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Abstract The aim of this study was to identify potential
serum biomarkers of diffuse large B-cell lymphoma
(DLBCL) and to detect DLBCL therapy response biomarkers.
DLBCL serum proteomic analysis was performed using the
CM10 ProteinChip mass spectrometry (SELDI-TOF-MS) ap-
proach combined with bioinformatics. A total of 178 samples
were analyzed in this study from untreated early stage DLBCL
patients (38), patients with inflammatory lymphadenopathy
(13), healthy donors (35), post-treatment non-relapsed
DLBCL patients (53), and relapsed DLBCL patients (39).
Model 1 formed by nine protein peaks (m/z: 6443, 5913,
6198, 4098, 7775, 9293, 5946, 5977, and 4628) could be used
to distinguish DLBCL patients from healthy individuals with
an accuracy of 95.89 % (70/73). The diagnostic pattern con-
structed using the support vector machine including the nine

proteins of model 1, showed a maximum Youden’s Index.
Model 2 formed by three protein peaks (m/z: 3942, 6639, and
4121) could be used to distinguish DLBCL patients from
those with inflammatory lymphadenopathy with an accuracy
of 94.12 % (48/51). Model 3 formed by six protein peaks
could distinguish patients with inflammatory lymphadenopa-
thy from healthy individuals with an accuracy of 97.92 % (47/
48). Model 4 could be used to distinguish non-relapsed
DLBCL patients from relapsed DLBCL patients with an
accuracy of 84.78 % (78/92). The four patterns were validated
by leave-one-out cross-validation. These data demonstrate
that the CM10 ProteinChip and SELDI-TOF-MS approach
combined with bioinformatics can be used effectively to
screen for the differential protein expression profiles of
DLBCL patients and to predict the response to therapy.
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Introduction

Non-Hodgkin lymphoma is one of the most malignant tumors
occurring with the seventh highest incidence and ninth mor-
tality rate in males and the sixth highest incidence and seventh
mortality rate in females in developed countries [1]. The
incidence and mortality rate of non-Hodgkin lymphoma is
also increasing in developing countries. Diffuse large B-cell
lymphoma (DLBCL) is the most common form of lymphoma,
accounting for 30–40 % of newly diagnosed non-Hodgkin
lymphomas [2]; there are no satisfactory biomarkers available
to screen for DLBCL. Detecting cancers at their earliest stages
of development is critical for achieving improved rates for
curing the disease. AmongDLBCL patients, less than one half
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of all diagnosed cases are cured with conventional chemother-
apy; however, DLBCL is a heterogeneous disease with sig-
nificant variations in clinical outcome [3]. Prognostic stratifi-
cation is based on clinical risk factors used to determine the
International Prognostic Index (IPI), which incorporates pa-
tient age at diagnosis, tumor stage, serum lactate dehydroge-
nase level, performance status, and the number of extranodal
sites [4]. However, the use of the IPI for identification of high-
risk patients is not completely reliable due the intrinsic mo-
lecular heterogeneity of this disease [5]. Therefore, the iden-
tification of prognostic serum biomarkers that can be used to
reliably distinguish DLBCL patients is highly important for
improving patient outcomes.

Recently, the focus of cancer research has expanded from
the analysis of the genetic information encoded by the human
genome to the analysis of protein expression. ProteinChip is a
new proteomics technique that is based on surface-enhanced
laser desorption/ionization time-of-flight mass spectrometry
(SELDI-TOF-MS) [6]. The ProteinChip array surface binds
proteins non-selectively, enabling high-throughput protein
profiling and providing a sensitive system for detecting and
analyzing multiple proteins. This technology has been applied
successfully to the discovery of biomarkers of a number of
cancers [7–9].

The purpose of this study was to utilize SELDI-TOF-MS
and bioinformatics techniques to generate and analyze pro-
tein profiles in serum samples from patients with DLBCL
and to distinguish prognostic markers for patients with
DLBCL.

Materials and methods

Patients and samples

This study was approved by the Ethics Committee of
Zhejiang University (China), and written informed consent
was obtained from all patients and donors prior to inclu-
sion. In total, 178 individuals (38 patients diagnosed as
untreated early stage DLBCL, 13 patients with inflamma-
tory lymphadenopathy, 35 healthy donors, 53 post-
treatment non-relapsed DLBCL patients, and 39 relapsed
DLBCL patients) who presented to the Second Affiliated
Hospital, Zhejiang University, College of Medicine
(China) were included in our study. The diagnoses of
malignant tumors and inflammatory lymphadenopathy
were confirmed by biopsy pathology. The patients with
early stage DLBCL were classified as stage I according
to the Ann Arbor staging system for lymphomas. All the
enrolled post-treatment patients received a standard R-
CHOP chemotherapy. Each group was age- and sex-
matched with a corresponding control group.

Sample preparation and SELDI-TOF-MS analysis

The Protein Biological System (PBS) II ProteinChip plus
SELDI-TOF-MS and the CM10 ProteinChip were purchased
from Ciphergen Biosystems (Fremont, CA, USA). Sinapinic
acid (SPA) was purchased from Fluka (Buchs, Switzerland).
All other reagents were purchased from Sigma (Sigma-Al-
drich; St. Louis, MO, USA). Serum samples were collected
from patients in the early morning before breakfast and were
stored at room temperature for 1–2 h before centrifugation at
3000 rpm for 10 min. The samples were then stored at −80 °C
until required.

Prior to analysis, the samples were thawed and centrifuged
at 10,000 rpm for 2 min. The supernatants were removed, and
5 μl of each sample was added to 10 μl of 0.5 % U9 buffer
(9 M urea, 0.2 % CHAPS, 0.1 % dithiothreitol) in a 96-well
plate. Samples were then incubated for 30 min at 4 °C on a
platform shaker set at 600 rpm.

The ProteinChip array cassette was placed in a 96-well
bioprocessor, and 200 μl NaAC (50 mM, pH 4.0) was added
to each well. The cassette was incubated for 5 min at 4 °C and
shaken at 600 rpm. The liquid was removed and retained, and
the procedure was repeated. A further 185 μl NaAC was
added to each well, and the cassette was incubated for 2 min
at 4 °C with shaking at 600 rpm. Samples retained from
different patients were added to separate wells (100 μl/well),
and the cassette was incubated for 1 h at 4 °C, with shaking at
600 rpm. After removing excess liquid, the array was washed
twice with 200 μl NaAC for 5 min and shaken at 600 rpm and
rinsed twice with high-performance liquid chromatography
water.

Prior to SELDI-TOF-MS analysis, 1 μl of a saturated
solution of SPA energy-absorbingmolecules was applied onto
each chip array. The array surface was allowed to air-dry, and
the application was repeated. The CM10 ProteinChip is a
weak cation exchange array with a carboxylate surface that
binds cationic proteins; therefore, the negatively charged car-
boxylate groups interact with the positive charges exposed on
target proteins. The ProteinChip was placed on the PBS II
mass spectrometer reader, the automatic baseline correction
was applied, and peaks between 2000 and 20,000 Da were
detected automatically. Peaks with mass-to-charge (m/z) ratios
<2000 Da were mainly due to ion noise from the matrix and
were excluded. Ciphergen ProteinChip Software v. 3.2 was
used to analyze the data.

Bioinformatics and statistical analysis

Data analysis was performed using the Zhejiang University
Cancer Institute-ProteinChip Data Analysis System (ZUCI-
PDAS) on a MATLABWeb Server v. 1.2.4 (MathWorks Inc.,
Natick, MA, USA). The undecimated discrete wavelet
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transform (UDWT) method was applied to denoise the signals
using the Rice Wavelet Toolbox v. 2.4. Baseline correction
was achieved by aligning the spectra with a monotone local
minimum curve and mass calibration was carried out by
adjusting the intensity scale to three peaks that were present
in all the spectra. Detection and quantification of the peaks
was performed using an algorithm that evaluated the maxi-
mum height of every denoised, baseline-corrected, and cali-
brated mass spectrum. The minimum height of each peak was
set at 10. The peaks were filtered to maintain a signal-to-noise
ratio (SNR) >3, where the SNR was defined as the height of

the peak above the baseline to the wavelet-defined noise. To
match peaks across the spectra, peaks with a relative mass
difference ≤0.3 % were pooled and defined as a cluster. The
value of any peak that was absent from a cluster was set to the
maximum height of that cluster. Normalization was performed
only within peak clusters.

The non-linear SVM classifier was based on the shareware
program OSU_SVM v. 3.00 Toolbox of Junshui Ma and Yi
Zhao. A radial-based function kernel, a parameter gamma of
0.6, and a cost of the constraint violation of 19 were used to
distinguish different groups of data. The leave-one-out cross-
validation (LOOCV) approach was applied to estimate the
accuracy of the classifier. This approach assigns one sample
as the test set, and the remaining samples are used as the
training set. The process is repeated until each sample has
been selected as a test set.

The Wilcoxon t test was used to estimate the potential of
each peak for distinguishing different groups of data. The 10
peaks with the smallest P values were selected for further
analysis. Each of the 1023 combinations of the 10 peaks was
analyzed by the SVM using the LOOCV method. The

Table 1 The cross-validation blind test results of the test set in model 1
(cases)

Groups Normal DLBCL Total

Normal 33 1 34

DLBCL 2 37 39

Total 35 38 73

Sensitivity of 94.29 % (33/35), specificity of 97.37 % (37/38), and
accuracy of 95.89 % (70/73)

Fig. 1 Protein mass peak 6443 expressed significantly high in normal individuals (group 0), but remarkably low in DLBCL (group 1) (p=8.1241e-011)
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combinations that showed the highest accuracy in
distinguishing different groups of data were selected as poten-
tial biomarkers. The SVM model with the highest Youden’s
Index was selected for the detection of DLBCL.

The reproducibility of the SELDI-TOF-MS spectra was
verified using a quality control sample. The mass accuracy
was <0.1 % according to the all-in-one peptide molecular
mass standard (Ciphergen Biosystems).

Results

Differential proteomics pattern of DLBCL versus normal
controls (model 1)

SVM analysis using the LOOCV method revealed nine pro-
tein peaks (m/z: 6443, 5913, 6198, 4098, 7775, 9293, 5946,
5977, and 4628) that could be used to distinguish DLBCL

Fig. 2 Protein mass peak 5913 expressed significantly high in DLBCL (group 1), but low in normal individuals (group 0) (p=1.1708e-010)

Table 2 The nine selected
discrepant protein mass peaks
comparison of normal individuals
with DLBCL patients of model 2;
mean and standard deviation (SD)

Protein peaks (m/z) Normal (mean±SD) DLBCL (mean±SD) P value (t test)

6443 3293.0304±2006.4098 637.7786±578.1431 8.1241e-011

5913 16,191.4875±4628.7639 30,643.9404±8650.54 1.1708e-010

6198 8819.1506±3385.9687 3230.239±3811.1509 5.0573e-008

4098 2076.5592±1290.3524 813.6088±278.8543 6.5425e-007

7775 18,191.9167±4016.9514 25,743.4027±7234.7128 1.695e-006

9293 1594.5423±976.1154 678.7395±679.8919 4.2444e-006

5946 1632.9509±651.5244 2654.1315±960.4347 6.1332e-006

5977 3497.2862±2631.4232 994.7109±1532.0075 2.6512e-005

4628 2938.2603±880.1372 1830.2684±1211.3899 8.656e-005
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from healthy individuals with an accuracy of 95.89 % (70/
73) (Table 1, Figs. 1 and 2). The diagnostic pattern con-
structed using SVM analysis, including the nine proteins of
model 1, showed the maximum Youden’s Index (YI).
Among these peaks, those at 6443, 6198, 4098, 9293,
5977, and 4628 m/z were found at high intensity in normal
individuals, but at low intensity in DLBCL patients. In
contrast, the peaks at 5913, 7775, and 5946 m/z were
detected at significantly higher levels in DLBCL patients
compared with those in normal individuals (Table 2). Rep-
resentative peaks are shown in Fig. 1. The sensitivity and
specificity of detection were 94.29 % (33/35) and 97.37 %
(37/38), respectively (Table 1).

Differential proteomics pattern of DLBCL versus
inflammatory lymphadenopathy patients (model 2)

Through LOOCV, support vector machine (SVM) analysis
was used to screen out three protein peaks (m/z: 3942,
6639, and 4121) to build model 2, which could be used
to define the peptide patterns for distinguishing DLBCL
from patients with inflammatory lymphadenopathy. Com-
binations with the highest accuracy were chosen as poten-
tial biomarkers, and the SVM model with the highest
Youden’s Index (YI) was used as the diagnostic model
(Table 3). The accuracy of the blind prediction was
94.12 % (48/51). The sensitivity and specificity of the
detection were 84.62 % (11/13) and 97.37 % (37/38),
respectively (Table 4).

Differential proteomics pattern of inflammatory
lymphadenopathy patients versus normal individuals
(model 3)

Model 3 formed by six protein peaks could be used to distin-
guish patients with inflammatory lymphadenopathy from
healthy individuals with an accuracy of 97.92 % (47/48)
(Table 5), as evaluated by LOOCV. The descriptive statistics
of these six peaks are shown in Table 6.

Differential proteomics pattern of non-relapse DLBCL
patients versus relapse DLBCL patients (model 4)

Model 4 formed by three protein peaks could be used to
distinguish non-relapsed DLBCL patients from relapsed
DLBCL patients with an accuracy of 84.78 % (78/92) (Ta-
ble 7), as evaluated by LOOCV. The descriptive statistics of
these three peaks are shown in Table 8.

Discussion

ProteinChip technology has enabled the application of high-
throughput proteomics to the discovery of potential bio-
markers of a variety of diseases. The advantages of this
technique include the simultaneous analysis of small samples
on a single chip, a relatively short experimental duration, and
the ability to separate and identify peptides expressed on the
chip surface based on differences between their intensities,
without a requirement for purification [10].

Support vector machines (SVMs) are a machine learning
approach originally proposed and developed by Vladimir
Vapnik in 1995. This approach is based on the structural risk
minimization principle (SRM), which can be used to solve
multiple problems in pattern recognition involving small sam-
ple sizes, nonlinearity, or high dimensional data. The central
principle is based on generalization using a classifier that is
required to be applicable not only on training samples but also

Table 3 The three selected protein mass peaks comparison of
inflammatory lymphadenopathy patients with DLBCL patients of
model 2; mean and standard deviation (SD)

Protein
peaks
(m/z)

Inflammatory
lymphadenopathy
(mean±SD)

DLBCL
(mean±SD)

P value
(t test)

3942 968.455±1093.5794 2599.6268±2762.2066 0.0046321

6639 777.7421±997.6501 2285.6967±2796.1499 0.013735

4121 3263.3611±1662.5648 2655.5581±1678.8008 0.19467

Table 4 The cross-validation blind test results of the test set in model 2
(cases)

Groups Inflammatory
lymphadenopathy

DLBCL Total

Inflammatory
lymphadenopathy

11 (84.62 %) 1 (15.38 %) 12

DLBCL 2 (2.63 %) 37 (97.37 %) 39

Total 13 38 51

Sensitivity of 84.62 % (11/13), specificity of 97.37 % (37/38), and
accuracy of 94.12 % (48/51)

Table 5 The cross-validation blind test results of the test set in model 3
(cases)

Groups Normal Inflammatory
lymphadenopathy

Total

Normal 34 0 34

Inflammatory
lymphadenopathy

1 13 14

Total 35 13 48

Sensitivity of 97.14% (34/35), specificity of 100% (13/13), and accuracy
of 97.92 % (47/48)
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to previously unseen samples or test samples. Although this
approach was previously recognized, the development of
SVM has enabled its effective application. The intrinsic com-
plexity of biological systems and their high dimensionality
compared to small sample sets render SVM an ideal tool for
the analysis of high-throughput biological data.

Reduction the number of false protein peaks created
through random variation remains one of the challenges in
analyzing SELDI-TOF-MS-generated data [11]. To overcome
this problem, we developed a bioinformatics tool based on an
algorithm that was able to identify most of the true, reproduc-
ible peaks. This tool was designed using the ZUCI-PDAS
with UDWT denoising and included baseline correction, peak
detection, biomarker selection, and the establishment and
evaluation of differential SVM patterns based on statistical
theory. The SVM can be used to solve problems such as the
generalization in pattern recognition, pattern selection, and
over-fitting of medium and small sample sizes; therefore, it
is applicable to finite samples, rather than to sample sizes
approaching infinity, to give an optimal solution with the
available information. In theory, obtaining the optimal point
can solve problems caused by local extrema, which are oth-
erwise unsolvable by artificial neural network (ANN)
methods. The algorithm transforms the actual condition into
hyperplane feature space with non-linear transformation, and
the non-linear discriminant function is created by constructing
a linear discriminant function in hyperplane space. The spec-
ificity of this approach enables excellent generalization and
effectively solves the dimensionality problem. The LOOCV
method is used to determine the accuracy of the classifier. All
these steps in combination ensure that the selection of bio-
markers is not influenced by systemic biases. This

bioinformatics tool has been used previously by our group to
produce a protein fingerprint in the diagnosis of papillary
thyroid carcinoma [12] and to identify candidate molecular
markers in oral squamous cell carcinoma [13], gastric cancer
[14], non-small cell lung cancer [15, 16], and colorectal cancer
[17].

In this study, we successfully used SELDI-TOF-MS and
bioinformatics techniques to analyze the sera of patients with
DLBCL to build four models that can be used to discriminate
between different groups of patients.Model 1 could be used to
distinguish DLBCL from healthy individuals with an accura-
cy of 95.89 % (70/73). Model 2 could be used to distinguish
DLBCL from patients with inflammatory lymphadenopathy
with an accuracy of 94.12 % (48/51). Model 3 could be used
to distinguish patients with inflammatory lymphadenopathy
from healthy individuals with an accuracy of 97.87 % (46/47).
Model 4 could be used to distinguish non-relapsed DLBCL
patients from relapsed DLBCL patients with an accuracy of
84.78 % (78/92). The diagnostic pattern constructed using the
SVM showed the maximum YI, and the four patterns were
validated by LOOCV.

Different biomarkers are often detected by using different
bioinformatics methods, such as conventional SVMs, discrim-
inant analysis, and ANNs. The LOOCV SVM method has
relatively high sensitivity and specificity; therefore, we ap-
plied this method of analysis to data obtained using the
SELDI-TOF-MS and bioinformatics approaches to success-
fully build models of serum protein fingerprints in DLBCL.
Further research is required to explore the peptides identified
in our study in greater detail and to confirm our findings in a
larger cohort of study samples.

Table 6 The six selected
discrepant protein mass peaks
comparison of normal individuals
with inflammatory
lymphadenopathy patients of
model 3; mean and standard
deviation (SD)

Protein peaks (m/z) Normal (mean±SD) Inflammatory lymphadenopathy
(mean±SD)

P value (t test)

4161 10,180.8592±3946.7984 1419.0127±1667.1331 1.4464e-006

6110 3799.2852±2317.8655 570.3338±167.0196 2.6463e-006

8698 2522.8245±761.3486 1159.9095±549.2234 9.5046e-006

5895 6403.2469±3561.6559 848.4002±2295.3917 1.1903e-005

4082 2372.3278±2466.3141 1135.6346±3342.8063 4.8616e-005

2957 4893.2962±2297.818 1732.4801±1760.3489 9.0105e-005

Table 7 The cross-validation blind test results of the test set in model 4
(cases)

Groups Non-relapse DLBCL Relapse DLBCL Total

Non-relapse DLBCL 45 8 53

Relapse DLBCL 6 33 39

Total 51 41 92

Sensitivity of 84.91 % (45/53), specificity of 84.62 % (33/39), and
accuracy of 84.78 % (78/92)

Table 8 The three selected protein mass peaks comparison of patients of
non-relapse DLBCLwith relapse DLBCL of model 4; mean and standard
deviation (SD)

Protein
peaks
(m/z)

Non-relapse
DLBCL
(mean±SD)

Relapse DLBCL
(mean±SD)

P value
(t test)

2946 1610.4981±732.0167 2833.6911±2338.1275 0.0028264

5820 1402.2886±1266.7702 2438.6621±2019.0309 0.0061753

6135 2229.0353±1002.3424 3354.8768±1315.3723 0.015854
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