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Abstract The progression of colorectal cancer is commonly
characterized by accumulation of genetic or epigenetic abnor-
malities, altering regulation of gene expression as well as nor-
mal protein structures and functions. Nonetheless, there are
some questions that remain to be elucidated, such as the origin
of cancer cells and populations of cells initiating and propa-
gating tumor development. Currently, there are two rival the-
ories describing the process of carcinogenesis. One is the sto-
chastic model, arguing that any cell is capable of initiating and
triggering the development of cancer. Meanwhile, the cancer
stem cell model hypothesizes that only a small fraction of stem
cells possesses cancer-promoting properties. Typically, colo-
rectal cancer stem cells (CSCs) share the same molecular sig-
naling profiles with normal stem cells or embryonic stem
cells, such as Wnt, Notch, TGF-f3, and Hedgehog.
Nevertheless, CSCs differ from normal stem cells and the bulk
of tumor cells in their tumorigenic potential and susceptibility
to chemotherapeutic drugs. This may be a possible explana-
tion of the high percentage of cancer recurrence in patients
who underwent chemotherapeutic treatment and surgery.
This review article focuses on the colorectal cancer stem cell
biomarkers and the role of upregulated signaling pathways
implicated in the initiation and progression of colorectal
cancer.
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Introduction

Colorectal cancer (CRC) is the third leading type of cancer
with 1,361,000 newly recorded cases in 2012, accounting for
more than 694,000 deaths worldwide [1]. It is one of the main
causes of cancer-related deaths in the Western countries with
the overall 5-year survival rates of 11 % for patients with
metastatic disease [1].

Currently, the mechanisms of tumorigenesis and the precise
origin of CRC cells still remain mostly unclear. Today tumors
are considered not only simply as “bags packed with homo-
geneous malignant cells” but rather like hierarchically orga-
nized systems of different cell types including cancer, stromal,
hematopoietic, endothelial, and infiltrating cells. These cell
types can contribute to the tumor heterogeneity, influencing
metabolic, physiological, and morphological changes, ulti-
mately enhancing tumor growth, development, the probability
of treatment failure, and tumor recurrence.

There are two major models describing the process of co-
lorectal tumorigenesis, including the stochastic and cancer
stem cell models. The “stochastic model” argues that tumors
are biologically heterogeneous and not organized into systems
with all cells within the tumor having an equal potential to
tumor growth and metastasis [2]. Any functional discrepan-
cies in the model are explained by stochastic factors, whether
intrinsic (e.g., fluctuations of transcription factors or proteins)
or extrinsic (e.g., environmental signals, immune responses)
factors, altering normal cell behavior. The cellular heteroge-
neity in this model is explained by the hierarchy of the cell
class emanating at the apex, distinct from the rest of the hier-
archy and possessing different self-renewal capacities.

The cancer stem cell (CSC) model, proposed by Cohnheim
in 1875 [3], is based on the idea that some cancer cells retain
properties of embryonic cells. This theory suggests that differ-
ent internal or external agents are able to cause DNA damage,
and cells encompassing the damaged DNA could give rise to
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morphologically distinct tumor cell populations. Such popu-
lations share distinct biochemical, physiological, and genetic
profiles on different stages of cancer progression. The modern
perception of the theory arises from extensive studies of leu-
kemia stem cells [4, 5], where it was found that cancer cells
produced by tumor stem cells are similar to differentiated cells
generated by progenitor cells [6]. Later, prospective CSCs
were isolated for breast [7], brain [8], colon [9], head and neck
[10], pancreatic [11], melanoma [12], hepatic [13], lung [14],
prostate [15], and ovarian [16] tumors. In all cases, generated
xenograft models provided evidences that CSC can be a com-
mon feature across different cancer types. In addition, the
model claims that the cells within the tumor may vary by the
cancer initiating and propagating potential, reflecting hierar-
chical organization similarities between tumorigenic and non-
tumorigenic tissues.

Besides morphological, physiological, and metabolic dif-
ferences of CSCs from normal stem cells, they also differ in
their susceptibility to some chemotherapeutic drugs [17]. In
fact, the high percentage of cancer recurrence in patients
underwent chemotherapeutic treatment and surgery might be
explained by the presence of CSC. Nonetheless, significant
progress has been achieved in the identification of potential
colorectal cancer stem cell biomarkers identifying the stage of
the disease development, patient risk groups, and the chances
of recurrence and dissemination, alongside with those who
likely do not respond to certain types of treatment.
Therefore, this review focuses on the current state of colorec-
tal cancer stem cell biomarkers (CRCSC) and the pathways
involved in the development of colorectal cancer from the
perspective of the cancer stem cell model. This may be impor-
tant due to the lack of understanding of specific biomarkers of
CRCSC.

Table | summarizes the features of some cancer stem cell
biomarkers, including their aliases, main functions, and clini-
cal value.

General criteria and methods of CRCSC identification

In order to study the biology of CRCSC, firstly, they have to
be identified and, secondly, their nature has to be confirmed.
The identification of CRCSC to this day has been relying
mostly on molecular markers (described below in details) used
in fluorescence-activated cell sorting (FACS), fluorescent mi-
croscopy, and other types of experiments. The original exper-
iments clearly demonstrated the existence of the cells with the
characteristics of CSC in colorectal cancer and were done by
two independent groups of researchers led by John Dick [18,
19] and Ruggero De Maria [20-22].

It must be noted that CRCSC, as well as CSC from other
organs and tissues, have to comply to certain criteria in order
to be considered a CSC. The major criteria for CSC would be
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a possession of specific properties such as self-renewal,
multilineage differentiation, as well as a tumorigenic potential.
Self-renewal refers to the capability of the cell to produce one
undifferentiated cell with the stem cell characteristics and an-
other cell with the potential to give rise to differentiated line-
age during cell division. The multilineage differentiation po-
tential refers to the CSC ability to differentiate and give rise to
several tissue cell types. For example, the intestinal crypt con-
tains several cell types that include enterocytes, goblet cells,
Paneth cells, and enteroendocrine cells. Therefore, the
CRCSC should be able to produce cell types resembling the
abovementioned cell types upon in vitro differentiation. The
self-renewal and multilineage differentiation are two stemness
parameters of the SC, while the tumorigenic potential is the
parameter of the cancer cell, which in combination produces a
CSC. Tumorigenic potential is another important feature of
CRCSC, which is usually assessed by the ability of the cell
to invade the tissue and produce a tumor upon transplantation.
The assessment of the tumorigenic potential has been routine-
ly done by injection of the studied cells to the severe combined
immune-deficient mice. The experiments used to assess these
parameters are described in details elsewhere, and they are out
of scope of this review.

Identification of colorectal cancer stem cell biomarkers

CD24 is a mucin-like cell surface adhesion glycoprotein at-
tached to the external side of the plasma membrane by a phos-
phatidylinositol anchor [23]. CD24 plays a role in cell prolif-
eration and differentiation, expressed by a number of immune
system cell types, including B lymphocytes [24], where it
positively regulates proliferation and maturation of activated
T cells [25] and granulocytes [26]. It has been reported that the
protein can also be implicated in the development of a number
of cancer types as breast, ovarian, lung, gastric, and colorectal
[23]. Recently, it has been revealed that CD24 is expressed in
nearly 50-68 % of CRCSC [27]. The expression of CD24
positively correlates with various stages of adenocarcinoma
development, their degree of differentiation, and lymph node
metastasis [28]. However, no significant correlation between a
shortened period of patient survival and the presence of the
marker was detected [29]. Although there are some evidences
of CD24 as a tumor biomarker, the role of the protein as a
CRCSC marker is less convincing and has not been fully
proven.

CD26 (DPP4 or ADCP2) is a 110-kDA cell surface glyco-
protein receptor expressed on the surface of various cell pop-
ulations, including activated T, B, NK cells, macrophages,
epithelial cells, and endothelial cells [30]. CD26 is composed
of the transmembrane region, cytoplasmic domain, and extra-
cellular stretch with dipeptidyl peptidase activities [31].
Originally identified for CD4" memory T cell population,
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Takahashi et al.
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development

cell development and maintenance;
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et al. [109]
Sureban et al. [118];

HGNC: 7330; Entrez Gene: 4440; Antagonist of NUMB, and therefore regulates Associates with the development of a
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Schulenburg et al. [119]

variety of tumor types and worse

clinical outcome for patients

NOTCH activities; plays a role in

Ensembl: ENSG00000135097

post-transcriptional modification of

proteins; involved in the development
of gliomas and melanomas; maintains

stem cell features

the marker can also serve a role in the activation of T cells
through the collagen receptor molecule and possibly have a
role in thymic ontogeny [32]. Other possible substrate targets
ofthe CD26 molecule include RANTES, a crucial regulator of
monocyte chemotaxis and interferon-inducible chemokines
[33]. Recent works have also indicated a potential role of
CD26 in the mobilization and migration of hematopoietic
stem cells (HSC) [34]. A number of studies have found that
the biomarker expression may be altered in a range of malig-
nancies such as hepatocellular carcinoma, melanoma cells,
lung adenocarcinoma, ovarian carcinoma, hematologic malig-
nancies, and prostate carcinoma [30]. However, only one
study has indicated the potential role of CD26 in the patho-
physiology of CRCSC [35].

CD29 (P1-integrin) is a member of the large integrin
superfamily. The protein comprises a large extracellular
domain, transmembrane stretch, and a small intracellular
domain. Functions of CD29 include activation of cell pro-
liferation, growth, survival, and migration processes [36].
In normal intestinal mucosal cells, the marker has been
found in the lower third part of crypts, which include
progenitor and stem cells [37]. The combination of
CD24/CD29 markers, which are found only in a small
subpopulation of primary CR cancers, have been pro-
posed as one of the tumor-initiating factors promoting
SC proliferation, anchorage-independent growth, migra-
tion, and metastasis probably through regulation of the
tumor microenvironment [38]. However, during late
stages of CRC progression, CD29 expression is usually
decreased, which has been associated with worse overall
disease outcomes [39], and after calibrating the effect of
the disease stage, was higher than in normal colon tissues
[39]. Nevertheless, there are still some ambiguities about
the correlation between CD29 expression and the size of
stem cell populations, and its role in the prediction of
malignancy outcomes [40].

CD44 is a cell adhesion, transmembrane hyaluronic acid
receptor glycoprotein and acts as a transducer of extracel-
lular signals influencing downstream Wnt/Beta-catenin
pathways [41]. CD44 is involved in homing and activation
of lymphocytes, hematopoiesis, angiogenesis, cell adhe-
sion, and migration mechanisms [42]. Recently, CD44
was found in a number of CSCs including breast, head
and neck, non-small lung, and colon cells [43]. In vitro
experiments showed higher clonogenicity and tumor colo-
ny forming potential of CD44" cells compared to the
knockdown cell lines [44]. Moreover, only CD44", but
not CD44", cells retain morphological characteristics of
tumor cells from which they were derived; meanwhile,
deletion or overexpression of CD44 in APC Min/ mice
reduced tumor initiation properties [45]. Thus, CD44 has
been suggested as a potential co-CSC marker, since in xe-
nograft, CD44"/CD166" cells have a higher tumorigenicity
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potential compared to CD44 /CD166 cells possibly
through the involvement in the activation of the tyrosine
kinase receptor c-Met [46]. The combination of CD44 and
CD54 has been proven to specifically identify rectal cancer
cells [47]. Nonetheless, the role of CD44 regarding devel-
opment of malignancies and metastases is still debatable.
This explains that many cancer types typically express
multiple CD44 splice variants [48]. The marker’s prognos-
tic relevance regarding survival of patients, lymph node
size, and tumor grade progression is inconsistent and con-
troversial, with further studies warranted to understand the
suitability of the CD44 molecule as a CRCSC marker.

Pentaspan-transmembrane cholesterol-interacting CD133
protein, also known as prominin-1, contains the extracellular
N-terminus, intracellular C-terminus with two cysteine-rich
loops, five tyrosine phosphorylation sites, and two stretches
of N-terminus glycosylation sites [49]. CD133 was firstly dis-
covered as a cell surface marker of several subsets of hemato-
poietic cells, intestine bottom crypt cells, and also bone
marrow-derived endothelial progenitor cells [50]. Currently,
CD133 has been described for a wide variety of cancer tissues
as brain [51], lung [52], liver [53], prostate [54], and colon
[55]. Several studies have also proved that the glycoprotein
may act as a CRC stem cell marker [9, 56-58] demonstrating
raised abilities of CD133" enriched cell populations to engraft
and initiate solid tumor formation in immunodeficient mice
compared to unsorted CRC cell populations. This can be ex-
plained by hyperactivation of Wnt/Ras—Raf~-Mek—Erk signal-
ing pathways [59]. Further, expression of the SRp20 splicing
factor, a newly identified target gene of the Wnt/(3-catenin
pathway [60], suggested that the expression of CD133 and
CXCR4 in the tumor microenvironment acts through the
CXCRA4SDF-1 paracrine axis and usually correlates with poor
overall survival rates of patients diagnosed with stage 2 and 3
colorectal cancers.

According to Mohammadi et al. [61], the share of CD133"
decreases through a non-dysplastic subset of sessile serrated
adenoma—polyp—lesions (SSA/P/L) (premalignant CR le-
sions) to non-dysplastic serrated hyperplastic polyps (HP)
and ultimately through the passage of CSC to dysplasia, ade-
nomas, and then cancers, remaining constantly higher than in
normal tissue cells [62]. This fact indicates that upregulation
of CD133 expression more probably occurs during early
stages of CRC progressions, contributing to the entire process
of cancer expansion [63]. Other potential routes of CD133"
expression in CSC include epigenetical mechanisms proposed
by Yi JM et al. [64], who found that hypermethylation of the
CD133 gene promoter in a CpG island may lead to the upreg-
ulation of CD133.

A number of papers evidenced a high prognostic relevance
of CD133 in the promotion of malignancies. Several studies
stated that higher levels of CD133 expression usually correlate
with worse prognostic outcomes [65, 66], and it may associate

with the 5-FU-based chemotherapy resistance. Furthermore,
CD133" cell populations are more resistant to conventional
radiation therapy, explaining increased chances of CRC re-
lapse and radiotherapy-related risks [67]. However, the use-
fulness of CD133 is still debatable, as CD133" cell popula-
tions are also able to generate tumor development in immune-
deficient mice [68]. This fact was explained by Feng et al. [69]
suggesting that CD133"SW620 and CD133-SW620 colon
cancer cells can switch between the two subpopulations in
the presence of environmental stress and hypoxia-inducible
factors (HIFs). Particularly, the P5 promoter of the CD133
gene is regulated by HIF-1oc and HIF-2x through one of
two E-twenty six (ETS) binding sites in the human embryonic
colon and kidney cancer cells [70]. All these findings suggest
a pivotal role of CD133 in cancer initiating and progression
processes supporting its potential role as a prognostic bio-
marker in CRCSC.

CD166 or activated leukocyte cell adhesion molecule
(ALCAM) is a transmembrane protein with five extracellular
immunoglobulin-like domains [71]. CD166 is present on the
surface of T and B lymphocytes [71], myeloid [72], and mes-
enchymal stem cells [73]. Apart from hematopoietic cells, the
presence of CD 166 has also been reported for lung [74], breast
[75], ovarian [76], and prostate [77] cancers. In colonic epi-
thelial cells, CD166 was observed at the base crypt and pro-
genitor niche cells or CRCSC [78]. Further, when xenografted
on immunodeficient CD44"/CD166"/EpCAM " mice [38], the
tumorigenicity potential of the cells increased compared to
wild-type mice, suggesting some not well-characterized func-
tions. In a group of 111 patients with CRC diagnosis [79],
CD166 expression correlates with a shortened period of sur-
vival. Furthermore, Lugli et al. [46] have demonstrated posi-
tive correlation between the lymph node metastasis, tumor
size, the number of colon polyps, and worse clinical prognosis
[47]. In contrast to these findings, Horst et al. [80] have not
found any statistically significant association between CD166
markers and CRC outcomes. These evidences suggest that
upregulation of CD44 and CD166 must have a role in colon
polyps to carcinoma transition events; however, the exact role
remains yet to be defined.

Aldehyde dehydrogenase (ALDH1) was detected as a CSC
marker for lung, prostate, breast, and pancreatic cancers and in
a number of myelomas and leukemias [81]. High levels of
ALDH1 were reported for a number of stem cell populations
of various lineages, including colon progenitor cells [82].
Functions of ALDHI include catalysis and irreversible oxida-
tion of aldehydes to their corresponding carboxylic acids [83].
Several groups recorded reduced survival time for ovarian
cancer [83]. An increased expression of ALDHI1 is associated
with increasing stage of cancer development and for normal
tissues for poorly differentiated tumors and for metastatic co-
lon patients [40]. Recently, ALDH1 was also detected in ma-
lignant colonic stem cells [84, 85]. During progression from
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normal epithelium cells to adenomas in APC mice, expression
of ALDHI1 was detected further up towards the apex of the
crypt [84].

Bmil has also been reported as a stem cell biomarker,
playing a crucial role in the maintenance and self-renewal
processes of stem cells in several tissue types [86—88], where
Bmi acts as an epigenetic chromatin modifier of multiple tar-
get genes [89, 90]. As a component of the polycomb repres-
sive complex (PRC1), Bmil is implicated in the stimulation
E3 ubiquitin-protein ligase activity of RNF2/RING2 [91].
Usually, in the gastrointestinal tract, Bmil-expressing cells
are abundantly expressed in the distal part of the small intes-
tine [92]. Through a lineage tracing mechanism and in situ
hybridization, it has been shown that Bmil-expressing cells
could be found at +4 and +5 positions, possibly playing an
essential role in the crypt architecture [93]. Moreover, the
selective removal of Bmil-expressing cells carried out by
diphtheria toxin (DT) treatment results in the disruption of
the normal crypt composition. The logical question that arises
is whether Bmil-expressing cells take part in compensation of
the loss of Lgr5 positive cells. As it was hypothesized, the
number of Bmil-expressing cells increased three times than
in controls upon removal of Lgr5-expressing cells [92]. Bmi-1
has also been reported playing a role in the behavior and
functioning of several cancer stem cell types including lung
[94], mammary [95], prostate [96], glioma [97], and medullo-
blastomas [98]. However, although the oncoprotein has been
correlated with the development, expansion, and metastasis of
colorectal cancer, usually resulting in poor clinical outcomes
and survival rates [99-102], the biomarker has rarely been
reported playing a role in CRCSC [102, 103]. For example,
Kreso et al. [103] detected the expression of Bmil in the
LS174T cell line, a well-characterized human colon adenocar-
cinoma line. Injection of Bmil knockdown cells into
interleukin-2 receptor yc—deficient mice (NSG) and non-
obese diabetic—severe combined immune-deficient mice
(NOD-SCID) resulted in reduction of tumor initiation prop-
erties and sphere formation potential compared to control
cells, possibly through the CDKN2A locus, encoding
pl6INK4a and pl14ARF [104]. Functioning of CRCSC and
CRC progression seems to be dependent on the functioning of
the canonical Bmil signaling pathway [103].

The epithelial cell adhesion molecule (EpCAM) is a trans-
membrane glycoprotein mediating epithelial specific intracel-
lular adhesion, cell migration, proliferation, differentiation,
and signaling [105, 106]. Expression of EpCAM was ob-
served on epithelium-derived cell populations and a number
of human cancer tissues including colon, normal colon pro-
genitor cells, and cancer initiating cells from colon, pancreas,
breast, and prostate carcinomas [9, 57, 107]. Initially, EpCAM
was discovered using FACs focusing on tumorigenic propen-
sities of EpCAM™E"/CD44" and EpCAM™®"/CD44 ™ [44]. Not
surprisingly, EpCAM"&"/CD44" were able to initiate
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progression of a tumor, whereas EpCAM'*"/CD44" failed to
produce any colonies. Subsequently, when xenografted on
NODY/SCID mice, the active EpCAM produced distinct cancer
heterogeneity, usually observed in original tumors [44].
Similarly, Dylla et al. [108] proposed that CRCSC
chemoresistance may be attributed to the presence of
EpCAM'/CD44" cell surface markers. The combination of
EpCAM™e"/CD44"/CD166" cell lines appears to have a
higher proliferation and cell colony formation potential, as
well as a higher resistance to drugs with less spontaneous rates
of apoptosis compared to EpCAM™ populations [109].
EpCAM expression has also been found to be reversely cor-
related with the primary tumor grade and with higher expres-
sion rates observed for earlier events of cancer progression
[46]. It has also been noted that decreased EpCAM expression
was associated with the tumor invasion potential of a metasta-
tic cell, infiltration of the invasive tumor margin, and the pres-
ence of lymph node metastasis. Similarly, Langan et al. [39]
found that decreased EpCAM expression rates correlate with
the lymph node stage (NO vs. N1 vs. N2). These facts suggest
EpCAM involvement in cellular signaling processes necessi-
tates further investigation of the protein for better understand-
ing of its clinical, prognostic, and therapeutic value.
Leucine-rich repeat-containing G protein-coupled receptor
5 (Lgr5) is a member of GPCR class A orphan receptor pro-
teins. The protein consists of a seven transmembrane and a
leucine-rich extracellular stretch. Lgr5 has firstly been discov-
ered in colon crypt base columnar progenitor cells harboring
Wnt/3-catenin pathway enhancing mutations [110]. After
that, the overexpression of Lgr5 was reported for esophageal
carcinomas, ovarian carcinomas, and hepatocellular carcino-
mas and a number of stem cell lines including CRCSC [111].
The loss of Lgr5 expression may be a necessary prerequisite
for upregulation of genes responsible for epithelial mesenchy-
mal transition (EMT) [112]. Moreover, elevated expression of
Lgr5 correlates with low expression of miR-200c and high
expression of vimentin [112], one of the EMT characteristics
of tumors, resulting in increased cancer invasiveness and
lymph node metastasis. In adenocarcinomas, expression of
the protein is localized on peripheral regions, which may lead
to the loss of Lgr5" cell polarity and promote cell migrations
and tumor—host interface (carcinoma in situ) [113]. In a recent
investigation [114], it has been shown that patients with si-
multaneous expression of stem cell genes including Lgr5 may
lead to 10-fold elevated risks of colon cancer emergence com-
pared to those with low levels. Further, Takahashi et al. [113]
reported that overexpression of LgrS correlates with higher
levels of lymph node metastasis and decreased rates of patient
survival. These findings defined a crucial role of Lgr5 in CR
carcinogenesis and may be a suitable marker of CSC.
Musashi-1 (Msi-1) is a RNA-binding protein that firstly
has been discovered for neuronal stem cells, where it com-
petes with elF4G translation initiating factor [115] of two
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messenger RNAs (mMRNAs): p21/Wafl. Further, Battelli et al.
[116] investigated the HEK293T cell line and mNumb, an
agonist of the Notch receptor [117]. These mRNAs are impli-
cated in cell proliferation and tumorigenesis [118]. Several
authors have also linked Msi-1 to stem and tumor cell biology,
identifying Msi-1 as an intestinal stem cell putative biomarker
discovered on the LT97 adenoma-like cell line and in primary
colon tumors [119]. Further, knockdown of Msi-1 in HCT116
adenocarcinoma xenografts resulted in impaired tumor-
initiating activities and ultimately tumor growth [118, 119].
These data suggest that Musashi-1 might play an important
role in CSC carcinogenesis and tumor progression. In CRCS
C, Msi-1 is involved in the control of “stemness” regulating
Wnt/Notch pathways [120, 121]. However, apart from the
presence of Msi-1 on CRCSC as a stem cell progenitor, the
role of the protein was extensively studied only for the ner-
vous system [ 122] and no preliminary data about the influence
of Msi-1 can be concluded. Taken together, these facts indi-
cate the importance of Msi-1 in the development of CRCSC,
stipulating further investigations.

Colorectal cancer stem cell signaling pathways
Wnt signaling pathway

The Wnt (Wingless) signaling pathway is an evolutionary
conservative pathway found in all metazoan animals [123].
This pathway regulates an impressive array of intracellular
processes as cell proliferation and differentiation [124], cell
polarity and motility [125], stem cell fate determination, and
tissue renewal, particularly in intestinal crypt [126]. In con-
trast, dysregulation of the cascade has been reported to play a
role in many epithelial malfunctions, including colon tumori-
genesis through the canonical (Wnt/3-catenin dependent) or
the non-canonical (Wnt/3-catenin independent) pathways
[127]. The relation of the non-canonical pathway in CSC the-
ory is not well characterized. It is considered, however, that it
can antagonize [(3-catenin-dependent hyperactivation of the
Wnt pathway, suggesting some anti-oncogenic activities
[128].

Meanwhile, in the canonical pathway, the activity of the
Wnt cascade is regulated by the amount of unbound (3-
catenin in cytoplasm [129]. Generally, the level of cytoplas-
mic (3-catenin is maintained through the ubiquitin-mediated
proteosomal degradation of the multiprotein complex contain-
ing [3-catenin, axin, adenomatous polyposis coli (APC), and
glycogen synthase kinase-3(3 (GSK-3f3) [130]. However, up-
on binding of Wnt to the low density lipoprotein receptor
protein (LRP)/Frizzled complex, its downstream targets
are phosphorylated, thereby abrogating GSK-3[3 activi-
ties, which results in enhanced rates of non-
phosphorylated (3-catenin accumulation in the cytoplasm

[129]. Non-phosphorylated [3-catenin translocates to the
nucleus, where it binds to the T cell transcription factor
(TCF) and lymphoid enhancer-binding factors (LEF), si-
multaneously recruiting transcriptional coactivators as
p300, cAMP response element-binding protein (CREB),
and other components of the machinery [131, 132]. This
leads to the expression of genes responsible for cell fate,
proliferation, stem cell maintenance, and embryogenesis
including Axin2, c-MYC, and ASCL2 [130].

In normal intestine cells, expression of Wnt is detected in
the bottom crypt cells, which is essential for the maintenance
of stem cell compartmentalization and ultimately organization
and patterning of the intestinal tract [133]. For example, the
blockade of Wnt cascades by overexpression of Dickkopf-1
(DKK1), a functional antagonist of Wnt, or deletion of TCF4
and its target proteins as EphB2 and B3 receptors, which are
also responsible for positioning of stem and differentiated
cells, results in the abnormal colon tissue structure [134].
Furthermore, disruption of other targets of the Wnt cascade
as ASCL2 [130], LGRS [135], and CD44 [136], which are
confined by the crypt bottom, results in hyperplasia and the
loss of the stem cell compartments [137]. Similarly, EpCAM
signaling mechanisms seem to be closely interconnected with
Whnt signaling networks [138]. For example, proteolysis of
EpCAM by preselin-2 and TACE molecules results in the
release of EpICD, an intracellular domain of EpCAM. After
translocation of EpICD into the nucleus, it associates and reg-
ulates transcription of Wnt target genes as {3-catenin, FHL2,
and Lefl [139]. Some studies indicate that CD133 also can
promote [3-catenin signaling functions and therefore in-
hibition of cancer cell differentiation [140]. Activities of
the Wnt pathway have been shown reciprocally regulat-
ed by Bmi signaling [141]. For instance, it has been
shown that Bmil can suppress the DKKI molecule,
therefore leading to upregulation of the Wnt signaling
pathway and transcription of target genes as c-Myc,
Lgr5, CD44, and Bmil [141]. Further, hyperactivation
of DKK1 can modulate ALDH-1 activities having some
impacts on cancer cell survival mechanisms, possibly
through the upregulation of JNK, RhoA, and MAPK
mechanisms [142].

Interestingly, mutations activating and stabilizing f3-
catenin or inactivating the APC gene result in the permanent
activation of the Wnt transcriptional program even in
the absence of any extracellular signal. Further, silenc-
ing of (-catenin using siRNA, usually leads to de-
creased colonosphere formation, an important feature in
the process of tumorigenesis and serving as surrogates
of tumors [41]. In contrast, hyperactivation of TCF/LEF
and c-Myc increases the formation potential of
colonospheres [134]. The described events are consid-
ered to be the major cause of malignant transformation
present virtually in all CRC patients.
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NOTCH signaling pathway

The NOTCH signaling pathway is a highly conservative sys-
tem presented almost in all multicellular organisms. It has
been revealed that the NOTCH signaling pathway is funda-
mental for determination of cell fate, hematopoiesis, embryo-
genesis, and colorectal epithelium maturation, as well as for
the maintenance of the balance between cellular proliferation
and differentiation, migration, apoptosis, adjacent cell to cell
communication, and the development of immune cells [143].
In mammalian cells, the NOTCH signaling cascade is com-
prised of two structurally distinct families: Delta-like ligands
(DLL1, 3, and 4) and four transmembrane Notch homologue
receptors (1, 2, 3, 4) interacting with two different families of
ligands: Delta-like ligands (DLLs) and Jagged ligands [144],
which results in the activation of a number of downstream
target genes such Deltex, Hes-1, and asp21 [145, 146].
Activation of the NOTCH pathway incepts upon binding of
the NOTCH ligands to NOTCH receptors located on affecter
cells [147]. Once the ligand binds to a corresponding receptor,
the NOTCH receptor undergoes conformational changes ex-
posing the previously protected site to the proteolytic cleavage
guided by <y-secretase and metalloprotease, releasing the
Notch intracellular domain (NICD) from the NOTCH com-
plex [148]. The released cytoplasmic NICD fragment un-
dergoes nuclear translocation, where it forms a complex with
MAML-1, p300/CBP, Myc, p21, and core-binding factor-1
(CBF-1), modulating activities of hairy enhancer of split
Hes-1, 5, 6, 7, and Mathl1 [149].

In normal intestinal cells, all components of the NOTCH
signaling cascade are expressed in intestinal bottom crypts of
various stages of development and differentiation [150],
where activities of NOTCH pathways are essential for the
regulation of progenitor cell and goblet cell differentiation
[151]. Nevertheless, several studies showed that the aberrant
hyperactivation of Notch signaling components is significant-
ly higher in cancer cells compared to normal colonic mucosa
cells. Aberrantly expressed NOTCH pathways are observed in
the pathogenesis of a number of cancer types as pancreatic
cancer [152], prostate cancer [153], Ewing sarcoma [154],
cervical cancer [155], and colon cancer [156]. In a study con-
ducted by Reedijk and colleagues [156], it has been shown
that the expression of Jagged ligands, Notchl, and HES1 in
cancer cells was comparable to or slightly higher than that in
normal intestinal crypt cells. Another study conducted by
Meng and colleagues [157] revealed a correlation between
the expression of hesl, Notchl, and nicd genes with colon
cancer progression. Moreover, overexpression of these genes
is hypothesized to be involved in chemoresistance of CRCSC.

Overexpression of the Notch signaling cascade has been
reported to be associated with poor malignancy prognosis
and responses for medical treatment in solid tumors as breast
tumors [156]. It has been shown that Notch signaling-induced
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ALDHI1A1 deacetylation is associated with the aggressive
metastatic cancer phenotype [158]. Notch activities can also
be regulated by MSI-1 signaling, resulting in the promotion of
cell survival and enhancement of cell proliferation [159].
Similarly, the blockade of the Notch pathway depletes
CD133 positive cells inhibiting the growth and propagation
of tumor cells [160]. However, it appears to be that upregula-
tion of Notch is mainly associated with the development of
primary CRC, rather than metastatic CRC, indicating that hy-
peractivation of NOTCH takes a place in early stages of CRC
development and downregulated in advanced CRCs [161].
For example, it was demonstrated that elevated levels of
Jaggedl, Jagged2, DLL1, DLL3, DLL4, and Notch receptors
are present in 75 % of all CRC tissues [149]. The Notch/
STAT3/p63/Jagged signaling-induced hyperactivation can al-
so lead to the upregulation of mTOR/PI3K/AKT, EGF,
MAML-1, cyclin D1, c-Myc pathways, Bcl-2, Bel-XL, and
IAP family members, as well as a nuclear NFkB factor, con-
stitutively active in human CRC tissues [143]. All these fac-
tors contribute to uncontrolled cell proliferation, altered goblet
cell differentiation, mucin formation, and tumor cell
chemoresistance to chemotherapeutic agents. Interestingly,
not all components of the Notch cascade are implicated in
the development of CRC. It is found, for example, that the
expression of Notchl and Hes-1, but not Notch2, Jaggedl,
and DLL3, is associated with the grade of tumor progression
and increases from normal colon cells to adenomatous polyps
and metastatic colon cancers [149]. Notwithstanding this fact,
Notch signaling does not always function as an oncogenic
factor and can act as a tumor suppressor depending on the
cellular context. For instance, KLF4 C2H2 zinc-finger-
containing transcription factor in haploinsufficient mice
showed increased susceptibility of colon cancer development
[162] assuming anticancer properties of some components of
the Notch cascade.

TGF-f3 signaling pathway

TGF-f is a superfamily which is comprised of more than 30
proteins, including activins, bone morphogenetic proteins
(BMP), and inhibins [163]. The TGF-f3 signaling cascade,
its components, and downstream target genes have been re-
ported involved in cell proliferation, motility and migration,
differentiation, cell adhesion, extracellular matrix composi-
tion, and apoptosis [164]. It is now clear that TGF-3 is an
inhibitor of the cell cycle and is expressed in normal epithelial,
nodal, and immune cells, playing an essential role in tissue
and organ homeostasis [165]. On the cellular level, the path-
way is one of the most commonly altered cell signaling cas-
cades found in various cancer types [166]. In addition, hyper-
activation of the pathway promotes angiogenesis and immu-
nosuppression, which may be important in the context of car-
cinogenesis, tumor invasion, and metastasis [167].
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The cascade initiates upon binding of TGF-1 ligands to
three types of TGF-f3 receptor isoforms (TGFB1, TGFB2, and
TGFB3), inducing the assembly and autophosphorylation of
the receptor—ligand heteromeric complex [168]. This leads to
the recruitment and phosphorylation of receptor-regulated
SMADs (Smadl, Smad2, Smad3, Smad5, and Smad8)
[168]. Phosphorylated SMAD forms homo-oligomeric and
hetero-oligomeric complexes with the SMAD co-mediators
(Smad4 and Smad10) through 32SP and SARA adaptor mol-
ecules [169]. The complex is then translocated into the nucle-
us where it regulates transcriptional activities of the multiple
target genes [168]. Alternatively, the TGF—R complexes can
be subjected to degradation upon binding of inhibitory
SMADs (Smad6 and Smad7) and SMAD ubiquitinated regu-
latory factor (SMURF) [170].

Constant proliferation and differentiation is one of the main
properties of gastrointestinal epithelium cells. Therefore, mu-
tations in stem cell populations most likely result in increased
chances of tumorigenesis and exacerbate probabilities of ad-
ditional mutation occurrence. Targeting these cell populations
may provide a rationale for better strategies for treatment of
patients with colon cancer. Some of the TGF targets are im-
portant cell checkpoint genes as p21 (CDKNI1A), p27
(CDKN1B), and pl5 (CDKN2B) [171]. Hyperactivation of
these genes leads to cell cycle arrest [165], as well as Myc
suppression [172]. However, once p21Cipl is released from
the Myc suppression, it transactivates by the SMAD-FOXO
complex [172]. In normal intestinal epithelium cells, TGF-f3
signaling serves as a tumor growth suppressor initiating apo-
ptosis and inhibiting cell proliferation. The mechanism of
TGF-f3-mediated apoptosis includes activation of the death-
associated kinases (DAPk) and SHIP, inhibiting downstream
targets of Akt signaling [173]. In addition, apart from the
tumor suppression role, TGF-f3 signaling also plays a role in
the conditioning of mucosa-resident cells [164]. Therefore,
development of CRC requires suppression of the pathway in
carly stages of development. However, during late stages of
advanced primary tumor development, TGF-f3 promotes co-
lorectal cancer tumorigenesis and associates with increased
chances of cancer recurrence, likelihood of tumor relapse,
and poor chances of survival [ 164]. Recently, it has been dem-
onstrated that CD166 (pos) cell lines may have a higher pro-
liferative potential compared to CD166(neg) cell, probably
through the loss of TGF-3 suppressive activities [174].
Although it is still not clear how the inhibitory effects of the
cascade are switched to cancer-promoting properties, is has
been suggested that TGF-3 is capable of activating SMAD-
independent pathways, as mTOR/Akt/PI3K, JNK, and
MAPK signaling cascades [173, 175, 176]. Moreover, the
thr2 gene seems to be prone to microsatellite instabilities,
replication errors, and frameshift mutations, fluctuating from
40 to 80 % of all CRC cases [177, 178]. Interestingly, recon-
stitution of the zbr gene functions showed reduced

tumorigenicity in in vivo experiments [179]. Similarly, mice
with homozygous deletion of the smad and 32SP genes
(f2SP+/Smad4+) demonstrated increased chances of aggres-
sive colonic adenoma development compared with the wild-
type controls [180—182].

Hedgehog pathway

The Hedgehog (Hh) signaling pathway is one of the key reg-
ulators of stem cell maintenance, polarity, migration, and dif-
ferentiation during the embryonic development [183]. There
are three homologues of Hh receptor: Desert Hedgehog
(Dhh), Indian Hedgehog (Ihh), and Sonic Hedgehog (Shh)
[184]. Currently, it has been demonstrated that deregulation
of this pathway correlates with higher chances of tumor pro-
gression in a wide variety of tissues, including CRC [144].
Several studies have also indicated that hyperactivation of Hh
may regulate cancer stem cell maintenance. The cascade starts
from RASP-mediated acylation of the Hh N-terminus, which
is then released through the transmembrane transporter
Dispatched [185]. Association of the released Hh with
Drosophila patched gene (Ptchl) stabilizes the receptor
Smoothened (Smo), allowing it to internalize and to activate
signaling cascades by impeding its localization to the primary
cilium, instead of the plasma membrane resulting in the acti-
vation of the cubitus interruptus (Gli) gene family of zinc-
finger transcription factors [184]. There are three homologues
of Gli proteins: Hh target genes are activated by Glil, Gli2
serves as an activator and repressor, and Gli3 represses tran-
scription of the target gene [184]. It seems that Hh signaling is
dependent on the balance of the Gli proteins [186]. However,
in CRC stem cells and primary human colon carcinoma cells,
the Hh-Gli pathway seems to be overactivated, which affects
cell proliferation, tumor growth, survival, and metastases of
cancerous cells [187]. Interestingly, Hh signaling is also in-
volved in the maintenance of CD44/CD24 "% phenotype in
CSCs, contributing to the development of invasive cancer
forms [188]. Inhibition of Hh cascades by cyclopamine has
been reported to inhibit epithelial-to-mesenchymal transition
(EMT) and metastasis [189], indicating the potential therapeu-
tic value of Hh pathway for drug treatment.

Crosstalk between signaling pathways

Aberrant activation of individual stem cell pathways in CSCs
rarely operates in isolation, which potentially can have some
effects on how stem cells respond to extracellular cues. A
number of studies indicate that Notch can antagonize Wnt
signaling in a Su(H)-independent manner [190]. For example,
in the absence of Notch, cells with active of Delta or Su(H)
molecules can compensate the loss of the Disheveled mediat-
ed Wnt signaling [191, 192], which can lead to the develop-
ment of tumors associated with high levels of 3-catenin in the
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nucleus [193]. Similarly, mice with inhibition of the Wnt/[3-
catenin pathway demonstrated decreased levels of Jagged!
expression in ovarian carcinoma cells, suggesting some back-
ward loop interactions between Notch and Wnt pathways
[194]. In turn, the Wnt cascade can regulate Gli3 expression
and control Shh/Gli patterning of the Hh pathway [195]. It is
interesting that Hh signaling can also antagonize Wnt signal-
ing in the colonic epithelial cell cascade through downregula-
tion of the nuclear 3-catenin/TCF4 complex [196].

Apart from interactions between the listed pathways, Notch
signaling appears to be interconnected with cell proliferation
and developmental pathways such as mTOR/PI3K/Akt and
Raf/Ras/Erk/Mek pathways in a variety of cell types [197,
198]. In another study, it has been shown that stabilization of
Ras molecules in APC mutated mice usually correlates with
higher chances of colon cancer development and is controlled
by aberrant Wnt or Hh activities [199]. Similarly, the cells
with constitutively active mTOR also display elevated levels
of Hesl and NICD expression, probably through STAT3/
Jagged/p63 cascades [200]. Treatment of the cells with
mTOR inhibitors resulted in decreased levels of both Notch
and mTOR signaling [200]. Alternatively, TGF-3/ALKS ac-
tivities can also be regulated through the PI3K/Akt-mediated
mechanisms [173, 201]. For example, it is known that PI3K/
Akt signaling can attenuate the TGF-f3-mediated cycle arrest
or apoptosis program in response to insulin, interleukins, and
other factors, possibly through Smad molecules [173, 201].
TGF-b/BMP pathways are also reciprocally interconnected
with Wnt signaling [202]. Downstream components of the
pathway, Lef/[3-catenin/Smad regulate activities of the shared
genes in a synergistic manner. Some studies have suggested
connections between p53 molecules and the Hh pathway
[203], displaying the complexity of signaling pathway inter-
connections. Overall, recent studies have indicated that tumor
heterogeneity on the molecular level may be a result of the
interplay between numerous pathways having an active role in
the development of a unique cancer genotype.

Conclusion

The cancer stem cell model suggests that tumors usually
evolve from a small population of cancer initiating cells
through accumulation of genetic, epigenetic, and somatic al-
terations, responsible for carcinogenesis, tumor propagation,
metastasis, and relapse. According to the model, tumors are
composed of cell populations with cancer initiating potential
intermixed with the bulk of tumor cells. Therefore, the devel-
opment of different treatment strategies and therapeutic op-
tions to suppress the tumor growth and a possible relapse is
very much in need. However, the elaboration of new strategies
may be hindered by significant obstacles. First of all, it is the
apparent lack of conventional colorectal CSC markers to
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identify CSC from the rest of the tumor cells. Although puta-
tive biomarkers have been determined for different CSC cell
populations, it seems that CSCs undergo significant changes
in the level of biomarker expression, making it difficult to
precisely indicate CSCs on different stages of tumor develop-
ment based on cell surface biomarkers. In this regard, the
investigation focused on elucidation of cell signaling profiles
in CSC may provide a possible explanation of spatial and
temporal expression of specific cell surface biomarkers.
However, investigations related to cell signaling in CSC are
complicated by crosstalk between different cell signaling net-
works and cellular diversity associated with the stem cell de-
velopment during embryogenesis and normal tissue renewal.
This requires further investigations focused on the elaboration
of new opportunities in the designing of novel, more effective
treatment strategies.
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