2-humidified incubator at 37 °C.
For TNFα or IL-6 pretreatment, cells in log phase were
starved overnight, and then were cultured in the basic medium
containing 10 ng/ml TNFα or 20 ng/ml IL-6. After 48 h, cells
were harvested for further experiments.

Reagents and antibodies

Recombinant human epidermal growth factor (EGF), bovine
fibronectin, IL-6 and TNFα were obtained from R&D systems
(Minneapolis, MN, USA). Antibodies against Rictor (#2114S),
p-Akt (Ser473, #4060S), p-Akt (Thr308, #4056S), Akt
(#9272S), and p-IκBα (#9246S) were obtained from Cell Sig-
naling Technology (Beverly, USA). Antibodies against β-actin
(sc-47778), IκBα (sc-371), and p65 (sc-372) were obtained
from Santa Cruz Biotechnology (Santa Cruz, CA, USA).

RNA isolation, reverse transcription-PCR, and real-time
PCR

Total RNA from cultured cells were extracted with TRIzol
method (Ambion, USA). Reverse transcription and real-time
PCR were performed according to the manufacturer’s instruc-
tions (Takara, Japan). In real-time PCR, the forward and re-
ward pr imers for RICTOR were 5 ′ -TTTCGGGG
ATTTCTGGATG-3 ′ and 5 ′ -AAA GCCCAGTC
TCATGACATT-3′, respectively. And the forward and reward
p r ime r s f o r GAPDH we r e 5 ′ -GAAGGTGAAG
GTCGGAGTC-3′ and 5′-GAAGATGGTGAT GGGATTTC-
3′, respectively.

Lentivirus infection

For production of the lentivirus particles, a shRNA (shRictor-
Sense : 5 ′ -CCGGTACTTGTGAAGAATCGTATC
T T C TCGAGAAGATACGAT T C T T CACAAG
TTTTTTG-3′; shRictor-Antisense: 5′-AATTCAAAAAAC
TTGTGAAGAATCGT ATCTTCTCGAGAAGATA
CGATTCTTCACAAGTA-3′) expression plasmid and a vec-
tor containing a scrambled sequence were inserted into
pLKO.1-puro plasmid. 293 T cells were transfected with the
package and expression plasmids through LipofectamineTM

2000 system. The culture supernatant was harvested 48 h after
transfection and centrifuged at 1000 rpm for 5 min to remove
cellular debris. For stable clones, ACHN cells were infected
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with the lentivirus. 6 hours later, cells culture medium was
changed into 10 % FBS-MEM. Five days later, puromycin
was added into the culture medium at a final concentration
of 20 ng/ml.

Dual-luciferase assay

Total DNA from cultured cells were extracted with a DNA
extraction kit (Takara, Japan). The sequence of the homo
RICTOR promoter region was assessed through Ensembl da-
tabase. The putative binding site between transcription factors
and promoter region of RICTOR was predicted through
TFSEARCH database. The various DNA fragments upstream
of the RICTOR promoter were amplified from the DNA of
ACHN cells, digested with restriction enzymes and inserted
into pGL3-basic (Promega, USA). The common reverse prim-
er for inserts was 5′-AAGCTTATTGA CGGGTTTCAGTC-
3′. The forward primers for the fragments of −1051 bp,
−401 bp, −301 bp, and −51 bp were 5′-GCTAGCTTCA
GTCTCATGGAATAG-3 ′ , 5 ′-GCTAGCGGGCCGT
CTATG-3′, 5′-GCTAGCCTGCATTTGGACGAC-3′, and 5′-
TCTAGCTAGCGGCGGGCGCGGCGCGCGGGGA-3′, re-
spectively. 1.5×105 ACHN cells per well were planted in a
24-well plate the day before transfection. 800 ng of plasmid
DNA, adjusted for insert sizes to provide equal molar plas-
mids, was transiently transfected into cel ls with
LipofectamineTM 2000. 16 ng of pRL-CMVRenilla luciferase
reporter (Promega, USA) was used as reference. After 48 h,
cells were harvested, lysed, and assayed for luciferase activity
using Dual-Luciferase™ reporter assay system (Promega,
USA) following the manufacturer’s instructions.

Chromatin immunoprecipitation assay (ChIP)

Cells were starved overnight in a 10 cm dish and pretreated
with TNFα (10 ng/ml) or MEM for only 30 min. Cells were
fixed with 1 % formaldehyde at 37 °C for 10 min followed by
washing and sonication. Chromatin and 7 μg anti-p65 anti-
body were subjected to ChIP assay as described previously
[36] . Real- t ime PCR was used to quant i ta te the
immunoprecipitated and input DNA fractions via ABI Prism
7500 system (Applied Biosystems, USA) using α-actin as a
negative control while IκBα was used as a positive control
(see Table 1 for the sequences of primers).

Western blotting assay

Cells were lysed on ice in a RIPA lysis buffer (Cell Signaling
Technology, USA) supplemented with protease inhibitors and a
phosphatase inhibitor (Roche, Switzerland), and 1 mM PMSF
(Sigma, USA). Total proteins of 30 μg were separated by 8 or
10 % SDS-PAGE and transferred onto PVDFmembrane, which
was blocked with 5 % nonfat milk followed by incubation with

primary antibodies. Signals were developed using enhanced
chemiluminescence reagents (Millipore, USA) after incubation
with an HRP-conjugated secondary antibody.

Immunofluorescence microscopy

Immunofluorescence microscopy was performed as described
previously with minor modifications [37]. Briefly, cells were
plated in 12-well plates containing sterile coverslips pre-coated
with polylysine. After 24 h, cells were starved in a serum-free
MEM for at least 3 h. After stimulation with 10 ng/mLTNFα for
15 min at 37 °C, cells were fixed with 4 % paraformaldehyde,
permeabilized in 0.2%Triton X-100 in PBS, and blocked in 3%
bovine serum albumin. Subsequently, anti-p65 antibody, Alexa
Fluor 488–conjugated secondary antibody and DAPI were used
to stain the cells. Coverslips were mounted in slides and visual-
ized with laser scanning microscopy.

Chemotaxis assay

Chemotaxis assay was performed in a 48-well micro-Boyden
chamber (Neuroprobe, USA) as described by Sun et al [37].
Briefly, 30 μl of different concentrations of EGF were added
into the lower chamber. The 8 μm fibronectin-coated polycar-
bonate filter membrane was placed between the chambers.
50 μl of cells were suspended in binding medium (MEM,
0.1 % BSA, and 25 mM HEPES) at the density of 7×105

cells/ml and were added into the upper chamber. The chamber
was incubated at 37 °C in 5 % CO2 for 3 or 5 h. The mem-
brane was rinsed, fixed, and stained. Migrating cells were
enumerated at 400× total magnification by light microscopy.

Table 1 Primers for ChIP assays

−1956 bp∼−1754 bp
Forward: 5′-AACCCTCTGCCAGACCTCAAGTTT-3′
Reverse: 5′-TCTGCGGCTGATACTGCACTTAGA-3′

−1171 bp∼−951 bp
Forward: 5′-TCCAGGGCACTTAC TCATCCAACA-3′
Reverse: 5′-ACTGACCCAGCAGCTTTCTCTTGA-3′

−395 bp∼−212 bp
Forward: 5′-TCTATGGCAGGGCTTCAGAGCAA-3′
Reverse: 5′-A GTTCCCACGAGGAAAGTCCCATT-3′

680 bp∼896 bp
Forward: 5′-TGCA GGAGGATGTTTGAGGGAAGA-3′
Reverse: 5′- AAAGGGAAGCAGAAGGGAAACAGC-3′

1932 bp∼2110 bp
Forward: 5′-CTGCTCAGATGTGGTGCTGGAAAT-3′
Reverse: 5′-ACAGTTACCTGTGTGCCTCAGT-3′

α-actin (negative control)
Forward: 5′-ACACAATGTGCGACGAAGACGAGA-3′
Reverse: 5′-ATGG ACGGGAACACGGCCCTA-3′

IκBα (positive control)
Forward: 5′-GACG ACCCCAATTCAAATCG-3′
Reverse: 5′-TCAGGCTCGGGGAATTTCC-3′
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Invasion assay

Transwell inserts for 24-well plates (Costar) were coated
with prediluted Matrigel (1 mg/ml). A total of 1×105 cells
were loaded into the upper compartment of the chambers.
Basic medium containing 1 ng/ml EGF was added into the
lower chambers. The cells were allowed to invade through
the membrane at 37 °C for 5 h. The non-migrating cells
on the upper surface were subsequently removed. The
membranes were then fixed and stained. Cells migrating
through the membranes in five fields were counted under
a microscope at 400× magnification.

Wound healing assay

Cells were plated in 6-well plates and cultured to form a
monolayer. After serum starvation for 12 h, a single linear
wound was created using a 10 μl pipette tip. Cells were
transferred to fresh MEM medium with 0.5 % FBS at
37 °C in 5 % CO2 and the distance of the wounds was
measured under a light microscope. All samples were test-
ed in triplicate, and the results were expressed as mean±
SD.

Xenograft tumor transplant mouse model

In vivo metastasis assay was performed as described pre-
viously [22]. Briefly, Cells were trypsinized and harvested
in log phase, and then washed four times with PBS. 3×
106 cells were injected subcutaneously into 4-week-old
male nu/nu mice (n=5 per group). 12 weeks later, the
mice were sacrificed, and the tumors were isolated, and
then the lungs and livers were fixed with formalin and
embedded in paraffin. Serial sections and H&E staining
were performed to detect micrometastasis. Tumors were
excised and measured by largest (a) and smallest (b) di-
ameters to calculate tumor volume by V=ab2/2.

Statistical analysis

The significance in animal metastasis assay was assessed
using Pearson chi-square test. Data analysis was per-
formed using SPSS version 17.0 (Chicago, IL, USA). A
P value of <0.05 was considered statistically significant.
In chemotaxis, migration, and invasion assay, the results
were representative of at least three independent experi-
ments and were expressed as the mean±SD. Different
values between groups were compared using t test in
GraphPad Prism 5. A P value of <0.05 was considered
statistically significant.

Results

Knockdown of Rictor impaired chemotaxis and invasion
of RCC cells

First, we detected the expression of Rictor byWestern blotting
analysis in two normal cell lines and four cancer cell lines. As
shown in Fig. 1a, two metastatic human cancer cell lines,
MDA-MB-231 and ACHN, expressed high levels of Rictor
protein while its expression in two normal cell lines, HUVEC
and MCF-10A, or in two primary RCC cell lines, CRL1932
and CRL1933, was much lower, suggesting a role of Rictor in
metastasis. Chemotaxis plays a critical role in metastasis. To
reveal the role of Rictor in renal cell chemotaxis, a stable
clone, designated as shRictor, was established through a len-
tivirus system. Compared to normal ACHN cells and control
cells (designated as Scr), over 80 % of Rictor was reduced
both in the protein and mRNA level (Fig. 1b). Wound healing
assays, performed in a medium with 0.5 % fetal bovine serum
to exclude the effects of cell proliferation, further confirmed
the migration defect in shRictor cells (Fig. 1c). In matrigel
assay, shRictor cells showed approximately 60 % decrease
in invasiveness (Fig. 1d). Consequently, EGF-induced chemo-
taxis of ACHN cells was significantly impaired as indicated
by micro-Boyden chamber assays (Fig. 1e). Western blotting
further verified that Rictor knockdown abolished the EGF-
induced Akt phosphorylation at Ser473 (Fig. 1f). These results
suggest that Rictor is required for renal cancer cell migration
and invasion.

TNFα and IL-6 enhanced Rictor expression and promote
cell migration

It has been documented that the expression of TNFα is
associated with a poor prognosis of RCC [12]. We next
tested its role in mediating RCC migration. As shown in
Fig. 2a, treatment with TNFα enhanced the expression of
Rictor. Another proinflammatory cytokine, IL-6, also ele-
vated Rictor expression. In chemotaxis assay, pretreat-
ment of TNFα or IL-6 could increase the EGF-induced
RCC chemotaxis, nevertheless, the knockdown of Rictor
abolished this effect (Fig. 2b). Next, in wound healing
assays, treatment with TNFα or IL-6 significantly pro-
moted the migration of RCC cells, while the knockdown
of Rictor attenuated TNFα or IL-6 induced enhancement
in cell migration (Fig. 2c). Finally, in the matrigel assays,
RCC cells showed accelerated migration in the presence
of TNFα or IL-6. The knockdown of Rictor blocked the
effect (Fig. 2d). Taken together, these results indicate that
TNFα or IL-6 increases cell chemotaxis, migration and
invasion, all of which were at least partially declined by
the knockdown of Rictor.
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Fig. 2 TNFα or IL-6 increased cell migration through upregulation of
the Rictor expression aACHN cells were stimulated by TNFα or IL-6 for
48 h. Western blotting showed the Rictor expression of ACHN cells
pretreated with TNFα or IL-6 in different concentrations. b TNFα or
IL-6 pretreatment could enhance EGF-induced cell chemotaxis, while

Rictor knockdown impaired the augmentation posed by TNFα or IL-6
pretreatment in cell chemotaxis assay. c TNFα or IL-6 pretreatment could
enhance cell migration, which was abolished by Rictor knockdown. d
TNFα or IL-6 pretreatment could enhance cell invasion, while Rictor
knockdown impaired this effect

Fig. 1 Knockdown Rictor
inhibited RCC migration. a
Western blotting was performed
to detect Rictor expression in
normal cells, primary, and
metastatic cancer cell lines. b
Left panel: Real-time PCR
demonstrated the expression of
Rictor in shRictor stable clone.
Right panel: Western blotting
analysis demonstrated the
expression of Rictor in shRictor
stable clone with β-actin as a
loading control. c Wound healing
assay of ACHN, Scr and shRictor
cells. The gap distance on cell
monolayer was measured at 0, 3,
6, 9, 12, and 24 h after scratch.
The images were photographed at
0 and 24 hours (100× total
magnification). d EGF-induced
cell invasion was decreased in
shRictor cells. e EGF-induced cell
chemotaxis was decreased in
shRictor cells. f Western blotting
analysis of EGF-induced
phosphorylation of Akt T308 and
S473 in total cell lysate from
Scrambled and shRictor cells.
Total Akt was used as a loading
control
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TNFα stimulation increased Rictor expression in renal
cancer cells through NF-κB pathway

We next determined the downstream signaling of TNFα that
regulates the gene transcription of RICTOR. NF-κB is one of
the most important downstream molecules in TNFα signaling
[38–41]. Re-distribution of p65 from cytosol to nucleus is the
former of NF-κB activation. Fluorescence microscopy
showed that p65 mainly localized in cytosol (Fig. 3a), treat-
ment with TNFα enhanced its nuclear distribution, suggesting
TNFα could activate NF-κB in RCC cells. In response to
TNFα, phosphorylation and degradation of IκBα, the inhibi-
tory binding protein of NF-κB, results in activation of NF-κB
pathway. Indeed, treatment of ACHN cells with TNFα for

5 min led to the apparent phosphorylation of IκBα, accompa-
nied with a decrease of total IκBα (Fig. 3b).

To investigate the transcriptional regulation of
RICTOR, four fragments of the RICTOR promoter region
were cloned into pGL3-basic plasmid on the basis of tran-
scription prediction. Luciferase assay demonstrated that
the fragment from −51 bp to −301 bp, which contained
two predictive NF-κB binding sites, was vital to the pro-
moter activity of RICTOR gene (Fig. 3c). To further test
our hypothesis that TNFα stimulates the gene transcrip-
tion of RICTOR via NF-κB signaling, we designed five
pairs of primers for ChIP assay and found that primers
designed for predictive NF-κB binding site showed about
three times affinity than control IgG (Fig. 3d). Most

Fig. 3 TNFα induced the gene
expression of RICTOR through
the NF-κB pathway a ACHN
cells were treated with 10 ng/ml
TNFα for 15 min. In
immunofluorescence assay,
TNFα could induce p65
translocation from cytosol to
nuclear. b ACHN cells were
treated with 10 ng/ml TNFα for
the time as indicated.
Immunoblots were performed to
determine the phosphorylation
and total level of IκBα c Dual-
luciferase assay illustrated that the
luciferase activity was apparently
decreased following depletion of
the predictive NF-κB binding
sites (from residues −301 bp to
−51 bp) in RICTOR promoter
region. However, the absence of
other predictive transcription
factors (SP1 and AP2) did not
affect the luc activity negatively. d
Five pair primers were designed
according to the RICTOR
promoter sequence. ChIP was
performed using an antibody
against p65. Immunoprecipitated
DNAwas analyzed by real-time
PCR. The results indicated that
p65 was enriched in predictive
NF-κB binding sites, and TNFα
could promote p65 enrichment. e
Bay 11-7082, a NF-κB inhibitor,
inhibited TNFα or IL-6 induced
Rictor expression
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importantly, TNFα increased the binding of p65 to pre-
dictive NF-κB binding site of the RICTOR promoter re-
gion (Fig. 3d). Subsequently, Bay 11-7082, an inhibitor of
IκBα phosphorylation, blocked the IκBα degradation,
which also blocked the TNFα and IL-6 induced expres-
sion of Rictor (Fig. 3e). These results indicate that TNFα
stimulation increases RICTOR expression in renal cancer
cells through NF-κB pathway.

Knockdown of Rictor inhibited tumor growth
and metastasis in vivo

To extend our observations in vivo, we subcutaneously
implanted ACHN cells with lentivirus expressing control
(Scr group) or Rictor (shRictor group) short hairpin RNA
(shRNA) to nu/nu mice. After 12 weeks, a significant
reduction of primary tumor size was observed in the
shRictor group, indicating that Rictor played an important
role in the growth of RCC (Fig. 4a, b). Furthermore, 80 %
of Scr mouse xenografts showed tumor metastasis to lung
or liver (Fig. 4c, 4d, e, f), whereas no apparent metastasis
sites were detected in shRictor tumor xenografts after
12 weeks. Taken together, our animal experiments indi-
cate that Rictor is required for RCC growth and metastasis
in vivo.

Discussion

In the present study, we have revealed a new mechanism by
which inflammation promoted RCC tumorigenesis and metas-
tasis. Chronic inflammation has been shown to be closely
associated with RCC [8, 12]. TNFα, a proinflammatory cyto-
kine, induced epithelial-mesenchymal transition and promot-
ed metastasis and resistance to the sunitinib [12]. IL-6 stimu-
lated tumor growth and angiogenesis via STAT3 [42, 43]. Our
results clearly indicated that Rictor was a downstream effector
of both TNFα and IL-6. Treatment with TNFα activated
NF-κB and promoted Rictor expression. TNFα-induced cell
migration was reversed by knocking down Rictor. A NF-κB
responsive region, located at RICTOR promoter region, was
identified by both luciferase reporter assays and ChIP analy-
sis. Animal experiments indicated that Rictor knockdown
cells failed to metastasize to the mouse livers and lungs. Thus,
our results suggest that Rictor plays an important role in me-
diating inflammation-promoted RCC growth and metastasis.

The outcome of patients with metastatic RCC is very poor,
with a median survival time of 10 months and a 5-year sur-
vival rate of <10 % [44]. Immunotherapy including IL-2 and
IFN-α, and molecular-targeted agents, such as sorafenib, su-
nitinib, and temsirolimus, are the current therapy choices for
metastatic RCC [45, 46]. However, only a small subgroup of
RCC patients responded to these treatment modules and most

Fig. 4 Stable silencing of Rictor
reduced cancer cell growth and
metastasis in vivo a Comparison
of tumor size in nu/nu mice
implanted with Scr or shRictor
cells. b Comparison of tumor
volume in nu/nu mice implanted
with Scr or shRictor cells. c
Comparison of representative
lung and liver metastasis in nu/nu
mice implanted with Scr or
shRictor cells. The arrow pointed
to lung tissue, which was not
filling with Indian ink due to the
bronchus blockade caused by the
lung metastasis. d Comparison of
human tumor foci on mouse
lungs, which were visualized by
H&E staining. e Comparison of
human tumor foci on mouse
livers, which were visualized by
H&E staining. f Comparison of
the quantity of tumor metastasis
cases between Scr and shRictor
groups
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responsive patients will finally develop a resistance to these
drugs sooner or later [47]. Thus, novel molecular targets are
needed for the development of effective anti-RCC therapies.
Rictor appears to be the convergence of several oncogenic
pathways [48, 49]. Proinflammatory cytokines, TNFα and
IL-6, promote its expression. Epidermal growth factor mediates
RCC chemotaxis via Rictor. Furthermore, Rictor expression is
closely associated with tumorigenesis and metastasis. These
data indicate that targeting Rictor-mediated signaling pathways
is a promising strategy for the treatment of metastatic cancers.

A link between chronic inflammation and cancer has been
suspected for more than one century [50]. For example, hep-
atitis C infection in the liver predisposes to liver, chronic
Helicobacter pylori infection with stomach cancer, chronic
ulcerative colitis with colon cancer, and so on [51–55]. How-
ever, the concept that chronic inflammation has been involved
in RCC progression was widely accepted until more recent
times [56]. NF-κB, a vital transcription factor, plays a key role
in cell apoptosis, proliferation, differentiation and immune
response, and is an important molecule in inflammation. As
one of the most extensively expressed transcription factors,
NF-κB is over activated or upregulated in order to overcome
apoptosis and promote cancer cell growth during cancer pro-
gression [57, 58]. Furthermore, it has been documented that
NF-κB may be involved in caner metastasis [59]. However,
the details are largely unknown. In the present study, as the
downstream molecule of the proinflammation pathway,
NF-κB can bind to the promoter region of RICTOR, and en-
hance cancer cell migration, chemotaxis and invasion via
upregulating Rictor expression. Moreover, Bay 11-7082, an
inhibitor of IκBα phosphorylation, could inhibit TNFα and
IL-6 induced Rictor upregulation. Taken together, these re-
sults demonstrated that a proinflammation cytokine could

affect cancer cell metastasis, and the inhibition of the NF-κB
pathway may help attenuate inflammation-related metastasis.
TNF-α/IL-6/ NF-κB /Rictor axis maybe play a pivotal role in
RCC metastasis.

Conclusions

In summary, this study showed that the knockdown of Rictor
significantly decreased the metastasis of the RCC cell line
ACHN in vitro and in vivo. In addition, proinflammatory
cytokines (TNFα and IL-6) might increase RCC metastasis
through the upregualtion of the RICTOR transcription. Rictor-
mediated signaling is controlled by TNFα NF-κB signaling
and EGF-RTK pathway (Fig. 5). The association of the up-
regulation of Rictor and RCC metastasis suggests that Rictor
is a potential biomarker for prognosis and stratification of
RCC patents, and molecular target for the development of
novel drugs for the treatment of cancer metastasis.
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