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Abstract Cancer stem cells (CSCs) are a subpopulation of
tumour cells that possess the stem cell properties of self-
renewal and differentiation. Stem cells might be the target
cells responsible for malignant transformation, and tumour
formation may be a disorder of stem cell self-renewal
pathway. Epigenetic alterations and mutations of genes
involved in signal transmissions may promote the forma-
tion of CSCs. These cells have been identified in many
solid tumours including breast, brain, lung, prostate, testis,
ovary, colon, skin, liver, and also in acute myeloid
leukaemia. The CSC theory clarifies not only the issue of
tumour initiation, development, metastasis and relapse, but
also the ineffectiveness of conventional cancer therapies.
Treatments directed against the bulk of the cancer cells may
produce striking responses but they are unlikely to result in
long-term remissions if the rare CSCs are not targeted. In
this review, we consider the properties of CSCs and
possible strategies for controlling the viability and tumour-
igenecity of these cells, including therapeutic models for
selective elimination of CSCs and induction of their proper
differentiation.
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Introduction

The traditional model of cancer development suggests that
tumours arise from a series of sequential mutations resulting
from genetic instability and/or environmental factors affecting
normal cells. According to this model, many cancer cells have
been considered to have tumourigenic potential. A major
hurdle for the traditional model of cancer development is the
prolonged period required to develop the first mutation that
subsequently leads to malignant tumour formation. In many
tissues in which tumours arise (e.g. gastrointestinal tract,
epithelium, skin and blood), mature cells have a short lifespan
and a limited opportunity to accumulate the multiple
mutations required for tumour development [1, 2]. Therefore,
the probability of an individual cell accumulating the
necessary mutations is small.

An alternative explanation that has been proposed is the
stem cell model of tumour formation. According to this
model, tumours originate in either long-lived tissue stem cells
or progenitor cells through misregulation of the normally
tightly regulated process of self-renewal, leading to cancer
stem cells (CSCs) [1, 3, 4]. Other terminologies for CSCs are
tumour-initiating cells (TICs) and tumourigenic cancer cells.
A hypothesis of CSCs stating that they have similar
properties to stem cells was first explained by Rudolf
Virchow and Julius Conheim in the nineteenth century.
Virchow’s embryonal-rest hypothesis states that cancers arise
from activation of dormant cells (which are remainders of
embryonic cells) present in adult tissues. This hypothesis
was based on the fact that there are some similarities
between developing embryonic cells and some cancer cells
including their ability to proliferate and differentiate [5, 6].

According to cancer stem cell model and based on
experiments in which human cancer cells were xenotrans-
planted into non-obese diabetic/severe-combined immuno-
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deficient (NOD/SCID) mice (that have a defect in T cells, B
cells, natural killer cells, and complement), only small
subpopulations of cancer cells retained the capacity to
initiate, maintain and promote the development of the
tumours [7–17]. Although xenotransplantation animal
models have improved the possibility to study the cancer
stem cell hypothesis, the critical role of tumour growth and
its interactions with the local and extended microenviron-
ment complicates the interpretation of such studies. The
low frequency of tumour-producing cells from, for exam-
ple, human acute myeloid leukaemia (AML) in NOD/SCID
mice might be explained by the fact that rare tumour cells
have been able to adapt to a foreign environment and
continue to grow [18]. Modifications to the xenotransplan-
tation assay have revealed that many more human cells
have tumourigenic potential compared to the results
obtained in NOD/SCID mice. For example, Quintana et
al., showed that melanoma-initiating cells are rare in NOD/
SCID mice, but more melanoma-initiating cells could be
detected in NOD/SCID mice lacking the interleukin-2
gamma receptor (NSG, NOD scid gamma) owing in part
to the lack of natural-killer cell activity in NSG mice.
Therefore, more tumourigenic cells could be detected in
NSG mice, which are more immunodeficient than NOD/
SCID mice [19]. Additional modifications to xenotrans-
plantation assays such as co-injection of tumour cells with
Matrigel (gel medium containing growth factors and
nutrients that could reinforce the tumour cells’ vitality)
and increasing the length of observation for tumour
formation show that frequency of TICs increases dramati-
cally via more permissive xenotransplantation [13, 19].
These data indicate that some cancers, which appear to
have rare tumourigenic cells in NOD/SCID mice, actually
have more cells with tumourigenic capacity under other
conditions, raising the possibility that the true frequency of
CSCs has been greatly underestimated in most human
tumours. Nevertheless, other cancers may still have
infrequent tumourigenic cells, even when studied under
optimised conditions. For example, Ishizawa et al. com-
pared the growth of human pancreatic adenocarcinoma,
lung adenocarcinoma, squamous cell lung carcinoma and
head/neck squamous cell carcinoma cells in NOD/SCID
and NSG mice. They showed that TICs frequency did not
differ significantly for pancreatic carcinoma or head/neck
squamous cell carcinoma, when measured in either strain of
mice. Although CSCs frequency was up to tenfold higher in
NSG mice for some tumours (lung adenocarcinoma and
squamous cell lung carcinoma) but it remained relatively low
in all cases [20]. In conclusion, whether cells with tumouri-
genic potential are common or rare within human cancers
still remains a fundamental question in cancer biology.

The existence of cancerous stem cells was first demon-
strated in AML, that can be viewed as an aberrant

hematopoietic tissue initiated by malignant leukaemic stem
cells [21]; however, these cells were also observed in solid
tumours such as breast [8], brain [9, 22], lung [23], prostate
[24, 25], ovary [26], colon [27, 28], skin [29, 30], liver [14]
and pancreas cancers [11]. The hypothesis that stem cells
are origins of cancer is also observed in teratocarcinomas,
which are a subtype of germ cell tumours. Teratocarcinomas
are malignant tumours, which contain derivatives of all three
germ layers and embryonal carcinoma (EC) cells. EC cells are
the ‘pluripotent’ stem cells in these cancers with the ability of
self-renewal as well as differentiation into different cell types.
Therefore, EC cells can reconstruct the whole cancer
including its differentiated cells [31]. Based on these
properties, EC cells are the first experimental demonstration
of a CSC, predating the current intense interest in CSCs by
several decades.

It has been hypothesised that CSCs persist in tumours as
a distinct population and may cause relapse and metastasis,
giving rise to new tumours. These cells may also explain
why standard oncology treatments sometimes fail. Thus,
development of therapeutic methods that can target CSCs
holds promise for the improvement of survival and life
quality of cancer patients, especially those with clinical
metastasis. Different topics have been considered in this
review as follows. “Characteristics of CSCs” section
explains essential properties of CSCs and similarities
between CSCs and normal stem cells. Hypotheses about
origin of CSCs are described in “Origin of CSCs” section.
“Genetic mutations and altered signalling pathways in
CSCs” section describes mutations and altered pathways
that convert a stem cell to a CSC. “Markers of CSCs”
section covers markers of CSCs in hematopoietic system
and solid tumours and finally “CSCs and perspectives in
cancer therapy” section is devoted to cancer therapy by
targeting CSCs.

Characteristics of CSCs

CSCs and normal stem cells (adult stem cells) have many
similar properties, which may operate through similar
molecular pathways, albeit aberrantly in CSCs. CSCs
undergo self-renewal; this is an asymmetric division in
which one copy has developmental potentials similar to that
of the CSC [32] and another copy (progenitor cell) is a
transit-amplifying cell, which terminally differentiates,
similar to what happens in normal tissue renewal. However,
the major difference between cancer growth and normal
tissue renewal is that whereas normal transit amplifying
cells usually differentiate and die, at various levels of
differentiation, the cancer transit-amplifying cells fail to
differentiate normally and instead accumulate (i.e. they
undergo maturation arrest), resulting in cancer growth [21,
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33]. Therefore, although pathways that regulate self-
renewal are tightly controlled in normal stem cells, they
might be constitutively activated or incorrectly regulated
through genetic and/or epigenetic changes in CSCs, leading
to uncontrolled growth [34, 35]. Furthermore, EC cells,
which can be considered as an archetype of CSCs, in
contrast to embryonic stem cells (ESCs), often have a
limited capacity for differentiation. Therefore, even a small
increase in the probability of self-renewal compared with
differentiation could have a significant selective advantage
during tumour progression [31].

In addition to the ability of self-renewal and differenti-
ation, there are other similarities between normal and
cancer stem cells which will be discussed. Current opinion
is that CSCs are either dormant or in a proliferative phase.
Dormant CSCs, like normal stem cells, exist in a quiescent
state; therefore, they might be more resistant to the
cytostatics that target dividing cells [36], whereas CSC
proliferation would give rise to tumour mass/bulk [37]. For
example, in AML at least a part of the leukaemia stem cells
(LSCs)/leukaemia initiating cells (LICs) population is in the
G0 phase of the cell cycle and these cells, like normal stem
cells, are resistant to in vitro treatment with 5-fluorouracil,
which destroys actively dividing cells [38]. Moreover, both
types of stem cells highly express telomerase and have long
lifespan (infinite replication potential) [36]. Generally,
telomere shortening and activation of telomerase appear
to have a dual role in tumour formation. On one hand,
telomere shortening is associated with the development of
chromosomal instability and initiation of cancer. On the
other hand, telomerase activation is necessary for telomere
stabilisation and prevention of chromosomal instability that
finally leads to tumuor progression [39, 40].

Expression of OCT4 is another similarity between
normal and cancer stem cells. OCT4, a member of the
family of POU-domain transcription factors, is expressed in
pluripotent embryonic stem and germ cells [41, 42]. Oct4
mRNA is normally found in totipotent and pluripotent stem
cells of pregastrulation embryos [43]. Indeed, OCT4
expression is required to maintain the undifferentiated state
of human EC and ES cells and we have shown that
differentiation to trophectoderm occurs in its absence [44].
The expression of OCT4 has further been shown in human
breast cancer stem-like cells, suggesting that its expression
may be implicated in self-renewal and tumourigenesis via
activating its downstream target genes [45]. One study on
lung cancer showed that OCT4 expression plays a crucial
role in maintaining self-renewal and cancer stem-like
properties in CD133+ cells (CSCs in lung tumour cells),
and also up-regulated expression of OCT4 in CSCs may
contribute to the development of chemoradioresistance in
patients with lung cancer [46]. In another study, Schoenhals
et al. [47] showed that at least one of the genes coding for

pluripotency factors OCT4, SOX2, KIF4, and c-MYC is
overexpressed in many cancer types and expression of these
genes is associated with tumour progression or bad
prognosis. In fact, activation of an ES cell-like transcrip-
tional programme in differentiated adult cells may induce
pathological self-renewal characteristics of CSCs.

Transporters of multidrug resistance (MDR), which are
energy-requiring efflux pumps with the function of pump-
ing toxic chemotherapeutic drugs out of the cancer cells,
are responsible for the tumour resistance to many drugs
currently used for cancer therapy [48]. One property of
the normal tissue stem cells and CSCs is the self-
protection ability through innate MDR transporters [36,
49]. CSCs also have some properties that cause resistance
to apoptosis and radiotherapy [50–53]. Finally, CSCs are
able to initiate a tumour if they were implanted into
immunodeficient mice models [7, 21]. Properties of
normal and cancer stem cells are summarised in Table 1.

Origin of CSCs

The origin of CSCs is not completely identified yet, but
there are some hypotheses about it. Figure 1 demonstrates
various possible scenarios in which CSCs can originate in
the tissues. Most adult tissues are maintained over the
lifetime of the host by normal stem cells that undergo
expansion and differentiation to provide the functional
elements of the organ [54]. The genetic constrains on self-
renewal limit the expansion of stem cells in normal tissues.
Breakdown in this regulation is likely a key event in the
development of cancer as demonstrated by the fact that
several pathways involved in carcinogenesis also play a
role in normal stem cell self-renewal decisions [55]. There
is also a striking association between misregulation of stem
cells function and carcinogenesis; many genes that promote
self-renewal are also oncogenes and many genes that inhibit
self-renewal are also tumour-suppressor genes [56]. There-
fore, the first probability is that cancers originate from adult
stem cells. This idea is supported by some other observa-
tions in biology: (1) these cells have been shown to exist in
many tissues from which cancers often spread such as
blood, brain, lung and prostate. (2) Multiple mutations are
required for a cell to become cancerous, and stem cells can
live longer than other cells, so they are better candidates for
obtaining multiple mutations and becoming cancerous [57,
58]. (3) Tumour characteristics of monoclonality, unlimited
proliferative capacity and phenotypic heterogeneity that
includes a variety of differentiation states with some non-
dividing cells, could be elucidated by tumours originating
from a self-renewing, multipotent and slow-cycling cell. (4)
Normal stem cells and cancer cells share many properties
including induction of angiogenesis, resistance to apoptosis,
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cell migration and acquired drug resistance, implying the
need for presence of stem cell-like cancer cells in initiation,
recurrence and metastasis. (5) Since in stem cells, the
machinery for self-renewal is already activated, preserving
this activation may be simpler than turning it on de novo in
a more differentiated cell [34, 57].

The second possibility is that CSCs can originate from
a population of more differentiated transit-amplifying/
progenitor cells [35]. Progenitors multiply for a much
shorter period of time before terminal differentiation.
Thus, progenitors would first need to acquire the extensive
self-renewal capacity of stem cells in order to have the
opportunity to accumulate additional mutations that would
lead to their transformation [55]. Several strong lines of
evidences support the concept that a committed progenitor
can be the cancer-initiating cell as a result of oncogenic
transformation. For example, committed myeloid progen-
itors with co-expression of Bcl-2 and Bcr/Abl protein (the
fusion protein found in 90% of patients with chronic
myelogenous leukaemia) are enough to drive leukaemia
development in mice [59]. Studies of brain tumour

development also indicate that some of the more commit-
ted neural progenitor cells are likely to arise from
tumourigenic mutations. These mutated progenitor cells
acquire the features believed to be specific to stem cells
and undergo unlimited growth like cancer cells [60].
Results of a recent research by Molyneux et al. indicate
that majority of human BRCA1-associated and sporadic
basal-like tumours are derived from luminal progenitors
rather than from basal stem cells. As a result, normal
mammary gland stem cells are not common targets for
transformation in breast but luminal progenitors are
probably the cell type most commonly associated with
the initiation of breast cancer [61]. Similarly, Persson et al.
investigated and compared neural stem cells (NSCs) and
oligodendrocyte progenitor cells (OPCs) as potential cells
of origin in murine and human oligodendroglioma brain
tumours. Their results indicated that in malignant oligo-
dendroglial brain tumours, oligodendroglioma cells show
hallmarks of OPCs, and that a progenitor rather than a
neural stem cell is responsible for tumour formation [62].
The identity of the normal cell from which leukaemia

Long lifespan

Long telomers—high activity of telomerase

High expression of ABC transporters

Relative resistance to cytostatics

Resistance to apoptosis

Expression of Oct4

Ability for self-renewal (highly regulated in normal stem cells and poorly regulated in CSCs)

Differentiation capacity (normal stem cells produce mature tissues, CSCs produce tumours)

Table 1 Properties of normal
and cancer stem cells

Fig. 1 Various possible origins
for cancer stem cells. 1 CSCs
may originate from adult stem
cells, which exist in many
tissues. 2 CSCs might be
generated from a population of
more differentiated transit
amplifying/progenitor cells.
3 Another possible origin is
represented by embryonic
stem cell-like cells that are
abnormally left in the tissues
during ontogenesis. 4 Finally,
tumour-initiating mutations in
terminally differentiated cells
may produce CSCs
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originates has been the source of much debate. The
similarity of AML initiating cells and normal repopulating
cells (i.e. CD34+CD38−) led some authors to hypothesise
that AML is derived from hematopoietic stem cells
(HSCs). This theory provides an attractive model for
leukaemogenesis since the long lifespan of the HSCs
allows for multiple genetic hits to happen. Additionally, based
on their physiologic ability for self-renewal, HSCs would
require fewer genetic hits to become LSCs compared to other
hematopoietic cells, which must aberrantly obtain self-
renewal capacity [21]. Nevertheless, others argue that the
features of myeloid differentiation that define AML, point to
a progenitor origin. In support of this, it has been
demonstrated that transient repopulating progenitors can
initiate myeloid leukaemias in response to a mixed-lineage
leukaemia (MLL) oncogene [63]. Therefore, leukaemic
mutations may confer the self-renewal capacity to a mutant
early progenitor cell.

The third possible origin is that some cancers such as
teratocarcinomas or some of the paediatric sarcomas (e.g.
nephroblastoma) may develop from very early ES cell-like
cells that are abnormally left in the tissues during
ontogenesis [64].

Finally, another probable origin of CSCs is that tumour-
initiating mutations may occur in mature progenitor or even
terminally differentiated cells. These cells subsequently
become unstable with respect to their phenotype and may
dedifferentiate and produce CSCs in certain conditions
[65]. Whatever the origin of CSCs, transformation of
original cells to CSCs needs genetic modifications and
epigenetic alterations. In the following section, some
genetic changes and altered signalling pathways that can
convert a normal stem cell to CSC are discussed.

Genetic mutations and altered signalling pathways
in CSCs

Understanding the genetic alterations that convert a stem
cell to a CSC is crucial for developing effective anti-cancer
therapies. In fact, many types of genetic variations that
might lead to malignant cell proliferation have been
identified in various types of tumours [66]. Two main
classes of genes are involved in the process of carcinogen-
esis: activated proto-oncogenes and inactivated tumour
suppressor genes [67]. Both types of genes are required
for normal cell division and differentiation, and their
aberrant expression results in abnormal cell proliferation
[66]. The transformation of a normal stem cell into a CSC
is also due to the accumulation of genetic modifications
(mutations in oncogenes, tumour suppressor genes and
mismatch repair genes) and epigenetic alterations (abnor-
mal methylation, histone modifications). For example, loss

of the Pten tumour suppressor (which is a phosphatase that
negatively regulates signalling through the PI-3 kinase
pathway, attenuating proliferation and survival signals) and
subsequent up regulation of β-catenin activity are thought
to be critical steps in transformation of stem cells to CSCs
in some carcinomas [68, 69]. Bmi-1 protein also plays a
critical role in regulating the self-renewal process of stem
cells and CSCs [70]. In normal conditions, Bmi-1 inhibits
the transcription of the Ink4a locus that encodes two cyclin-
dependent kinase inhibitors: p16Ink4a and p14Ink4a [71]. A
lack of p16 inhibitor, accompanied by abnormal Bmi-1
function, stimulates cell proliferation by increasing its self-
renewal potential, whereas a lack of the p14 inhibitor
prevents proapoptotic gene expression [72]. Advances in
stem cell research have identified some key signalling
pathways, which might be abnormal in CSCs and thus
would be candidate targets for future cancer therapies
(Fig. 2) [32]. Some of these pathways including Wnt,
Hedgehog and Notch are explained in this section.

Wnt pathway

Wnt proteins are a large family of secreted glycoproteins
that bind to Frizzled receptors and LRP5/6 coreceptors. By
stabilising the mediator β-catenin, they start a complex
signalling cascade that plays a significant role in regulating
cell proliferation and differentiation. Wnt cascade has
appeared as a critical regulator of stem cells self-renewal
[73]. Misregulation of Wnt/β-catenin signalling pathway
mainly by inactivating mutations of APC tumour suppres-
sor or oncogenic mutations of β-catenin, in cancer cells or
most likely CSCs leads to malignant proliferation [74, 75].
For example, β-catenin which is largely dispensable for
normal function of HSCs, is frequently activated in MLL.
Therefore, activation of the Wnt/β-catenin pathway plays
critical roles for establishment and drug-resistant properties
of MLL stem cells [76].

Hedgehog pathway

Hedgehog (Hh) genes encode secreted proteins, which
signal through autocrine and paracrine mechanisms to
regulate cell proliferation, differentiation, and morphology
[77]. The Hh proteins exert their function by binding to a
12-pass transmembrane protein called patched (Ptch)
[78]. Hh proteins relieve the inhibitory effect of Ptch on a
serpentine protein called Smoothened (Smo), leading to
hyper-phosphorylation of Smo [79, 80]. The signal pathway
induces activation and repression of target genes through
the Gli family of transcription factors, Gli-1, 2 and 3, which
regulate the transcription of target genes. There are three
hedgehog family members namely: Desert, Indian, and
Sonic [77]. Hh pathway plays a central role in the
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proliferative control and differentiation of both ESCs and
adult stem cells. Therefore, an alteration in the Hh pathway,
either by misexpression of components of that pathway or
by changes in the expression of other cellular components
that interfere with the Hh signalling system, may trigger the
development of several types of cancers [81, 82].

Notch pathway

Notch signalling is important for cell–cell communications
and regulates a broad spectrum of cell fate decisions during
embryonic development and in the adult organism via stem
cell proliferation, differentiation, and cell death [83, 84].
Notch proteins (Notch1–4) are members of the conserved
transmembrane receptor family. The Notch genes encode
transmembrane receptors, which include a large extracellular
domain, composed of a variable number of epidermal growth

factor-like repeats and an intracellular signalling domain,
which consists of six ankyrin/cdc10 motifs and nuclear
localization signals [83]. Notch receptors interact through
their extracellular domain with other membrane-associated
ligands, Delta and Serrate/Jagged families, including, Jagged
1 and 2, and Delta-like 1, 3, and 4 [83]. Notch signalling is
activated by ligand–receptor interactions and gives rise to
proteolytic cleavage by the gamma-secretase complex, which
releases the Notch intracellular domain into the nucleus. The
Notch intracellular domain binds to the CBF1 DNA binding
protein of the transcriptional activator complex, the activa-
tion of which can cause the expression of target genes, such
as Hes family. These are involved in cell growth and
differentiation [37, 85]. NOTCH pathway provides a cell–
cell proliferation signal in human ES cells and their
malignant counterparts, EC cells and also plays a crucial
role in the maintenance of undifferentiated human EC and

Fig. 2 Signalling pathways that regulate self-renewal during devel-
opment of normal stem cells and cancer transformation. Activation of
the hedgehog (Hh) signalling pathway is started by binding of an Hh
ligand to protein patched homologue (PTCH). This leads to
suppression of Smoothened homologue (Smo), activating a cascade
that leads to the translocation of glioma-associated oncogene
homologue (Gli) into the nucleus and the activation of target genes.
The Wnt signalling pathway is activated by the binding of Wnt
ligands to their receptors Frizzled (Fzd) and low-density lipoprotein
receptor-related protein 5 (LRP5) and LRP6, leading to the release of
β-catenin (β-cat) from the ‘multifactorial cytoplasmic complex’,

which is composed of adenomatous polyposis coli protein (APC),
axis inhibition protein (axin), glycogen synthase kinase 3β (GSK3β)
and casein kinase 1α (CK1α). Then β-catenin (β-cat) migrates inside
the nucleus and, interaction of β-cat with transcription factor TCF–
LEF (lymphoid enhancer binding factor) activates transcription of the
indicated target genes. The core Notch pathway is activated by
interaction between the Notch receptor on one cell with the Notch
ligand (delta-like or jagged) on another cell, resulting in two
proteolytic cleavages of the receptor. This mediates the release of
the Notch intracellular domain, which goes into the nucleus and
interacts with the CBF1 transcription factor
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ES cells [86]. A number of studies with gene modifications
in animal models have proved the role of Notch signalling
pathway in stem cells and early progenitor cells [87]. Notch
signalling has also been shown to be involved in tumours of
various origins such as glioblastoma multiforme and B-cell
lymphomas [88–91].

Markers of CSCs

The most critical issue in the field of CSCs is to develop
phenotypic assays that can be used to reliably identify
CSCs [66]. The most widely used method to identify these
cells is through their expression of special cell surface
markers. Some of these markers are shared by CSCs from
malignant tissues and corresponding normal tissue stem
cells [66]. There are two possible explanations for this
overlap. The first explanation is that many CSCs originate
directly from normal stem cells thus, the surface markers
expressed by CSCs could also be found on normal stem
cells [2, 32]. The second explanation is that some CSCs are
transformed from committed cells or precursors that are
similar to normal stem cells in their expression of cell
surface markers [10]. With the development of advanced
assays to identify gene expression profile of CSCs, it will
be possible to determine surface markers that are more
unique to CSCs and therefore allow the development of
more target-specific cancer therapies [66].

CSCs in hematopoietic system

Immunodeficient mice are increasingly used to assay
human hematopoietic stem and progenitor cells as well as
LSCs. One method commonly used to isolate these rare
cells is to sort cells stained with fluorochrome-conjugated
antibodies into fractions via fluorescent-activated cell
sorting (FACS), then transplant different fractions into
immunodeficient mice to test their repopulating ability.
Distinct cell surface markers profiles that would allow for
prospective isolation of normal mouse HSCs by FACS
became known in the late 1980s and early 1990s [92].
Experiments in humans also indicated that normal human
HSCs are enriched in the CD34+CD38− fraction [93]. Using
NOD/SCID mice strains with enhanced immunosuppression
as recipients, it was shown that the CD34+/CD38+ cell
fraction also possesses some repopulating activity [94].
However, CD34+/CD38+ cells possess only a short-term
SCID-repopulating activity, while the long-term repopulating
activity is limited to the CD34+/CD38− cell population [94].
It is important to mention that several studies have
characterised a rare SCID-repopulating fraction observed at
the level of CD34−Lin− cells. These cells, similar to CD34+/
CD38− cells, have a long-term repopulating capacity [95, 96].

In addition to HSC markers, investigators have
recognised cell surface markers in LSCs. Dick et al.
provided the first evidence for existence of LSCs by
using FACS to separate cells from human AML that
were able to initiate leukaemia in transplanted NOD/
SCID mice. They indicated that the CD34+/CD38−

fraction was highly enriched for leukaemia-initiating
activity in transplanted recipients, while both the CD34+/
CD38+ and CD34− fractions did not initiate leukaemia
[7, 21]. Moreover, an engrafted leukaemia could be
serially transplanted into secondary recipients providing
functional evidence for self-renewal [7, 21]. However, some
recent studies have shown that LSCs are present also in the
CD34+/CD38+ fraction. In fact, it was shown that, in a
significant proportion of AMLs, cells contained in the
CD34+/CD38+ fraction are capable of initiating and
maintaining the leukaemic process when grafted in to
NOD/SCID mice [97]. The discrepancy between these
observations and previous studies relies in the observation
that the anti-CD38 monoclonal antibody used for cell
fractionation studies has a marked negative effect on the
engraftment of AML repopulating cells in NOD/SCID
mice [97]. Very recently, it was shown that, LICs are
observed within the CD34- fraction in a significant
proportion of AMLs [98]. These studies were based on
the analysis of LICs in a group of patients bearing
nucleophosmin mutations using the most immunodeficient
SCID mice available. These AMLs are classified as a
separate entity and are characterised by a low CD34
expression. In half of these AMLs, the CD34− fraction
contained LICs, while the CD34+ fraction gave rise to
normal multilineage hematopoiesis. In the remaining half
of the patients, LICs are observed among both CD34+ and
CD34− AML cells [98]. These observations further
reinforce the concept that the membrane phenotype of
LICs is heterogeneous in various AMLs.

Solid tumours CSCs

A number of markers for different types of solid tumours
have been recognised so far. CD44 and CD133 have been
reported as cell surface CSC markers in several solid
tumour types [99]. For example, CD133 has been consid-
ered as an important marker representing the subpopulation
of CSCs in prostate carcinoma, hepatocellular carcinoma
and lung cancer [100, 101]. It was also shown that CD133
is a temporary marker of CSCs in small cell lung cancer,
but not in non-small cell lung cancer [102]. CD44+ cells in
head/neck squamous cell carcinoma and colon cancer
were enriched for tumourigenic CSCs able to proliferate
and produce tumours in mice, whereas CD44− cells
were not able to do so [12, 103]. In pancreatic cancer,
CD44+/CD24+/ESA+ cells (named pancreatic CSCs) were
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also forming tumour, whereas CD44− CD24− ESA− cells
did not have this ability [11].

Some CSCs have been identified in different and
sometimes non-overlapping subpopulations such as human
breast and ovarian CSCs. Research showed that CD44/
CD24 and also CD133 can be regarded as CSCs markers in
ovarian carcinoma [104, 105]. In human breast carcinoma,
Al-Hajj et al. separated tumourigenic cells using FACS [8].
These cells were fractionated based on their expression of
CD44 and CD24, the two markers were shown to be
heterogeneously expressed among tumour cells. Fraction-
ated samples were implanted into the mammary pads of
SCID mice and it was shown that only the cells expressing
a CD44+/CD24− profile in human breast cancer could form
tumours, whereas 100-fold more cells from the CD44+/
CD24+ or CD24− fractions did not produce tumours [8,
106]. Engrafted tumours exhibited similar morphology and
immunophenotypic heterogeneity to the original sample
containing CD44+/CD24− cells as well as CD44+/CD24+

and CD24− cells. Finally, engrafted tumours could be
serially transplanted, providing rigorous proof for self-
renewal [8, 106]. The activity of aldehyde dehydrogenase
isoform 1 (ALDH1) that can be assessed by the ALDE-
FLUOR assay has also been identified as a common
functional marker of normal and malignant human breast
and colonic stem cells [107, 108]. In breast carcinomas,
high ALDH activity identifies the tumourigenic cell
fraction, capable of self-renewal and generating tumours
that recapitulate the heterogeneity of the parental tumour
[107]. Indeed, CD24−/CD44+/ALDH+ cells are regarded as
having the most prominent tumour-initiating activity in
breast cancers. Furthermore, immunohistochemical analysis
of ALDH1 using human breast cancer samples revealed
that high expression of ALDH1 is significantly correlated
with the shorter survival of breast cancer patients [107].
ALDH1+ cell population is also enriched in bladder TICs
and associated with progression of bladder cancer [109].
Conversely, in ovarian tumour, Penumatsa et al. indicated
ALDH1 expression was significantly reduced in malignant
tumours compared to normal ovaries and benign tumours
and ALDH1 did not appear to be co-expressed with the
CSC markers CD44 and CD133. Thus, ALDH1 expression
in the ovary does not appear to be similar to breast or colon
cancer suggesting possible functional differences in these
cancers [110].

Credibility of many determined CSC markers has been
questioned and rejected by recent studies. Some studies
have shown that CD133, previously thought to be a robust
brain tumour stem cell marker [9, 22, 51], does not
consistently distinguish tumourigenic from nontumourigenic
cells and CD133- population can also be tumourigenic
contrary to what was originally detected [111, 112]. The
CD133 has also been used as a phenotypic marker of colon

CSCs [27, 28], but also in this cancer type, both CD133-
negative and -positive populations have been reported to
induce tumour growth in vivo [113]. Moreover, both
CD133+ and CD133− fractions from melanomas exhibited
very high frequencies of tumourigenic cells and no pheno-
typic differences that can distinguish tumourigenic from non-
tumourigenic melanoma cells have been identified [19].

In all of these studies, it must be remembered that
specific cell surface markers can enrich for cells having
CSC properties of self-renewal and differentiation. There
might be markers in each respective system yet to be
recognised that could help define each CSC population
more precisely [114]. While the recognition of surface
markers expressed by CSCs will be useful, this is clearly
not sufficient to specify these cells in the absence of a test
for self-renewal. As in normal stem cells, functional assays
for CSCs need to be evaluated for their ability of both self-
renewal and tumour propagation [66]. The assay that best
suits these criteria is serial transplantation in animals, which
although imperfect, is now regarded as the gold standard
[66, 115].

CSCs and perspectives in cancer therapy

Conventional anti-cancer treatments (e.g. chemotherapy
and radiation) can often transiently shrink tumours by
targeting the tumour bulk, but these therapies fail to target
and kill CSCs, leading to treatment failure, relapse and
ultimately death. Some properties of CSCs make them
difficult cells to kill: CSCs maintain the property of self-
protection through the activity of multiple drug resistance
transporters such as ABCB1 (P-glycoprotein) and/or
ABCG2 (breast cancer resistance protein-1) [48, 116,
117]. Activation of these transporters that pump substrate
drugs out of the cells, decreases the effective drug
concentration within the cells and is responsible for their
relative resistance to chemotherapy [118]. Furthermore,
CSCs divide much more slowly, which allows them to
escape from traditional radio- and chemotherapies that hit
fast-multiplying cells [72]. CSCs also have some properties
that lead to their resistance to apoptosis, radiotherapy and
anticancer drugs: they show over expression of antiapop-
totic proteins such as BCL-2 and survivin [50] and also a
great ability for DNA repair [51, 52]. Many anticancer
drugs, such as platinum compounds, alkylating agents and
nitrosoureas cause direct damage to the structure of DNA,
and resistance to these compounds results from activation
of DNA repair systems [53]. CD133+ cancer-initiating
neural stem cell population in glioblastoma multiforme
(an aggressive brain tumour) is also resistant to gamma
radiation through preferential activation of DNA double-
strand break response machinery [119]. Moreover, recently
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it has been demonstrated that polycomb group protein
BMI1 confers radioresistance to normal and cancerous
neural stem cells through recruitment of the DNA damage
response machinery [120]. Bao et al. also reported that
checkpoint proteins play an essential role in resistance of
CSCs to radiotherapy and DNA damage. In response to
DNA damage, the checkpoint proteins are activated and
their expression is increased [51]. The study of CD133+

glioma stem cells that are known as CSCs indicated that the
radioresistance of CD133+ CSCs can be reversed with a
specific inhibitor of the Chk1 and Chk2 checkpoint kinases
[51]. It is known that the Chk1 and Chk2 proteins play
roles in the execution of checkpoint response to delay or
arrest the cell cycle, which elicits the repair of the DNA
damage [121, 122]. Furthermore, cell cycle restriction
through the expression of cyclin-dependent kinase inhibitor
1A (CDKN1A; also known as p21) limits DNA damage
and maintains the self-renewal of LICs [123]. These
preliminary experiments highlight the potential of inhibiting
DNA damage responses to overcome the resistance of TICs to
therapy [124]. Moreover, expression of high levels of
oxidative stress-responsive genes in CSCs could confer part
of their ability to resist anticancer therapy [125, 126].

For efficient cancer treatment, one must be able to target
exclusively the CSCs and not normal stem cells [66, 127].
Researches to distinguish CSCs from normal stem cells are
being done at the level of identifying markers at the cell
surface or discovering functional differences in signalling
or structural proteins [128]. Therefore, by comparing gene
expression profiles of CSCs, the bulk tumour cell popula-
tion, normal stem cells and normal tissues, it may be
possible to recognise therapeutic approaches that preferen-
tially attack CSCs [129]. Therapies could be designed to
target CSCs in order to induce the differentiation of these
cells [130, 131] or eliminate CSCs by inhibiting the
maintenance of stem cell state [66]. These two approaches
are discussed in the following parts.

Differentiation therapy

One way to control the tumour progression is to treat cancer
by inducing differentiation of CSCs. Differentiation therapy
causes CSCs to differentiate and lose their self-renewal
property [6, 127]. Some anticancer drugs/agents that can
affect cancer cell differentiation will be discussed in this
section [127]. Vitamin A and its analogue (retinoid) can
reverse the malignant progression process through signal
modulations mediated by nuclear retinoid receptors. All-
trans retinoic acid leads to frequent remission of acute
promyelocytic leukaemia by inducing promyelocyte differ-
entiation [132]. In solid tumours, RA also increases
differentiation and apoptosis, and reduces proliferation,
invasiveness and metastasis [133]. For example, in glioma,

efficacy of retinoic acid-induced differentiation to target the
stem-like tumour cells has been demonstrated recently
[131]. Some types of cancer cells are prevented from
entering the differentiation pathway partly because of
abnormal chromatin modification enzymes, which keep
cancer cells in the cycling state. In this case, effective
differentiation can be induced by agents that act directly or
indirectly to convert abnormal chromatin modifying
enzymes into normal ones, enabling cancer cells to undergo
terminal differentiation [66]. For example, histone deacety-
lase regulates histone acetylation by catalysing the removal
of acetyl groups on the N-terminal lysine residues of core
nucleosomal histones. Regulation of the acetylation status
of core histones is involved in the regulation of transcrip-
tion activity of certain genes. Abnormal recruitment of
histone deacetylase activity has been associated with the
development of definite human cancers [134]. The histone
deacetylase inhibitor, suberoylanilide hydroxamic acid,
which was initially recognised as a differentiation inducer
in cultured murine erythroleukaemia cells, has been used
experimentally in cancer differentiation therapy [135].
Piccirillo et al. noticed a reduction of the number of CSCs
which are initiating glioma development in culture after
exposing them to bone morphogenetic proteins (BMPs).
BMPs under normal situations induce differentiation of
glioma CSCs to non-malignant cells [136].

Elimination therapy

Another way to intensify the efficacy of cancer therapy is to
eliminate CSCs. This can be achieved using different
approaches, which are explained in this section. Exposure
of CSCs to sufficiently high levels of conventional
cytotoxic agents, and the development of novel therapeutic
agents that are targeted to CSCs can be used for this
purpose [137]. For example, findings indicated that CSCs
within breast cancer cell populations are resistant to
paclitaxel, a commonly used breast cancer chemotherapeutic
drug, but salinomycin selectively kills breast CSCs [138].

One of the main restrictions to overcome in cancer
treatment is the resistance to chemotherapy through the
activity of multiple drug resistance transporters. Under-
standing the anticancer drug transport properties of these
transporters, as well as their physiological functions will
lead to more effective therapeutics for oncology. Increased
exposure can be obtained at the cellular level if transport-
related resistance mechanisms can be overcome. Since the
finding of P-glycoprotein in the early 1980s, most agents
tested for the reversal of MDR in the clinic, have been
aimed for inhibiting P-glycoprotein function. Some of the
P-glycoprotein inhibitors include verapamil, quinine and
cyclosporine [48]. Salinomycin, a polyether antibiotic
acting as a highly selective potassium ionophore and
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widely used as an anticoccidial drug, was recently shown to
act as a specific inhibitor of P-glycoprotein, and treatment
of the MDR cell lines with salinomycin, restored a normal
drug sensitivity of these cells [139]. Natural products also
show great potential as anti-MDR agents. For example,
polyphenol compounds are active agents in green tea. In
Chinese hamster ovary cells, green tea-derived polyphe-
nols, inhibited activities of P-glycoprotein transport [140].
Curcumin is the most potent polyphenol in turmeric, a spice
widely used in Southeast Asian countries. Combinatorial
treatment of curcumin with a variety of chemotherapeutic
drugs increases the cellular accumulation of these agents,
therefore effectively sensitising drug-resistant cells [141,
142]. Sesquiterpene coumarins have also been shown to
enhance the cytotoxicity of chemotherapeutic agents. For
example, mogoltacin, conferone and feselol, sesquiterpene
coumarins from Ferula badrakema, can significantly
enhance the cytotoxicity of vincristine in transitional cell
carcinoma cells [143–145]. Other alternative approaches to
target P-glycoprotein-mediated drug resistance could in-
volve the development of agents to interfere with any one
of the regulatory steps in expression of P-glycoprotein:
transcription, mRNA turnover, translation, protein process-
ing, and turnover [53, 146]. There are other inhibitors,
which act on a larger range of ABC transporters. These
include biricodar and GF-120918, which inhibit not only
P-glycoprotein but also MRP1 and ABCG2, respectively
[53, 147].

In addition to drug resistance, CSCs are expected to
express, at high levels, genes involved in anti-apoptotic
mechanisms. For example, NF-κB plays a critical role in
anti-apoptotic responses, and carcinogenesis in LSCs. In
particular, the constitutive activation of NF-κB was
observed in AML cell populations enriched in leukaemic
stem cells, but not in normal HSCs [148]. According to
these observations, it seemed clear that NF-κB could be a
potential therapeutic target for LSCs eradication. Indeed the
pharmacological inhibition of NF-κB was effective in
killing LSCs [149]. It was shown that use of NF-κB
inhibitors in combination with classical chemotherapeutic
agents is useful for the treatment of AMLs resistant to
standard therapy [150].

In addition to protecting the host from invading
pathogens, the immune system is accepted to protect the
host from developing tumours. Patients with cancer usually
produce circulating antibodies or cytotoxic T cells against
tumour antigens, which in some instances may lead to
regression of tumours [128]. Therefore, another way for
elimination therapy is antigen-based therapy that targets
different aspects of CSCs progress and growth. Antigen-
based immune therapy, established on the immune system’s
spontaneous response to cancer, can take the form of
vaccines or monoclonal antibody therapy. Vaccines may

sensitise an individual's immune system to resist potential
malignancies [66]. One of the most critical elements in the
success of a cancer vaccine is the choice of appropriate
antigen target(s) that will allow for identification and
elimination of tumour cells with minimum undesired
autoimmune toxicity [128]. It is possible that analysis of
gene expression in CSCs could identify tumour antigens
whose expression is limited to CSCs. Such tumour antigens
would be desirable targets in immunotherapy [66, 128]. For
example, a study has shown that the adhesion receptor,
CD44, has splice variants that are differentially expressed
by CSCs and normal stem cells, making it a suitable new
target for antibody-based therapy [151]. Through a similar
approach, Dick et al. have proposed a new therapeutic
strategy for the treatment of AML, based on the use of anti-
CD44 Abs to selectively target leukaemic stem cells, while
sparing the normal counterpart [152]. The interleukin-3
receptor alpha (IL-3Rα) chain (CD123) is reported to be
overexpressed in AML cells [153] and in leukaemic stem
cells, but not in normal HSCs [154, 155]. A neutralising
monoclonal antibody against CD123 inhibited the IL-3-
mediated survival of leukaemic stem cells in vitro as well as
homing, engraftment, expansion, and serial transplantation
of AML cells in immunodeficient mice, with lower effects
on normal hematopoietic cells [156]. In human hepatocel-
lular carcinoma, CD90+/CD44+ cells—a subpopulation of
CSCs—indicated a phenotype more aggressive than that of
CD90+/CD44– cells, characterised by formation of meta-
static lesions in the lungs of immunodeficient mice.
Systemic administration of a human CD44–-specific mAb
at the time of subcutaneous CD90+/CD44+ carcinoma cell
injection markedly inhibited tumour initiation and growth
compared with controls. Quantification of apoptosis in
CD90+/CD44+ tumour cells after in vitro treatment with the
human CD44–-specific mAb indicated that mAb induced
CSC apoptosis as a possible mechanism underlying the
observed inhibition of tumour xenograft formation [14].
Most antibody therapies that have been successful, whether
by passive or active immunotherapy, have targeted those
molecules that are essential for the survival of a cancer cell
[128].

Genes expressed in ESCs, encoding proteins involved in
phosphatase and tensin homologue (PTEN), Wnt, Hh and
Notch signalling pathways, are key factors in regulating
self-renewal. Although these genes are expressed in normal
stem cells, they are frequently mutated or aberrantly
activated in cancers, thus making them potential therapeutic
targets. The specific therapies targeting these signal path-
ways in CSCs will be briefly illustrated here [157].
Conditional gene deletion studies in murine HSCs provided
evidence about a differential role of PTEN in normal HSCs
versus leukaemic stem cells. PTEN deficiency caused an
initial expansion of normal HSCs due to their cycling,
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followed by their exhaustion. In contrast to this requirement
for PTEN in the maintenance of HSCs, LSCs arose and
expanded in numbers following PTEN deletion. The
observation that PTEN deletion had opposite effects on
normal HSCs compared to leukaemic stem cells raised the
possibility for therapeutic targeting of this pathway to
eliminate leukaemic stem cells, without affecting normal
HSCs. Since PTEN deletion caused increased AKT and
mammalian target of rapamycin (mTOR) activation, it
seemed logical that mTOR targeting by pharmacological
agents, such as rapamycin, could represent an interesting
option for AML treatment [68]. On the other hand, it has
been shown that upon BMP activation, the mTOR kinase
mediates glial differentiation in neural stem cells [158], and
it has subsequently been shown that BMP reduces the
tumourigenic potential of a putative glioma stem cell
population [136]. In fact, rapamycin is used in the clinic
in some treatment regimens for glioma [159]. One may
therefore consider the mTOR kinase and possibly members
of this kinase family to be potential targets for selective
manipulation of some CSCs [128].

The first phytochemical shown to inhibit the Hh pathway
was cyclopamine, a natural compound found in the plant
Veratrum californicum [160]. Cyclopamine treatment
of a murine medulloblastoma inhibited proliferation and
induced neuronal differentiation, effectively depleting the
CSC population [161]. In breast cancer and multiple
myeloma stem cells, cyclopamine decreased mammosphere
formation and stem cell proliferation, respectively [162,
163]. Several phytochemicals such as selenium, EGCG
(one of the polyphenol compounds in green tea) and
vitamin D, were indicated to inhibit Wnt signalling in
cancers and could potentially be excellent candidates for
targeting CSCs [164]. Furthermore, inhibiting of Notch
pathway with specific gamma secretase inhibitors could
also inhibit CSC self-renewal and decrease tumour growth
[165]. Recently, Harrison et al. showed that Notch4 activity
was increased in breast CSCs, and that inhibition of Notch4
signalling reduced breast CSCs and completely inhibited
tumour-initiation [166]. Interestingly, Notch1 activity was
lower in breast CSCs compared to more differentiated
progenitor cells. This suggests that there is specificity for
different Notch receptors in the regulation of breast stem
and progenitor cells. If this is the case, then selective
inhibition of Notch4 may be more effective and potentially
less toxic than Notch1 inhibitors or secretase inhibitors that
inhibit all Notch receptors [167]. Phytochemical resveratrol
(found in grapes, berries and peanuts) shows anti-cancer
properties [168, 169]. Acute lymphoblastic leukaemia cells
treated with resveratrol resulted in reduced Notch expres-
sion [170].

As mentioned, current opinion is that CSCs are either
dormant or in a proliferative phase. Dormant CSCs may

confer drug resistance [37]; therefore, a main hurdle in
designing strategies targeting CSCs would be the targeting
of a quiescent cell among the dividing population of normal
and transformed cells. One method to address this is to
target molecules, which sustain the quiescence and stem-
ness of the CSCs [128]. If quiescence is actively maintained
by some factors in the milieu of the niche, interfering with
their function could force the CSCs to undergo apoptosis,
differentiation or division [128]. For instance, maintenance
of AML stem cells in a quiescent state at the level of the
bone marrow had important implications for their response
to therapy. Interestingly, it was recently shown that LSCs can
be triggered to enter cell cycle by treatment with granulocyte
colony-stimulating factor, and this strategy conjugated with
cell cycle-dependent chemotherapy significantly induces the
apoptosis and elimination of primary AML stem cells [171].

Some strategies for cancer therapy by targeting the CSCs
have been discussed so far. In addition to CSCs, there are
also non-CSCs in tumours which can give rise to CSCs at a
low but significant rate. It is also possible that the
elimination of the CSCs within a tumour may not result
in its complete regression, since non-CSCs, while less
aggressive, may be capable of maintaining an already-
established tumour for an extended period of time. Either of
these possibilities would compromise the therapeutic utility
of agents that exclusively target CSCs. One strategy to
address this concern would be to look for agents that target
both CSCs and non-CSCs within tumours. Alternatively, it
may be better to develop combination therapies that use
agents with specific toxicity for CSCs together with agents
that specifically target non-CSC populations within
tumours [138]. For example, it was shown that treatment
of prostate tumour xenografts in mice with a combination
of a standard chemotherapeutic drug, targeting non-CSCs
and NVP-BEZ235 targeting CD133+/CD44+ tumour pro-
genitors, leads to near-complete tumour regression. In
contrast, the use of cytotoxic drugs such as Taxotere or 5-
fluorouracil alone results in a decrease in tumour mass
(non-CSCs) but leads to an overall increase in the relative
size of the TICs population—the source of tumour relapse
and resistance [172]. Therefore, it is suggested that the use
of combination therapy directed against TICs together with
non-CSCs is more effective in eradicating tumours and may
provide a better strategy for cancer treatment.

Conclusion and perspective

According to current knowledge, initiation, recurrence and
metastasis of cancers may be explained, at least in part by
the presence of CSCs. In general, CSC model predicts that
cancer therapies must destroy CSCs in order to be effective,
therefore the development of CSC-targeted therapies able to
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preserve the normal stem cell compartment is currently a
golden approach in cancer research [1]. For highly effective
cancer treatments, we need to meticulously identify CSCs
in the various forms of tumours and perform gene and
protein profiling studies to determine how these cells differ
from normal stem cells and other cancerous cells within the
same tissue. Understanding these different expression
patterns will be important in designing more effective and
more specific treatments and also will aid in the development
of novel treatments that destroy CSCs without adversely
affecting self-renewal of normal stem cells. For example, the
analysis of the gene expression profile has provided helpful
information to specifically target the leukemogenic population
without affecting normal stem cells [173]. Further studies are
necessary for identification of CSC-specific surface markers
for antibody therapy, elucidation of CSC-specific pathways
that can be pharmacologically targeted and evaluation of
agents that promote the differentiation of CSCs into
progenitors that do not self-renew. We also speculate that a
vaccine approach to CSCs will allow sensitising of the
immune system and thus prevent some critical signalling
pathways that could initiate stem cell transformation.

Assuming that CSCs represent only a small proportion
of the entire tumour, killing them in the short term, might
have little impact on the size of the tumour as a whole.
However, over time the tumour would be expected to
exhaust itself and wither away, because it has lost the
capacity for long-term self-renewal. From a clinical point, it
remains to be seen whether such therapies are effective on
their own; it is possible that, for some cancers, continued
proliferation of transit-amplifying cells that make up the
bulk of the tumour may be sufficient to cause irreversible
histological and physiological damage. Therefore, combi-
nation therapies that target both CSCs and bulk cancer
populations are likely to emerge as particularly effective
clinical strategies. Furthermore, the potentially severe side
effects of CSC-targeted therapy still have to be evaluated in
animal models before we can suggest it for clinical trials
(an important question, however, is how realistically
tumour xenograft models in immunodeficient mice recapit-
ulate what is happening in human patients). Therefore,
more studies are needed to improve therapeutic approaches
and outcomes in patients with cancer disease.
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