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Involvement of heme oxygenase-1 in Korean colon cancer
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Abstract Heme oxygenase-1 (HO-1) catabolizes heme into
carbon monoxide, biliverdin, and free iron which mediate its
protective effect against oxidative stress. The aim of the
present study was to determine the expression level and
activity of HO-1 in Korean colon cancer tissues and cell
lines. HO-1 protein expression was higher (>1.5-fold) in
tumor tissues than in adjacent normal tissues in 14 of 20
colon cancer patients, and HO-1 protein expression was
closely correlated with HO-1 enzyme activity in cancer
tissues. Immunohistochemical data confirmed that HO-1
protein was expressed at a higher level in colon cancer
tissues than in normal mucosa. Furthermore, HO-1 mRNA
and protein expression and enzyme activity were higher in
the colon cancer cell lines Caco-2, SNU-407, SNU-1033,
HT-29, and SW-403 than in the normal fetal human colon
cell line FHC. Treatment with the HO-1 inhibitor zinc
protoporphyrin decreased the viability of colon cancer cell
lines. These data indicate that HO-1 may serve as a clini-
cally useful biomarker of colon cancer and as a target for
anticolon cancer drugs.
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Introduction

Nearly one million cases of colon cancer are diagnosed world-
wide each year, and an increasing trend in the incidence of
colon cancer in Asian countries, including Korea, has been
reported in recent years [1, 2]. Recent epidemiologic studies
have indicated that a western style diet is closely associated
with a high incidence of colon cancer [3, 4]. The presence of
iron ions in the colon increases the production of reactive
oxygen species (ROS) from peroxides via the Fenton reaction,
and the prooxidant environment of the colon may contribute to
greater cancer susceptibility [5, 6]. However, the mechanism
by which colon cancers acquire resistance to ROS-induced cell
death is not well understood. Therefore, a precise understand-
ing of the relationship between colon cancer and oxidative
stress-induced molecules is very important. Heme oxygenase-
1 (HO-1) represents a prime cellular defense mechanism
against oxidative stress via the antioxidant function of its cata-
lytic products including bilirubin, carbon monoxide, and con-
comitant induction of iron-sequestering ferritin [7, 8]. HO-1
expression is induced in response to oxidative stresses caused
by various chemical or physiological factors in cells and
tissues, reflecting the main role of this enzyme in the protec-
tion against oxidative injury [9–11]. In addition, HO-1 regu-
lates cell proliferation, modulates the inflammatory response,
and facilitates angiogenesis [12, 13]. HO-1 is expressed at
higher levels in oral squamous carcinoma, pancreatic cancer,
hepatoma, and colon cancer than in surrounding normal tissue
[14–17], suggesting that highly HO-expressed cancer cells
offer a growth advantage and provide cellular resistance
against ROS-mediated anticancer therapy [18, 19]. A recent
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research has identified that HO-1 could be considered as a
biomarker and potential therapeutic target for advanced pros-
tate cancer [20]. The present study investigates the involve-
ment of HO-1 in Korean human colon cancers and colon
cancer cell lines.

Materials and methods

Reagents

Primary rabbit polyclonal HO-1 antibody was purchased from
Calbiochem (SanDiego, CA, USA). 3-(4,5-Dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT) and zinc protopor-
phyrin (ZnPP) were purchased from Sigma-Aldrich Chemical
Company (St. Louis, MO, USA).

Patient tissues

Twenty tissue samples from human colon cancer patients
were obtained from Jeju National University Hospital (Jeju,
Republic of Korea). This study was approved by the institu-
tional review board for ethics of Jeju National University
Hospital (IRB:2011-38) and by informed written consent
from patients.

Cell culture

The human colon cancer cell lines Caco-2, SNU-407,
SNU-1033, HT-29, and SW-403 were obtained from the
Korean Cell Line Bank (Seoul, Republic of Korea), and
the normal fetal human colon cell line FHC was pur-
chased from the American Type Culture Collection
(Rockville, MD, USA). Cells were maintained at 37°C
in an incubator with a humidified atmosphere of 5%
CO2. SNU-407, SNU-1033, HT-29, and SW-403 cells
were cultured in RPMI 1640 medium containing 10%
heat-inactivated fetal calf serum (FCS), streptomycin
(100 μg/ml), and penicillin (100 units/ml). Caco-2 cells
were cultured in MEM medium containing 10% heat-
inactivated FCS, streptomycin (100 μg/ml), and penicillin
(100 units/ml). Human colon FHC cells were cultured in
a 1:1 mixture of Ham’s F12 and DMEM containing
HEPES (25 mM), cholera toxin (10 ng/ml; Calbiochem-
Novabiochem Corp., La Jolla, CA, USA), insulin (5 μg/ml),
transferrin (5 μg/ml), hydrocortisone (100 ng/ml), and 10%
FCS.

Western blot analysis

Cells were lysed on ice for 30 min in 100 μl of lysis buffer
(120 mM NaCl, 40 mM Tris (pH 8), 0.1% NP-40) and centri-
fuged at 13,000×g for 15 min. Supernatants were collected, and

the protein concentration was determined. Aliquots containing
40μg of protein were boiled for 5min and electrophoresed on a
10% SDS-polyacrylamide gel. Proteins were transferred onto
nitrocellulose membranes, which were subsequently incubated
with HO-1 antibody overnight at 4°C. The membranes were
further incubated with secondary anti-immunoglobulin-G-
horseradish peroxidase conjugates (Pierce, Rockford, IL,
USA). Protein bands were detected using an enhanced chemi-
luminescence western blotting detection kit (Amersham, Little
Chalfont, Buckinghamshire, UK).

HO-1 activity

HO-1 enzyme activity in colon tissues was measured as
described previously [20]. Briefly, colon tissues or cells
were homogenized in 0.5 ml ice-cold 0.25 M sucrose
solution containing 50 mM potassium phosphate buffer
(pH 7.4). Homogenates were centrifuged at 200×g for
10 min, and the supernatants were further centrifuged at
15,000×g for 60 min. The pellet was then resuspended in
50 mM potassium phosphate buffer (pH 7.4), and the
amount of protein was determined. The reaction mixture
(200 μl) containing 0.2 mM of the substrate hemin, 500 μg/ml
of cell lysate, 0.5 mg/ml rat liver cytosol as a source of
biliverdin reductase, 0.2 mM MgCl2, 2 mM glucose-6-
phosphate, 1 U/ml glucose-6-phosphate dehydrogenase,
1 mM NADPH, and 50 mM potassium phosphate buffer
(pH 7.4) was incubated at 37°C for 2 h. The reaction was
stopped with 0.6 ml of chloroform and, after extraction, the
chloroform layer was measured spectrophotometrically at
464 nm. HO-1 activity is expressed as nanomole of bilirubin
per milligram of protein.

Immunohistochemistry for HO-1

Tissue specimens were fixed in 10% buffered formalin and
embedded in paraffin. The same paraffin-embedded tissues
as those used for the original hematoxylin-and-eosin-stained
sections were used for immunohistochemistry. Tissue blocks
were cut into 3-μm-thick slices and mounted on Superfrost
Plus-coated slides. Sections were then deparaffinized in
xylene and rehydrated through a graded ethanol series. A stan-
dard immunohistochemical technique was performed using a
Ventana BenchMark XT immunostainer with HO-1 antibody at
a dilution of 1:100. Antigen retrieval on the immunostainer was
done for 30 min. The HO-1 antibody was incubated at 37°C for
60 min, and 3,3′-diaminobenzidine was used as a chromogen;
slides were counterstained with hematoxylin prior to mounting.
All staining procedures were performed according to the man-
ufacturer’s recommendations. Intramucosal mononuclear cells
in the tissue samples served as internal positive controls based
on their strong staining intensity. Negative controls for nonspe-
cific binding were obtained by omitting the primary antibody.
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The immunohistochemical slides were evaluated and inter-
preted by a pathologist.

Reverse transcription polymerase chain reaction

Total RNA was isolated using Trizol (GibcoBRL, Grand
Island, NY, USA). Reverse transcription polymerase chain
reaction (RT-PCR) was performed as described previously

[21]. PCR conditions for HO-1 and the housekeeping gene
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were
35 cycles of 94°C for 45 s, 53°C for 45 s, and 72°C for 60 s.
The primer pairs (Bionics, Seoul, Republic of Korea) were as
follows (forward and reverse, respectively): HO-1, 5′-GAGA
ATGCTGAGTTCATG-3′ and 5′-ATGTTGAGCAGGA
AGGC-3′; and GAPDH, 5′-AAGGTCGGAGTCAACGG
ATTT-3′ and 5′-GCAGTGAGGGTCTCTCTCCT-3′. Amplified
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Fig. 1 Protein level and
activity of HO-1 in colon cancer
patients. a The expression of
the HO-1 protein was detected
using an HO-1-specific anti-
body. b HO-1 enzyme activity
in colon tissues was measured
as described in the “Materials
and methods”. HO-1 activity is
expressed as nanomole of bili-
rubin per milligram of protein. c
Immunohistochemistry for
HO-1 in colon carcinoma tis-
sues showed (a) hematoxylin–
eosin staining (×100), (b)
positive-stained mucosal histo-
cytes and faint expression in
normal epithelial cells (×200),
(c) transition area from normal
to carcinoma (×100), (d) and (e)
diffuse moderate expression in
carcinoma cells (×200), and (f)
strongly positive carcinoma
cells (×400)
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products were resolved by 1% agarose gel electrophoresis,
stained with ethidium bromide, and photographed under
ultraviolet light.

Quantitative real-time PCR

A total of 2 μg RNA was used in the first strand cDNA
synthesis using the SuperScript kit (Invitrogen, Carlsbad,
CA, USA). The cDNA was then diluted to a volume of
50 μl, of which 1 μl was used for amplification. Quantitative
real-time PCR was performed with 2× SYBR Green Master
Mix (Invitrogen, Carlsbad, CA, USA) and 900 nM primers for
human HO-1 and 18 s RNA. The real-time PCR machine iQ5
(Bio-Rad Laboratories, Hercules, CA, USA) was used to
amplify and detect the transcripts of interest. The real-time
PCR parameters used were as follows: 50°C for 2 min, Taq
activation at 95°C for 10 min, and 40 cycles of 95°C for 15 s
and 55°C for 1 min. Reactions were performed in duplicate,

and specificity was monitored using melting curve analysis
after cycling. Primers were designed using Bioneer (Seoul,
Republic of Korea). The primers used were as follows (3′–5′):
18 s RNA, 5′-CAGCCACCCCAGATTGAGCA-3′ and 5'-
TAGTAGCGACGGGCGGTGTG-3′; and HO-1, 5′-TGAGG
AACTTTCAGAAGGGCC-3′ and 5′-TGTTGCGCTCA
ATCCCTCC-3′. Data were analyzed using the iQ5 soft-
ware package. The relative standard curve method was
used to calculate relative mRNA abundance between
samples, which was then presented as mean ± standard
error of the mean of gene expression. All data were first
tested for normality, and data with nonnormal distribu-
tion were subjected to square root transformation prior
to statistical analyses. The comparative cycle threshold
(Ct) method was used to calculate the relative changes
in gene expression in the iQ5 real-time PCR system.
The 2-delta-delta Ct value was calculated after 18 s RNA
normalization [22].
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Fig. 1 (continued)
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Fig. 2 HO-1 mRNA and
protein expression and protein
concentration and activity in
normal colon and cancer cell
lines. The HO-1 mRNA level
was detected using a RT-PCR
and b real-time PCR analyses.
*p<0.05, significantly different
from FHC cells. c HO-1 protein
level was detected using
western blot analysis. d HO-1
enzyme concentration in colon
cell lines was quantified using a
human HO-1 ELISA kit. HO-1
concentration is expressed as
nanogram per milliliter.
*p<0.05, significantly different
from FHC cells. e HO-1
enzyme activity in normal co-
lon and cancer cell lines was
measured as described in the
“Materials and methods”. HO-1
activity is expressed as nano-
mole of bilirubin per
milligram of protein. *p<0.05,
significantly different from
FHC cells
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Quantification of HO-1 concentration

Cultured colon cancer cells were homogenized in RIPA
buffer and 10 mM PMSF and centrifuged at 15,000×g for
15 min at 4°C to remove tissue debris. HO-1 production was
quantified using a human HO-1 ELISA kit (Assay Designs
Inc., Ann Arbor, MI, USA) following the manufacturer’s
protocol. Briefly, cell lysates were added to the coated plates
and incubated for 1 h at room temperature with antihuman
HO-1 antibody. After several washes, the plates were incu-
bated with antirabbit IgG-horseradish peroxidase conjugate
for 30 min and then treated with tetramethylbenzidine, a
substrate for peroxidase. The reaction was stopped after
15 min, and the optical density at 450 nm was read using
a microplate reader. HO-1 concentration is expressed as
nanogram per milliliter.

Cell viability

The effect of the HO-1 inhibitor ZnPP on the viability of
human colon cancer cells was determined using the MTT
assay, which is based on the reduction of a tetrazolium salt
by mitochondrial dehydrogenase in viable cells [23]. Cells
were treated with ZnPP at a concentration of 10 μM, and 48 h
later, 50 μl of the MTT stock solution (2 mg/ml) was added to
each well to obtain a total reaction volume of 200 μl. After
incubation for 4 h, the plate was centrifuged at 800×g for
5 min, followed by aspiration of the supernatants. Formazan
crystals present in each well were dissolved in 150 μl of
dimethyl sulfoxide, and the absorbance at 540 nm was mea-
sured on a scanning multi-well spectrophotometer.

Statistical analysis

The results were subjected to analysis of variance using
Tukey’s test to analyze differences. The p<0.05 was consid-
ered statistically significant.

Results

HO-1 protein expression and enzyme activity in normal
and colon carcinoma tissues

HO-1 protein expression level and enzyme activity were
assessed in colon cancer tissues from 20 patients using western
blotting and enzyme activity assay. HO-1 protein expression
was detected in 70% (14/20) of tumor tissues from colon cancer
patients, and the expression level wasmore than 1.5-fold higher
than that in the corresponding normal tissues (Fig. 1a). HO-1
enzyme activity was higher in tumor tissues than in normal
tissues from colon cancer patients, almost in agreement with
the western blot data (Fig. 1b). Immunohistochemical analysis

detected the faint expression of HO-1 protein in normal colonic
epithelial cells (Fig. 1c(b)). The carcinoma cells showed dif-
fusely increased expression in the cell cytoplasm (Fig. 1c(c–e)),
while some of which reveal strong positivity (Fig. 1c(f)). Intra-
mucosal mononuclear cells showed strong immunoreactivity in
all specimens. These results show that HO-1 is highly
expressed in tumor tissues from Korean colon cancer patients,
suggesting that this protein could be used as a biomarker for
cancer detection.

HO-1 mRNA and protein expression and activity in human
colon cancer cell lines

The assessment of HO-1 expression in colon cancer cell
lines by RT-PCR and western blotting showed that HO-1
mRNA (Fig. 2a, b) and protein expression (Fig. 2c) in the
colon cancer cell lines Caco-2, SNU-407, SNU-1033, HT-
29, and SW-403 were higher than those in the normal colon
cell line FHC. HO-1 enzyme concentration and activity
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Fig. 3 The effect of the HO-1 inhibitor ZnPP on the cell viability of
colon cell lines. a After ZnPP treatment for 48 h in colon cell lines,
HO-1 enzyme concentration was measured and is expressed as nano-
gram per milliliter. *p<0.05, significantly different from ZnPP-
untreated cells in each cell line. b Cell viability was measured using
the MTT assay. *p<0.05, significantly different from ZnPP-untreated
cells in each cell line
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were also higher in cancer cell lines and were consistent
with the pattern of HO-1 protein expression (Fig. 2d, e),
although both HO-1 expression and activity level differed
among the cell lines. Despite these differences in the expres-
sion pattern of different cell lines, the data indicate that HO-1
is a useful marker for the detection of colon cancer.

Downregulation of HO-1 levels decreased cell viability

The effect of the HO-1 inhibitor ZnPP [18] on cell viability
was assessed in colon cell lines. ZnPP suppressed HO-1 con-
centration in the normal colon and cancer cell lines (Fig. 3a)
and reduced the cell viability of colon cancer cell lines without
affecting the viability of normal colon cells (Fig. 3b).

Discussion

HO-1 is a cytoprotective enzyme that is induced in response
to a variety of stimuli including oxidative stress. HO-1
induction plays a role in resistance to apoptosis in various
human cancer cells [24–26]. In the present study, HO-1
protein expression and activity were examined in tumor
and normal specimens obtained from Korean colon cancer
patients. HO-1 protein expression and enzyme activity were
higher in colon cancer tissues than in the surrounding nor-
mal tissues. This was also similar to the case for colon
cancer cell lines. The expression of HO-1 in colon cancer
tissues was confirmed by histological analysis. Inhibition of
HO-1 reduces tumor growth and increases sensitivity to
chemotherapy [27, 28]. Overexpression of HO-1, which
may exert beneficial effects in a number of pathological
conditions [29], has been suggested to play a protective role
in cancer cells. Malignant cancers express HO-1 and pro-
vide cellular resistance against ROS-mediated anticancer
therapy [18, 19], and elevated levels of HO-1 protein are
associated with neoplastic growth [29, 30]. This suggests
that HO-1 acts as a survival factor for colon carcinoma cells.
ROS are mutagenic and thereby induce carcinogenesis. Nor-
mally, ROS levels are controlled by an inducible antioxidant
system that responds to cellular stress and are predominantly
regulated by the transcription factor NF-E2-regulated factor 2
(Nrf2) and its repressor protein Kelch-like ECH-associated
protein 1 (Keap1) [31]. In contrast to the acute physiological
regulation of Nrf2, in neoplasia, there is evidence for in-
creased basal activation of Nrf2. Recent research has identi-
fied that somatic mutations disrupt the Nrf2–Keap1
interaction to stabilize Nrf2 and increase the transcription of
Nrf2 target genes, indicating that enhanced ROS detoxifica-
tion and additional Nrf2 functions may be protumorigenic [32,
33]. HO-1, an inducible antioxidant enzyme, has been
reported to be upregulated via activation of Nrf2 [34]. Thus,
the upregulation of HO-1 in tumor tissue and colorectal cancer

linesmay be due to the activation of Nrf2. Future studies will be
necessary to determine the role of Nrf2 on HO-1 expression in
colorectal cancer and its mechanism involved. HO-1 inhibition
by ZnPP derivative enhances the cytotoxicity of hydroperox-
ides and anticancer drugs in SW-480 cells and mice bearing
sarcoma S-180 cells [28]. In the present study, ZnPP en-
hanced cytotoxicity in cancer cell lines. In the human cancer
cell line COLO-201, on the other hand, flavonoid-induced
cytotoxicity was found to be mediated by the induction of
HO-1 [35]. The relationship between HO-1 and cytotoxicity
remains to be elucidated.

In conclusion, the present results indicate that HO-1 may
serve as a clinically useful biomarker of colon cancer and a
target for anticancer drugs.
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