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Abstract Neoadjuvant concurrent chemoradiation therapy
(CCRT) is an increasingly common therapeutic strategy for
rectal cancer. Clinically, it remains a major challenge to predict
therapeutic response and patient outcomes after CCRT.
Annexin I (ANXA1), encoded by ANXA1, is a Ca2+/phospho-
lipid-binding protein that mediates actin dynamics and cellular
proliferation, as well as suggesting tumor aggressiveness and
predicting therapeutic response in certain malignancies. How-
ever, expression of ANXA1 has never been reported in rectal
cancer receiving CCRT. This study examined the predictive and
prognostic impact of ANXA1 expression in patients with rectal
cancer following neoadjuvant CCRT. We identified ANXA1 as
associated with resistance to CCRT through data mining from a
published transcriptomic dataset. Its immunoexpression was
retrospectively assessed using H scores on pre-treatment biop-
sies from 172 rectal cancer patients treated with neoadjuvant
CCRT followed by curative surgery. Results were correlated

with clinicopathological features, therapeutic response, tumor
regression grade (TRG), and metastasis-free survival (MeFS),
as well as local recurrent-free survival (LRFS) and disease-
specific survival (DSS). High expression of ANXA1 was asso-
ciated with advanced pre-treatment tumor status (T3, T4, p=
0.022), advanced pre-treatment nodal status (N1, N2, p=
0.004), advanced post-treatment tumor status (T3, T4,
p<0.001), advanced post-treatment nodal status (N1, N2, p=
0.001) and inferior TRG (p=0.009). In addition, high expres-
sion of ANXA1 emerged as an adverse prognosticator for DSS
(p<0.0001), LRFS (p=0.0001) and MeFS (p=0.0004). More-
over, high expression of ANXA1 also remained independently
prognostic of worse DSS (hazard ratio [HR]=3.998; p=0.007),
LRFS (HR=3.206; p=0.028) and MeFS (HR=3.075; p=
0.017). This study concludes that high expression of ANXA1
is associated with poor therapeutic response and adverse out-
comes in rectal cancer patients treated with neoadjuvant CCRT.
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Introduction

Colorectal cancer (CRC) is one of the leading causes of death
globally. In Taiwan, the incidence of CRC has increased
gradually; estimated new cases of rectal cancer numbers up
to 4,900 per year [1]. The surgical approach is the main choice
for potentially curative treatment and recurrence remains a
major issue. To enhance local control and cure rates, neoad-
juvant concurrent chemoradiotherapy (CCRT) is recommend-
ed for locally advanced rectal cancers [2–4]. Although the
outcomes with this approach are inspiring, 5-year local and
distant recurrences are still noted and the rates range from 6 to
9.6 and 33 to 36 %, respectively [1]. These figures leave room
for improvement in patient outcomes. Thus, determining ef-
fective biomarkers for predicting the response to neoadjuvant
CCRT in rectal cancer patients is vital to aid in further risk
stratification.

Annexin I (ANXA1), the first characterized member of the
annexin superfamily, is an extensively studied protein, which
has a core domain responsible for calcium- or phospholipid
binding and an amino-terminal domain responsible for its
biological activity and specific function [5]. ANXA1 takes
part in various physiological processes, including cellular
differentiation [6, 7], cell proliferation [6–9], and signal trans-
duction [10–12]. In addition, it has been reported that dysreg-
ulation of ANXA1 is correlated with tumor progression in
many cancers, including glial tumors [13], head and neck
cancer [14], nasopharyngeal carcinoma [15], larynx cancer
[16], esophageal cancer [17], gastric cancer [18], breast cancer
[19], hepatocellular carcinoma [20], pancreatic cancer [21],
urinary bladder urothelial carcinoma [22], and prostate cancer
[23].

Based on data mining and bioinformatic validation,
ANXA1 expression is significant in rectal cancers treated with
neoadjuvant concurrent chemoradiotherapy (CCRT). To the
best of our knowledge, the clinical implications of ANXA1
have not been studied in rectal cancer patients and it has not
previously been linked with response to CCRT. In this study,
we evaluate its role as a predictive biomarker in a well-
characterized cohort of rectal cancer patients treated with
neoadjuvant CCRT.

Materials and methods

Analysis of published transcriptomic dataset

In order to identify genes critical in the response to neoadju-
vant CCRT, we reappraised one public transcriptome of tis-
sues from 46 rectal cancer patients receiving neoadjuvant

CCRT (GSE35452). To this end, we imported the raw CEL
files of Affymetrix HumanGenomeU133 Plus 2.0 microarray
platform into Nexus Expression 3 software (BioDiscovery) in
order to analyze all probe sets without pre-selection. Compar-
ative analysis and functional profiling were performed to
identify significant differentially expressed genes, with special
attention to pathways involving anti-apoptosis (GO:
0006916). We chose those with p<0.01 and log 2-
transformed expression fold change>±0.1 for further analysis.

Patient eligibility and follow-up

The institutional review board approved procurement of
formalin-fixed tissue of rectal cancer patients for this study
(IRB 10302–014). We retrieved a total of 172 records of rectal
cancer patients with paraffin-embedded tissue blocks and
regular follow-up from the archive of Chi Mei Medical Center
between 1998 and 2004 [1, 24]. At initial presentation, these
patients were confirmed as having an adenocarcinoma of the
rectum using a colonoscopic biopsy, and no distant metastasis
by chest x-radiography and/or abdominopelvic CT. All 172
patients received radiation therapy at a total dose of 45 Gy in
25 fractions over a period of 5 weeks with 24-h continuous
infusion of 5-fluorouracil concurrently before surgery. Adju-
vant systemic chemotherapy was administered if the pre-
treatment (Pre-Tx) or post-treatment (Post-Tx) tumor or nodal
status was beyond T3 or N1, respectively. All patients were
regularly monitored after diagnosis until death or their last
appointment.

Histopathologic evaluation

Two pathologists (CF Li and TJ Chen), blinded to the patients’
clinical information, performed pathologic analyses of the
tumor specimens. Post-Tx T and N stages of all patients were
documented according to the 7th American Joint Committee
on Cancer (AJCC) TNM staging system. Tumor regression
grade (TRG), used as the end point for evaluation of tumor
response after neoadjuvant CCRT, was assessed as previously
described.

ANXA1 immunohistochemistry and scoring

Tissue sections from Pre-Tx rectal tumor biopsies were cut
from paraffin-embedded tissue blocks at 3-mm thickness onto
precoated slides. For ANXA1 immunostaining, slides were
deparaffinized with xylene, rehydrated with ethanol, and then
heated for 7 min by microwave for retrieval of antigen epi-
topes in a 10-mM citrate buffer (pH 6). Endogenous peroxi-
dase was quenched by 3 % H2O2. Slides were washed with
Tris-buffered saline for 15 min and then incubated with a
primary monoclonal antibody against ANXA1 (Clone 29,
1:100; BD Biosciences, USA). The ANXA1 staining was
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interpreted using the H score, defined by the following equa-
tion: H score=ΣPi(i+1), where i is the intensity of the stained
tumor cells (0 to 3+), and Pi is the percentage of stained tumor
cells with various intensities. We classified tumors with H
scores higher than the median of all scored cases as having
high ANXA1 expression.

Statistical analysis

The SPSS 14 software package was used for statistical anal-
ysis. The correlations between ANXA1 expression and vari-
ous clinicopathological parameters were evaluated by Chi-
square test. The endpoints analyzed were local recurrence-
free survival (LRFS), metastasis-free survival (MeFS), and
disease-specific survival (DSS), calculated from the date of
operation to the date of event. We plotted survival curves
using the Kaplan-Meier method and performed log-rank tests
to evaluate prognostic differences between groups, then used
the Cox proportional hazards model for multivariate compar-
isons. For all analyses, two-sided tests with p<0.05 were
considered significant.

Results

Upregulation of ANXA1 gene predicts poor response
to CCRT

From the dataset of 46 rectal cancer cases in the public
transcriptome GSE35452, we focused on 371 probes covering
48 named genes regulating apoptosis. In non-responders to
CCRT, only ANXA1 showed significant upregulation (log2
ration=0.4402, p=0.0035, Fig. 1). MYBL2, BNIP3, PAK7,
TGM2, LDHB, CTCFL, and BAG4 displayed significantly

downregulated mRNA expression (p<0.01, Fig. 1, and Table 1).
This finding prompted us to further characterize the expression
status and clinical relevance of ANXA1 in rectal cancers.

Immunohistochemical expression of ANXA1 and its
association with clinicopathological features

To further investigate the correlation between ANXA1 ex-
pression and its clinical relevance in rectal cancers treatedwith
neoadjuvant CCRT, we first used immunohistochemistry to
examine the expression of ANXA1 in clinical specimens.
When detected in cell cytoplasm, ANXA1 immunoexpression
was successfully scored in all 172 cases with a wide range of
H scores, varying from 105 to 375 (Fig. 2). As shown in
Table 2, ANXA1 upregulation was correlated with an ad-
vanced Pre-Tx tumor and nodal status (p=0.022 and 0.004,
respectively), Post-Tx tumor status and nodal status (p<0.001
and 0.015, respectively), and a lesser degree of tumor regres-
sion following neoadjuvant CCRT (p=0.009). These findings
suggest a biological role for ANXA1 in modulating tumor
progression and the sensitivity of rectal cancers to CCRT.

Prognostic impact of ANXA1 expression in rectal cancer

Next, we analyzed the correlation between ANXA1 expres-
sion and the prognosis of the rectal cancer patients. The mean
follow-up time of these patients was 48.2 months (range, 6.2
to 131.2). A number of clinicopathological parameters, in-
cluding the Pre-Tx nodal status, Post-Tx tumor status, Post-
Tx nodal status, vascular invasion, and TRG were predictive
of at least one of the three endpoints of this study at the
univariate level (Table 3). Notably, cancers with high ex-
pression of ANXA1 were also characterized by a more
aggressive clinical course, with significantly shorter DSS

Fig. 1 Analysis of ANXA1 expression in CCRT responders versus non-
responders from a published transcriptomic dataset of rectal cancers. In
the clustering analysis of gene-regulating apoptosis, ANXA1 was signif-
icantly upregulated in patients responsive to CCRT. Tissue specimens
from non-responders (blue lines) and responders (yellow lines) are

indicated on top of the heatmap, and expression levels of upregulated
and downregulated genes are expressed as a spectrum of brightness of red
and green, respectively, with those unaltered in mRNA expression coded
as black
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(p<0.0001; Fig. 3), LRFS (p=0.0001; Fig. 3), and MeFS
(p=0.0004; Fig. 3). After multivariate comparisons, only
high ANXA1 expression remained as an independent prog-
nosticator for all endpoints, including DSS (p=0.007, haz-
ard ratio [HR]=3.998), LRFS (p=0.028, hazard ratio
[HR] = 3.206), and MeFS (p= 0.017, [HR] = 3.075)
(Table 4).

Discussion

Major challenges in managing rectal cancer include control-
ling the local tumor and preserving the anal sphincter. Because
reports show better local control and survival in patients
receiving neoadjuvant CCRT, it is an increasingly common
treatment strategy for patients with rectal cancer [25–27]. In
addition, to preserving the sphincter, especially in patients
with distal rectal cancers, converting the surgical procedure
from an abdominoperineal resection to a sphincter-preserving
operation such as low anterior resection with coloanal anasto-
mosis may be possible after neoadjuvant CCRT [28–30].
However, the response rate to neoadjuvant CCRT differs
among rectal cancers and there is a higher risk of serious
toxicity with this multimodal treatment strategy [24]. Hence,
new predictive biomarkers are urgently needed for individu-
alized treatment in rectal cancers.

A recent study started from metabolic pathways and iden-
tified that deficiency of asparagine synthetase had negative
prognostic impact in rectal cancers receiving CCRT [31]. In
this study, we observed that high expression of ANXA1 in
patients with rectal cancers was correlated with advanced
Post-Tx tumor status (p<0.001) but also associated with
lower-degree TRG (p=0.009), findings suggesting that
ANXA1 might be related to tumor progression. Moreover, at
the univariate level, ANXA1 overexpression significantly
predicted inferior DSS, LRFS, and MeFS. In addition,
ANXA1 overexpression served as an independent prognosti-
cator for poor DSS, LRFS, andMeFS at the multivariate level.
The abovementioned results reinforced the hypothesis that
ANXA1 may have a role in tumor progression and may be
used as a negative predictive biomarker.

There are studies showing that dysregulation of ANXA1 is
involved in the oncogenic process. For example, ANXA1
plays a role in the regulation of actin dynamics. Although
the mechanism is not fully understood, it has been suggested
that ANXA1 interaction with actin is Ca2+-dependent and that
actin polymerization is affected by ANXA1 through binding
to the phospholipids and profiling [32]. The importance of
microfilament actin includes maintaining cellular morpholo-
gy, cell adhesion and motility, and controlling the cell cycle
[33]. Malignant cells often exhibit dramatic changes in these
biological features and altered cellular morphology, loss of
cell adhesion, increasedmotility, and altered cell cycle control.T
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It has been postulated that alterations in actin polymerization
or remodeling play a vital role in regulating the morphological
and phenotypical events of a malignant cell. In addition, the
epithelial–mesenchymal transition (EMT) is crucial in the
progression of epithelial tumors to a malignant phenotype
[34]. Actin remodeling presumably plays a key role in the
process of EMT [35]. However, there is no consistent pattern
of ANXA1 expression levels in different malignancies; both
decreased and increased levels are observed in various human

cancers. The down-regulation of ANXA1 has been reported in
head and neck squamous cell carcinoma (SCC) [14], in naso-
pharyngeal carcinoma [15], in esophageal SCC [17], and in
prostate cancer [23]. Decreased ANXA1 expression level in
head and neck SCC is associated with lack of differentiation,
higher stage, and positive of lymph node metastasis [14].
Downregulated ANXA1 in nasopharyngeal carcinoma seems
related to the presence of squamous differentiation [15]. In
contrast, ANXA1 overexpression is reported in breast cancer

Table 2 Associations and com-
parisons between ANXA1 ex-
pression and clinicopathological
factors in 172 rectal cancer pa-
tients receiving neoadjuvant CRT

*Statistically significant

Parameter Number ANXA1 Expression p value

Low exp
(<median)

High exp.
(≥median)

Gender Male 108 57 51 0.344
Female 64 29 35

Age <70 106 48 58 0.117
≧70 66 38 28

Pre-Tx tumor status (Pre-T) T1–T2 81 48 33 0.022*
T3–T4 91 38 53

Pre-Tx nodal status (Pre-N) N0 125 71 54 0.004*
N1–N2 47 15 32

Post-Tx tumor status (Post-T) T1–T2 86 55 31 <0.001*
T3–T4 86 31 55

Post-Tx nodal status (Post-N) N0 123 71 52 0.001*
N1-N2 49 15 34

Vascular invasion Absent 157 83 74 0.015*
Present 15 3 12

Perineurial invasion Absent 167 85 82 0.173
Present 5 1 4

Tumor regression grade Grade 0–1 37 12 25 0.009*
Grade 2~3 118 61 57

Grade 4 17 13 4

Fig. 2 Representative
immunostainings of ANXA1
expression in rectal cancers. Low
expression (a) and high
expression (a) of ANXA1 in pre-
treatment specimens were linked
to remarkable tumor regression
(c) and low tumor regression
grade (d), respectively, after
CCRT
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compared to normal mammary tissues [19]; in pancreatic
cancer, it is correlated with poor differentiation [21] and in

urinary bladder urothelial carcinoma, it is associated with
inferior outcomes [22]. Nevertheless, the studies just

Fig. 3 Kaplan-Meier survival curves plotted to predict survival. Using the log-rank test, high expression of ANXA1 predicted inferior disease-specific
survival (a), local recurrence-free survival (b), and metastasis-free survival (c)

Table 3 Univariate log-rank analysis for important clinicopathological variables and ANXA1 expression

Parameter No. of case DSS LRFS MeFS

No. of event p value No. of event p value No. of event p value

Gender Male 108 20 0.9026 7 0.2250 17 0.3520
Female 64 11 20 14

Age <70 106 19 0.8540 18 0.6615 20 0.7427

≧70 66 12 9 11

Pre-Tx tumor status (Pre-T) T1–T2 81 10 0.0776 10 0.2261 11 0.1745
T3–T4 91 21 17 20

Pre-Tx nodal status (Pre-N) N0 125 19 0.0711 15 0.0070* 19 0.0973
N1–N2 47 21 12 12

Post-Tx tumor status (Post-T) T1–T2 86 7 0.0006* 7 0.0040* 8 0.0033*
T3–T4 86 24 20 23

Post-Tx nodal status (Post-N) N0 123 21 0.5998 16 0.1320 20 0.4634
N1–N2 49 10 11 11

Vascular invasion Absent 157 25 0.0184* 21 0.0028* 27 0.4470
Present 15 6 6 4

Perineurial invasion Absent 167 29 0.2559 25 0.0940 30 0.9083
Present 5 2 2 1

Tumor regression grade Grade 0–1 37 13 0.0038* 10 0.0090* 14 0.0006*
Grade 2~3 118 17 17 16

Grade 4 17 1 0 1

Down stage after CCRT Non-Sig. 150 29 0.1651 24 0.5961 30 0.0853
Sig. (≥2) 22 2 3 1

ANXA1 expression Low exp. (<median) 86 5 <0.0001* 5 0.0001* 6 0.0004*
High exp. (≥median) 86 26 22 25

DSS disease-specific survival, LRFS local recurrence-free survival, MeFS metastasis-free survival,

*Statistically significant
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referenced suggest that ANXA1 has a complicated and
context-dependent role in the oncogenic progress. This obser-
vation is also supported by the diverse biological activity of
ANXA1, including anti-inflammatory activity, inhibition of
cell adhesion, enhancement, or inhibition of cellular prolifer-
ation and apoptosis.

In addition to actin remodeling, ANXA1 takes part in the
signal pathway that increases cellular proliferation [7, 12],
suggesting that ANXA1 could have a role in the oncogenic
process of CRC by activating cellular proliferation signals.
Apoptosis induced by tumor necrosis factor-alpha (TNF-a) is
overcome by upregulated ANXA1 triggered by dexametha-
sone in human leukemic cells and there is a clear correlation
with higher ANXA1 levels in TNF-a-resistant cells compared
to TNF-a-sensitive cells [36]. Carollo et al. has reported a
similar mechanism in the resistance of prostate cancer to
doxorubicin and etoposide [37]. All the above findings imply
that there may be a link between increased ANXA1 levels and
resistance to immune surveillance of the tumor cell. Likewise,
the augmentation of ANXA1 levels in CRC is a possible
escapemechanism for colorectal cancer cells to avoid immune
system attack.

Another interesting finding revealed by data mining is that
the mRNA expression of MYBL2, BNIP3, PAK7, TGM2,
LDHB, CTCFL, and BAG4 are downregulated. MYBL2 be-
longs to the v-myb family of transcription factors. It has been
shown that MYBL2 has effects on both proliferation and
differentiation pathways in colon epithelial cells [38] but there
is no study focusing on its role in colorectal cancer yet.
BNIP3, a member of the Bcl-2 family, is a mediator of cell
survival and regulates programmed cell death and autophagy
in colorectal cancer cells [39]. Another altered gene, PAK7,
has been reported to play a role in inhibition of camptothecin-
induced apoptosis [40]. The roles of TGM2 [41], LDHB [42],
CTCFL [43], and BAG [44] in the pathogenesis of colorectal
cancer had also been disclosed. However, their role and the
correlations to CCRT remain to be elucidated.

In conclusion, this is the first time that ANXA1 has been
shown to correlate with advanced tumor status and lower

grade TRG following neoadjuvant CCRT. More importantly,
high expression of ANXA1 is a significant prognosticator for
worse prognosis, especially DSS, in rectal cancer patients after
neoadjuvant CCRT. Our data suggest that high expression of
ANXA1 contributes to disease progression and resistance to
CCRT in rectal cancers. Large-scale studies to investigate
molecular mechanisms underlying the expression of this pro-
tein and to further evaluate its potential prognostic value are
warranted.
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