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High intratumoral expression of fibroblast activation protein
(FAP) in colon cancer is associated with poorer patient prognosis
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Abstract -An active stroma is important for cancer cell inva-
sion and metastasis. We investigated the expression of fibro-
blast activation protein (FAP) in relation to patient prognosis
in colorectal cancer. Colorectal cancer specimens from 449
patients were immunohistochemically stained with a FAP
antibody and evaluated in the tumor center and tumor front
using a semiquantitative four-level scale. FAP was expressed
by fibroblasts in 85–90 % of the tumors examined. High
versus no/low expression in the tumor center was associated
with poor prognosis (multivariate hazard ratio, HR=1.72;
95 % CI 1.07–2.77, p=0.025). FAP expression in the tumor
front, though more frequent than in the tumor center, was not
associated with prognosis. FAP expression in the tumor center
was more common in specimens with positive microsatellite
instability (MSI) screening status and in patients with high
CpG island methylator phenotype (CIMP) status. However,
inclusion of MSI screening status and CIMP status in the
multivariate analysis strengthened the risk estimates for high
FAP expression in the tumor center (HR=1.89; 95% CI 1.13–
3.14; p=0.014), emphasizing the role of FAP as an indepen-
dent prognostic factor. Stromal FAP expression is common in
colorectal cancer, and we conclude that high FAP expression
in the tumor center, but not the tumor front, is an independent
negative prognostic factor.
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Introduction

Colorectal cancer (CRC) is one of the most frequent
cancers with regard to incidence and lethality for both
men and women in the western world. Although the
adenoma–carcinoma sequence is believed to underlie
the development of CRC in most patients, the disease
demonstrates considerable molecular heterogeneity, the
putative prognostic importance of which is increasingly
being recognized. By clustering particular genetic alter-
ations, two distinctive pathways have been identified:
microsatellite stability (MSS) and microsatellite instabil-
ity (MSI). MSS tumors show frequent chromosomal
gains and losses [1], and carcinogenesis is considered
to be promoted by copy number gains of oncogenes and
losses of tumor suppressors. MSI tumors, on the other
hand, have loss of expression of mismatch repair genes,
commonly MLH1 in sporadic CRC. MSI tumors are
generally less aggressive then MSS cancers and are less
often associated with lymph node metastases or distant
spread. Patients with MSI tumors also have better prog-
nosis than stage-matched MSS patients [2–5]. MSI is
highly associated with the CpG island methylator phe-
notype (CIMP) [6], in which gene promoter regions are
frequently hypermethylated with resultant gene silenc-
ing. Depending on the frequency of promoter hyper-
methylation, tumors are classified as CIMP high,
CIMP low, or CIMP negative. We and others have
reported a worse prognosis in CRC patients with
CIMP-high or CIMP-low tumors, compared to patients
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with CIMP-negative tumors, especially in combination
with MSS [7–14].

Fibroblast activation protein (FAP) (also called
seprase) is a type II integral membrane protein belong-
ing to the family of plasma membrane-bound serine
proteases [15, 16]. It shows gelatinase and collagenase
activity, suggesting a role in extracellular matrix remod-
eling [17]. It was originally reported to be localized on
human astrocytes and sarcoma cell lines in vitro [18,
19] and was later found to be expressed also in fibro-
blasts in many epithelial cancers, including CRC [15,
16, 19, 20]. Few previous studies have addressed the
role of FAP in CRC prognosis, and none have taken
into consideration the molecular heterogeneity within
CRC. Henry et al. [21] showed that high FAP expres-
sion in patients with known metastases indicates a more
rapid progression of the disease, and a study by Saigusa
et al. [22] suggests that high FAP expression in rectal
cancers after preoperative chemoradiotherapy is associ-
ated with a poorer prognosis.

In this study, we evaluated the frequency, degree, and
distribution of FAP expression in CRC tissue and related the
findings to clinical outcome, accounting for MSI screening
status and CIMP status. It is, to our knowledge, the largest
such study to date and the first to take into consideration the
molecular heterogeneity of CRC.

Material and methods

Clinical samples

The 488 CRC cases initially included in the present
study were from the Colorectal Cancer in the Umeå
Study (CRUMS), which consists of patients with prima-
ry CRC, who underwent tumor-resective surgery during
the period 1995–2003 at Umeå University Hospital,
Sweden. Of these, 33 and 30 patients (tumor center
and tumor front, respectively) were excluded due to
lack of adequate tissue available (i.e., tumor front not
included in the specimen or inadequate FAP staining
results). An additional 35 patients lacked follow-up data
or died with operative complications, leaving 420 (tu-
mor center) and 423 (tumor front) patients for the
survival analyses.

All tumor sections were reviewed by one pathologist,
who also did all histopathological classifications includ-
ing stage, grade, and histological type (mucinous or
non-mucinous). Clinical data were obtained by review-
ing patient records, and survival data were collected
during spring 2005. The study was approved by the
local ethical committee of Umeå University, Umeå,
Sweden.

Immunohistochemistry

Immunohistochemistry using a FAP antibody was per-
formed as previously described [20]. Briefly, specimens
were fixed in 4 % formaldehyde and embedded in paraffin,
according to routine procedures at the Department of Clin-
ical Pathology, Umeå University Hospital, Sweden. One 4-
μm section from each patient was cut, dried, dewaxed, and
rehydrated. Slides were then subjected to heat-mediated
antigen retrieval using BORG solution (Histolab, Gothen-
burg, Sweden) in a DecloakerTM pressure cooker. Anti-FAP
monoclonal antibody (D8, Vitatex, Stony Brook, NY, USA)
was used at a concentration of 1:100, and Rat-on-Mouse-
HRP Polymer Detection kit (Biocare Medical, Concord,
CA, USA) was applied for detection. The slides were coun-
terstained with hematoxylin.

For FAP evaluation, slides were reviewed under light
microscopy by one observer three times, and the reviewer
was blinded to the identity of the specimens between eval-
uations. Stromal staining was assessed as negative, +, ++, or
+++ according to the semiquantitative scale suggested by
Henry et al. [21]. Occasional epithelial staining was not
analyzed. For the survival analyses, the negative, +, and ++
groups were combined in order to compare cancer-specific
survival of tumors with no/low and high (+++) FAP expres-
sion. FAP immunostaining was evaluated both in fibroblasts
localized in stroma adjacent to the invasive tumor margin
(tumor front) and fibroblasts localized in the stroma within
the tumor mass (tumor center). Necrotic areas and ulcerated
luminal parts were avoided. In cases of heterogeneity, the
score that was most representative for the entire section was
assigned.

Microsatellite instability screening status

Immunohistochemical analyses of mismatch repair proteins
were performed as previously described [7, 23]. Briefly,
formalin-fixed and paraffin-embedded CRC tissue was ana-
lyzed for expression of the four mismatch repair (MMR)
proteins MLH1 (clone G168-15, dilution 1:50; BD Bio-
sciences Pharmingen, Belgium), MSH2 (clone FE11, 1:50;
Oncogene Research Products, San Diego, CA), MSH6
(clone 44, 1:50; BD Biosciences Pharmingen), and PMS2
(A16-4, 1:25; BD Biosciences, Belgium). Tissue samples
with tumor cells lacking nuclear staining for at least one of
these proteins were considered to have a positive MSI
screening status, hereafter referred to as MSI. Negative
MSI screening status based on immunohistochemical stain-
ing is hereafter referred to as MSS. MSI screening status
examined with immunohistochemistry for MMR protein
expression reflects MSI high status very well, with a sensi-
tivity rate of ∼92 % and specificity of ∼100 % [24–26], but
does not specify for MSI low [27]. Cases without internal
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positive control staining, such as lymphocytes, were consid-
ered uninformative.

CpG island methylator phenotype status

Methylation analysis to determine tumor CIMP status
was performed by the MethyLight method (quantitative
real-time PCR), with primer and probe sequences as
previously described [7, 20, 28]. Briefly, DNA extracted
from formalin-fixed, paraffin-embedded CRC tissue was
bisulfite treated and purified using the EZ DNA meth-
ylation kit (Zymo Research, Orange, CA, USA). For all
bisulfite-treated DNA samples, one reaction was run for
each of the eight genes included in the CIMP panel
(CDKN2A, MLH1, CACNA1G, NEUROG1, RUNX3,
SOCS1, IGF2, and CRABP1) [7]. The percent of meth-
ylated reference (PMR) value was calculated for each
gene [28]. Samples were considered positive for meth-
ylation when an exponential amplification curve was
present and generated a PMR >10 [28]. Tumors with
promoter hypermethylation in zero genes were classified
as CIMP negative, one to five genes as CIMP low, and
six to eight genes as CIMP high [7].

Statistics

Cross tabulations were analyzed with Pearson Chi-square
test when at least one cell had an observed or expected
frequency less than five. To test the linear association be-
tween two ordinal scale variables, the exact linear-by-linear
association test was performed. The Kaplan–Meier survival
plots were used to illustrate cancer-specific survival, and
comparisons between groups were performed by log-rank

test. Cancer-specific events were defined as death with
known disseminated or recurrent disease, and cases were
censored at the end of follow-up or at time of death by other
causes, whichever occurred first. In order to take into con-
sideration other clinicopathological factors, multivariate
Cox proportional hazard models were employed. Statistical
analyses were performed using SPSS/PASW statistical soft-
ware version 18.0. The p values <0.05 were considered
statistically significant.

Results

Frequencies

Colorectal carcinoma tissue samples from 449 patients were
successfully immunohistochemically evaluated for stromal
FAP expression (455 and 458 cases for tumor center and
tumor front, respectively). Representative staining is shown
in Fig. 1. In the tumor center, 72 (15.8 %) were negative,
215 (47.3 %) were +, 113 were (24.8 %) ++, and 55
(12.1 %) were +++ (Table 1). In contrast, in the tumor front,
only 47 (10.3 %) were negative, 114 (24.9 %) were +, 137
(29.9 %) were ++, and 160 (34.9 %) were +++ (Table 2).
However, FAP expression in the tumor center was correlated
to expression in the tumor front (rs=0.29; p<0.001).

Clinicopathological data

FAP expression in the tumor center and tumor front in relation
to clinicopathological variables is presented in Tables 1 and 2,
respectively. Tumors of mucinous type expressed lower levels
of FAP in the tumor front compared with non-mucinous

Fig. 1 Representative
examples of FAP
immunohistochemical staining
of stromal cells in colorectal
cancers. a Low (+) staining in
the tumor center, b strong (+++)
staining in the tumor center, c
low (+) staining in the tumor
front, d strong (+++) staining in
the tumor front
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tumors. High FAP expression in the tumor center was most
prevalent in right-sided CRC, whereas high FAP expression in
the tumor front was most prevalent in rectal cancer. FAP
expression in the tumor front was negatively associated with
tumor stage, with higher levels of FAP in the tumor front of
stage I patients. In contrast, FAP expression in the tumor
center was not related to tumor stage.

Preoperative radiotherapy of rectal cancers is a potential
confounding factor, and a significant positive association
between radiotherapy and FAP expression in the tumor
center was found.

FAP expression and MSI screening status and CIMP

Table 3 shows FAP expression in relation to MSI screening
status and CIMP status. High expression of FAP in the

tumor center was associated with MSI and CIMP high.
FAP expression in the tumor front was not related to either
MSI screening status or CIMP status.

Cancer-specific survival and FAP expression

Cancer-specific survival was shortest for CRC patients
with high versus no/low FAP expression in the tumor
center (Fig. 2a). This finding was attributable to the
subgroup of patients with colon, but not rectal, cancer
(Fig. 2c and d). FAP expression in the tumor front was
not related to prognosis (Fig. 2b). In a multivariate Cox
proportional hazard model including age, sex, tumor
localization, stage, tumor type, and FAP, the poor prog-
nosis for patients with high versus no/low FAP

Table 2 Clinicopathological characteristics in relation to FAP expres-
sion in the tumor front in colorectal cancer

FAP expression tumor front

Negative + ++ +++ p valuea

Frequencies,
n (%)b

47 (10.3) 114 (24.9) 137 (29.9) 160 (34.9)

Sex, n (%)

Male 23 (9.2) 63 (25.2) 71 (28.4) 93 (37.2)

Female 24 (11.5) 51 (24.5) 66 (31.7) 67 (32.2) 0.603

Age, n (%)

≤59 years 10 (11.4) 22 (25.0) 26 (29.5) 30 (34.1)

60–69 years 9 (7.7) 39 (33.3) 31 (26.5) 38 (32.5)

70–79 years 22 (14.0) 40 (25.5) 44 (28.0) 51 (32.5)

80 years 6 (6.3) 13 (13.5) 36 (37.5) 41 (42.7) 0.041

Localization, n (%)

Right colon 22 (14.9) 42 (28.4) 42 (28.4) 42 (28.4)

Left colon 15 (10.5) 35 (24.5) 46 (32.2) 47 (32.9)

Rectum 7 (4.3) 36 (22.1) 49 (30.1) 71 (43.6) 0.006

Stage, n (%)

I 6 (8.5) 11 (15.5) 14 (19.7) 40 (56.3)

II 14 (8.0) 42 (23.9) 65 (36.9) 55 (31.3)

III 16 (17.2) 25 (26.9) 21 (22.6) 31 (33.3)

IV 10 (9.3) 33 (30.6) 34 (31.5) 31 (28.7) 0.001

Grade, n (%)

High–moderate 27 (12.1) 50 (22.3) 64 (28.6) 83 (37.1)

Moderate–poor 20 (8.8) 63 (27.6) 71 (31.1) 74 (32.5) 0.336

Tumor type, n (%)

Mucinous 17 (24.3) 23 (32.9) 12 (17.1) 18 (25.7)

Non-mucinous 30 (7.9) 90 (23.6) 122 (31.9) 140 (36.6) <0.001

Preoperative radiotherapyc, n (%)

No 41 (11.8) 87 (25.1) 103 (29.7) 116 (33.4)

Yes 5 (4.6) 26 (24.1) 34 (31.5) 43 (39.8) 0.152

a Pearson Chi-square test
b Row percentage
c Rectal cancer

Table 1 Clinicopathological characteristics in relation to FAP expres-
sion in the tumor center in colorectal cancer

FAP expression tumor center

Negative + ++ +++ p valuea

Frequencies,
n (%)b

72 (15.8) 215 (47.3) 113 (24.8) 55 (12.1)

Sex, n (%)

Male 41 (16.4) 107 (42.8) 65 (26.0) 37 (14.8)

Female 31 (15.1) 108 (52.7) 48 (23.4) 18 (8.8) 0.106

Age, n (%)

≤59 years 13 (14.9) 40 (46.0) 23 (26.4) 11 (13.4)

60–69 years 18 (15.8) 58 (50.9) 26 (22.8) 11 (10.2)

70–79 years 23 (14.6) 72 (45.9) 39 (24.8) 23 (14.6)

80 years 18 (18.6) 45 (46.4) 25 (25.8) 9 (9.3) 0.960

Localization, n (%)

Right colon 19 (13.0) 72 (49.3) 28 (19.2) 27 (18.5)

Left colon 27 (18.8) 71 (49.3) 32 (22.2) 14 (9.7)

Rectum 23 (14.3) 72 (44.7) 52 (32.3) 14 (8.7) 0.019

TNM stage, n (%)

I 11 (15.9) 32 (46.4) 20 (29.0) 6 (8.7)

II 28 (15.9) 78 (44.3) 53 (30.1) 17 (9.7)

III 12 (12.9) 46 (49.5) 19 (20.4) 16 (17.2)

IV 18 (16.8) 55 (51.4) 19 (17.8) 15 (14.0) 0.310

Grade, n (%)

High–moderate 40 (17.7) 115 (50.9) 50 (22.1) 21 (9.3)

Moderate–poor 32 (14.3) 97 (43.5) 60 (26.9) 340 (15.2) 0.095

Tumor type, n (%)

Mucinous 15 (21.1) 36 (50.7) 10 (14.1) 10 (14.1)

Non-mucinous 55 (14.6) 178 (47.1) 100 (26.5) 45 (11.9) 0.122

Preoperative radiotherapyc, n (%)

No 55 (15.9) 177 (51.0) 72 (20.7) 43 (12.4)

Yes 16 (15.2) 37 (35.2) 40.8 (38.1) 12 (11.4) 0.003

a Pearson Chi-square test
b Row percentage
c Rectal cancer
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expression in the tumor center retained statistical signif-
icance (hazard ratio (HR)=1.72, CI 1.07–2.76, p=
0.026). In line with the Kaplan–Meier analysis, FAP
expression in the tumor front was not associated with
survival in multivariate analysis. Further analyses are
therefore limited to FAP expression in the tumor center.

Cancer-specific survival and FAP expression according
to MSI screening status and CIMP status

High versus no/low FAP expression in the tumor center
was associated with a shorter survival in both MSS and
MSI subgroups (log-rank p=0.013 and p=0.046, respec-
tively). Further, adjusting the multivariate Cox propor-
tional hazard model (see above) for MSI screening
status strengthened the risk estimate for FAP expression
in the tumor center (HR=2.00; CI 1.22–3.31; p=0.007).

Cancer-specific survival analysis of different CIMP groups
demonstrated a poorer prognosis for patients with CIMP-
negative and CIMP-low tumors with high versus no/low
FAP expression in both CRC (Fig. 3a and b) and colon cancer
(Fig. 3d and e), but not rectal cancer (data not shown). FAP
expression in the tumor center was not related to CRC or
colon cancer prognosis in the subgroup of CIMP-high tumors
(Fig. 3c and f). Adding CIMP status to the Cox proportional
hazard model for CRC (including MSI status, see above) did
not materially affect the risk estimate for high FAP expression
in the tumor center (HR=1.89; CI 1.13–3.14; p=0.014).

Discussion

In the present study, we investigated the relationship of FAP
expression in different tumor compartments in CRC in

relation to clinicopathological variables and prognosis, tak-
ing into consideration MSI screening status and CIMP sta-
tus. Tumors that were MSI or CIMP high expressed more
FAP in the tumor center compared to MSS, CIMP-negative,
and CIMP-low tumors. High expression of FAP in the tumor
center also predicted a poor patient prognosis in all CRC
patient groups studied, with the exception of CIMP high and
rectal cancer. FAP expression in the tumor front was not
associated with patient prognosis.

FAP has been described to be present in the tumor stroma
of epithelial cancers [15, 16, 19, 20], and analysis of its
expression in cancer in relation to prognosis has so far only
been conducted in a few studies [21, 22, 29]; the few
previous investigations of its expression in CRC have sup-
ported a negative prognostic role. The present study is, to
the best of our knowledge, by far the largest study of clinical
characterization of FAP in CRC and the only one to assess
FAP expression in relation to heterogeneity within the
tumor. We and others have previously seen that FAP
expression is essentially a prerequisite for invasion in
CRC [20, 21], and in the present study, only 10 % of
the patients lacked FAP in the tumor front. The degree
of FAP positivity in the tumor front is variable, but,
interestingly, this seems not to impact on prognosis. We
speculate that FAP expression by fibroblasts in the
tumor front may reflect a stress response to the micro-
environment at the invasive margin, whereas FAP ex-
pression in the more sheltered tumor center might be a
better indicator of the inherent invasive potential of the
tumor. Henry et al. [21] suggested that FAP-expressing
fibroblasts in the tumor front are of importance during
early invasion, which might explain our finding of high
FAP expression in the tumor front of stage I patients.
Once the invasive carcinoma is established, other factors

Table 3 FAP expression in relation to MSI and CIMP in tumor center and front

FAP tumor center FAP tumor front

Negative + ++ +++ p valuea Negative + ++ +++ p valuea

MSI screening statusb, n (%)c

MSI 7 (10.1) 25 (36.2) 17 (24.6) 20 (29.0) 9 (13.2) 22 (32.4) 12 (17.6) 25 (36.8)

MSS 64 (17.2) 184 (49.5) 93 (25.0) 31 (8.3) <0.001 37 (9.8) 88 (23.4) 123 (32.7) 128 (34.0) 0.074

CIMP status (n, %)

CIMP neg 39 (17.3) 109 (48.2) 60 (28.2) 15 (7.0) 22 (9.6) 53 (23.2) 66 (28.9) 87 (38.2)

CIMP low 29 (17.1) 82 (48.2) 37 (21.8) 22 (12.9) 16 (9.4) 40 (23.5) 60 (35.3) 54 (31.8)

CIMP high 4 (6.9) 24 (41.4) 13 (22.4) 17 (29.3) <0.001 9 (15.3) 21 (35.6) 11 (18.6) 18 (30.5) 0.108

CIMP negative zero genes hypermethylated, CIMP low one to five genes hypermethylated, CIMP high six to eight genes hypermethylated
a Pearson Chi-square test
b Cases lacking nuclear staining of tumor cells for at least one of MLH1, MSH2, MSH6 or PMS2 were considered to have a positive MSI screening
status (MSI).
c Row percentage
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appear to be more important for clinical outcome. We
have recently shown that FAP-expressing fibroblasts
produce fibroblast growth factor 1, which increases the
invasion of colon cancer cells [20] and might be one
explanation for the poor prognosis seen in patients with
high intratumoral FAP expression. Further studies are
needed to fully understand the role of FAP-expressing
fibroblasts in the tumor front of CRC.

In the present study, FAP expression in the center of the
tumor was strongly associated with poorer patient prognosis,
largely independent of other clinicopathological characteristics
including MSI screening status and CIMP status. Only in the
CIMP-high and rectal cancer patient groups did FAP expression

in the tumor center not predict survival. The discrepancy in
results between the largely overlapping patient groups of MSI
and CIMP high could not be fully explored due to limited
statistical power, and further investigation is warranted. CRC
patients with MSI tumors had more stromal FAP in the tumor
center, compared to the other patient groups. This was unex-
pected, since MSI is considered to be a positive prognostic
marker [30, 31] and was so in our study group as well [7].

We also found that low FAP expression in the tumor
center was more common in rectal tumors without versus
with preoperative radiotherapy. This might simply be due to
the fact that radiotherapy itself induces cell damage, and
FAP expression in these cases could reflect tissue remodeling
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in wound healing. This might also explain the high FAP
expression in the tumor front of rectal carcinomas, since many
of these patients had preoperative radiotherapy. Saigusa et al.
[22] recently suggested that FAP expression in fibroblasts is
related to poor prognosis in chemoradiotherapy-treated rectal
cancer patients, but we could not confirm this observation in
our patient cohort.

The main strength of this study was the large, well-
characterized patient group. Extensive clinicopathological
data allowed us to take into consideration a number of
potential confounders, including sex, age at diagnosis, tu-
mor location, tumor stage, mucinous histological type, MSI
screening status, and CIMP status. MSI screening status was
determined by IHC. Although MSI testing of standard
markers by PCR allows distinction between MSI high and
MSI low [27] and is the gold standard for determination of
MSI status, several studies have reported very high sensi-
tivity and specificity for IHC for the detection of MSI high
[24–26]. Despite the large sample size, numbers of patients
in some subgroup analyses were low.

In conclusion, the results of this investigation of a large,
well-characterized CRC patient group suggest that high FAP
expression in the tumor center, but not the tumor front, is
predictive of poorer patient prognosis, largely independent
of clinicopathological factors, including MSI screening sta-
tus and CIMP status.
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