
Vol.:(0123456789)1 3

Molecular & Cellular Toxicology (2021) 17:93–97 
https://doi.org/10.1007/s13273-021-00129-6

REVIEW

The modulation of necroptosis and its therapeutic potentials

Chun Kim1 

Accepted: 3 March 2021 / Published online: 12 March 2021 
© The Korean Society of Toxicogenomics and Toxicoproteomics 2021

Abstract
Purpose of review Necroptosis is a form of cell death regulated by specific cellular protein machinery. Although the cell 
death is tightly controlled like apoptosis, another type of programed cell death, the biological features of necroptosis rather 
resemble necrosis that is defined as an uncontrolled accidental cell death. The pathway executing necroptosis relies on a 
protein kinase, RIPK3, and its downstream effector molecule, MLKL. Upon necroptosis initiating signals, both RIPK3 and 
MLKL undergo extensive post-translation modifications to construct a death complex called necrosome, finally leading to 
lysis of cell membrane. Preclinical mouse models demonstrated the physiological importance of necroptosis in the progress 
of various inflammation-associated diseases. The objective of this brief review is to introduce a new emerging concept in 
cell death biology and to provide a first entry into the research field of necroptosis.
Recent findings The uncovering of necroptosis pathway brought a fundamental change in the basic concept that necrotic cell 
death is passive and unregulated. Currently, multiple small molecules that can target necrotic cell death are under develop-
ment and some of them are under clinical trials to evaluate their therapeutic potentials. Better understanding of the molecular 
mechanism leveraging necroptosis will provide an unprecedented opportunity to pathological necrosis-driven human diseases.
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Introduction

Cell death is a final event to cease all biological functions 
in unicellular organisms, but the same cellular event is a 
dynamic process which controls homeostasis and immunity 
in multicellular organisms. In humans, as many as a hun-
dred billion cells die each day and are replaced by other 
cells (Nagata 2018). Therefore, the equilibrium between 
cell death and proliferation is crucial for the maintenance of 
tissue homeostasis. For example, the continuous cell death-
induced shedding of intestinal epithelial cells during normal 
tissue homeostasis is a crucial process to maintain intestinal 
barrier integrity (Vereecke et al. 2011). Cell death also plays 
important functions in inflammation and immunity. It can 
restrict viral replication (Danthi 2016), but at the same time, 
excessive cell death can cause tissue damage and inflam-
mation (Wallach et al. 2014). Indeed, cell death has been 
acknowledged as an eminent pathological feature of various 

inflammatory diseases (Kist and Vucic 2021). Consequently, 
the cell death process during immune responses is required 
to be tightly coordinated to ensure beneficial immunological 
effects without resulting in detrimental tissue damage.

The role of cell death in tissue homeostasis, immunity 
and inflammation have been extensively discussed in the 
context of two different types of cell death: apoptosis and 
necrosis. Apoptosis is a programed cell death whereby a 
cell commits a suicide by utilizing its own cellular signal-
ing cascades in response to specific stimuli (Nagata 2018). 
Apoptotic cell dies by a self-destruction program coded by 
caspase-dependent signaling, and the cellular dead body is 
then cleared by the neighboring tissue-resident phagocytes. 
Since the process does not permit leakage of intracellular 
components, apoptosis is believed as a noninflammatory 
form of cell death.

In contrast to apoptosis, necrosis is an accidental cell 
death occurring in a fatally damaged cell by an external fatal 
insult (Galluzzi 2007). The necrotic cell death was originally 
regarded as a simple failure of cell survival caused by toxic 
interference of essential cellular functions. A necrotic cell 
undergoes swelling, followed by uncontrolled rupture of the 
cell membrane, resulting in a massive release of cellular 
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contents to surrounding tissue environment. The unleashed 
cellular contents function as danger-associated molecular 
patterns (DAMPs) and often create inflammation in tissues 
(Venereau et al. 2015).

Early studies considered apoptosis as the only form of 
regulated cell death and necrosis was seen as an unregulated 
and, therefore, uncontrollable accidental cell death. The tra-
ditional concept of necrosis, which was considered as a pas-
sive cell death, has been changed since the discovery of a 
specific form of regulated cell death called necroptosis. As 
in necrosis, necroptosis executes a highly inflammatory cell 
death, accompanying by release of DAMPs (Newton and 
Manning 2016). While the phenotype and the consequence 
of cell death similar to necrosis, collective biochemical and 
genetic evidence revealed that necroptosis occur as a pro-
gramed cell death regulated by Receptor Interacting Protein 
Kinase 3 (RIPK3) and its substrate, Mixed Lineage Kinase 
Like (MLKL). During necroptosis, modified MLKL triggers 
plasma membrane permeabilization and therefore, promotes 
the release of proinflammatory substances from the dead cell 
(Grootjans et al. 2017).

Accumulating evidence suggests that necroptosis is a 
physiologically relevant cell death and it is critical for tis-
sue homeostasis, immunity, and inflammation. In this brief 
review, I will discuss about our current understanding of 
necroptosis and its implication in tissue homeostasis and 
inflammation.

Overview of necroptosis

Apoptosis, which is a form of caspase-dependent programed 
cell death, is characterized by several distinct biological fea-
tures such as shrinkage of the cell, forming membrane blebs, 
and nuclear fragmentation (Nagata 2018). This cell death 
can be triggered by a wide variety of stimuli and condi-
tions such as genotoxic stress, deprivation of growth factors, 
and occupation of death receptors by their specific ligands. 
Apoptosis is believed to be a non-inflammatory cell death 
since apoptotic cells generate "eat me" signals on their cell 
surface assisting rapid phagocytosis by surrounding tissue-
resident immune cells. Because of this silent nature of cell 
death, apoptosis is utilized during normal development to 
balance cell populations in tissues (Voss and Strasser 2020).

The term, necroptosis was first introduced when a group 
of researchers recognized a cell death accompanied by 
necrotic morphological features was caspase-independent 
and inhibited by a small molecule called, necrostatin-
1(Nec-1) (Degterev 2005). In contrast to apoptotic cell 
death, which is governed by caspase-mediated series of 
molecular events, necroptosis deploys apical protein kinases 
for its execution and does not require caspases. Although 
it was initially thought that RIPK1 is a mandatory driver 

of necroptosis, currently necroptosis is defined as RIPK3-
and MLKL-dependent cell death (Galluzzi 2018). The main 
reason why RIPK1 was thought to be required for necropto-
sis is that Nec‐1, a RIPK1 inhibitor, potently inhibits TNF-
dependent necroptosis. In fact, many studies still utilize 
Nec‐1 to define a cell death as necroptosis. However, it is 
now very clear that RIPK1 can function both as an inhibi-
tor and a promoter of necroptosis depending on the cellular 
contexts (Voss and Strasser 2020) and therefore the absence 
of RIPK1 often results in necroptosis-driven inflammation 
in vivo due to lack of the kinase-independent survival func-
tion of RIPK1 (Ito 2016; Lin 2016; Newton 2016a).

The physiological role of RIPK1 in cell survival and 
death has been well-demonstrated by mouse genetic studies. 
RIPK1 deficient mice display postnatal lethality (Kelliher 
1998). It was initially thought that the lethal phenotype is 
delivered by excessive apoptosis in the animals. But later, 
it was found that the deficiency of Fas-associated protein 
with death domain (FADD), which would inactivate apop-
tosis, did not rescue the lethal phenotype of RIPK1 KO mice 
(Zhang 2011). Furthermore, loss of RIPK3 also did not pre-
vent the lethality resulted from RIPK1 deficiency in the ani-
mals. The postnatal death of RIPK1 KO mice was eventually 
rescued by the combined ablation of Caspase-8 and RIPK3, 
indicating that RIPK1 can repress both caspase‐8‐dependent 
apoptosis and RIPK3‐dependent necroptosis (Dillon 2014; 
Rickard 2014). Interestingly, animals with a kinase-inactive 
form of RIPK1 are viable, unlike RIPK1 KO mice (Berger 
2014; Polykratis 2014). The result demonstrates that a 
kinase-independent scaffolding function of RIPK1 is respon-
sible for the pro-survival effect of RIPK1. Taken together, 
RIPK1 can either promotes apoptosis and necroptosis via its 
kinase activity or suppress cell death by its kinase-independ-
ent function. In this regard, it is important to keep it in mind 
that inhibition of a cell death by RIPK1 inhibitors does not 
necessarily indicate the mode of cell death is necroptosis.

Activation of necroptosis

Necroptosis can be triggered by different initiating sig-
nals such as death receptors, some toll-like receptors, and 
unknown ligands sensed by protein, Z-DNA binding pro-
tein 1(ZBP1) (Grootjans et al. 2017). All these necroptotic 
signals employ proteins contain RIP Homotypic Interaction 
Motif (RHIM) and the RHIM provides a critical protein–pro-
tein interaction interface that regulates the formation of 
death-inducing protein complexes (Rebsamen 2009). There 
are only four proteins that contain RHIM in the mammalian 
system: RIPK1, RIPK3, ZBP1 and TIR-domain-containing 
adapter-inducing interferon-β (TRIF).

The molecular mechanism of necroptosis is most well-
established in TNFR1 signaling pathway(Fig. 1) (Wajant and 
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Siegmund 2019). TNFR1 is a member of the death receptor 
family. Upon the ligation of TNF, the death domain (DD) in 
TNFR1 enables to recruit DD-containing proteins includ-
ing TNFR1-associated death domain protein (TRADD) and 
RIPK1 (Haas 2009). The ubiquitin ligases, cIAP1/2, which 
preexist as cytoplasmic complexes with TNF receptor-
associated factor 2 (TRAF2) (Zheng et al. 2010), are then 
recruited to the TFNR1 membrane complex, followed by 
LUBAC, an E3 ubiquitin ligase complex composed of pro-
teins, SHARPIN, HOIP, and HOIL-1 (Spit et al. 2019). The 
ubiquitin chains assembled by the coordination of cIAP1/2 
and LUBAC allow the recruitment of ubiquitin binding 
proteins such as TAK1-binding protein 2/3 (TAB2/3) and 
NF-κB essential modulator (NEMO), resulting in the activa-
tion of NF-kB signaling pathway. Once TNF-mediated pro-
inflammatory and cell survival signals are established, later 
the TNFR1 membrane complex transforms into a cell death-
inducting cytoplasmic complex associated with FADD, cas-
pase-8 and RIPK3 (Grootjans et al. 2017). The cytoplasmic 
death complex can induce caspase-8-dependent apoptosis 
and normally, RIPK3 is inactivated in the complex by its 
cleavage by caspase-8 (Feng 2007). Nevertheless, under 

caspase-inactive conditions, RIPK3-dependent necroptotic 
pathway begins by the autophosphorylation of RIPK3, which 
enables interaction with its effector, MLKL. The RIPK3-
dependent phosphorylation of MLKL allows oligomeriza-
tion of MLKL, leading to lysis cell membranes (Sun 2012; 
Petrie et al. 2019).

Pathological implications of necroptosis

Necrotic cell death is found in various pathological con-
ditions (Nieminen 2003). Despite its presence in a broad 
range of clinical states, necrosis in human disease was not 
perceived as a potential therapeutic target until very recently 
since it was thought that necrotic cell death is an uncontrol-
lable process. However, the discovery of necroptosis, which 
is regulated by cellular machinery, provided a new opportu-
nity to target pathological necrosis.

Recent studies performed in preclinical animal models 
have revealed the potential benefit of targeting necroptosis 
in various human diseases, including sepsis, tissue inju-
ries, chronic inflammatory disease, and neurodegenerations 
(Spit et al. 2019; Khoury et al. 2020; Molnar 2019). Nota-
bly, some studies utilized only specific RIPK1 inhibitors or 
RIPK1-deficient mice in testing necroptosis as a potential 
therapeutic target. Importantly, as discussed before, RIPK1 
can activate both apoptosis and necroptosis, and can poten-
tiate NF-kB-dependent inflammation. Therefore, RIPK1-
dependent phenotypes do not necessarily correlate with 
necroptosis-driven pathological outcomes. In this section, 
I will briefly discuss only studies that confirmed the patho-
logical contribution of necroptosis in the absence of activity 
of RIPK3 or MLKL.

The inflammatory nature of necroptosis proposes its 
potential involvement in the pathologies of acute inflamma-
tion. A mouse model of TNF-induced systemic inflamma-
tory response syndrome (SIRS) showed that loss of RIPK3 
in animals were protected against lethal SIRS (Duprez 
2011). In the same study, ablation of RIPK3 also prevented 
cecal ligation and puncture-induced sepsis.

In addition to acute inflammation models, necroptosis 
has been implicated in chronic inflammation-associated 
disease models. A model of nonalcoholic fatty liver disease 
(NAFLD) demonstrated that when RIPK3-deficient mice 
were fed with methionine- and choline-deficient (MCD), 
MCD diet-induced liver injury, steatosis and fibrosis were 
attenuated (Afonso 2015). Moreover, the high levels of 
RIPK3 expression in patient livers were correlated with poor 
prognosis of alcoholic cirrhosis (Zhang 2018). In another 
chronic inflammation-associated animal model, RIPK3-defi-
ciency reduced atherosclerotic lesions, which were promoted 
by loss of LDL receptor (Lin 2013).

Fig. 1  TNFR1 signaling pathway. Upon ligation of TNF, TNFR1 
forms a large membrane-associated complex that is responsible for 
inflammation and cell survival-promoting cellular signaling path-
ways. During the process, if the survival-promoting signal is attenu-
ated, death-inducing cytoplasmic complex can potentiate caspase-8 
dependent apoptosis. RIPK3-dependent necroptosis is believed as 
an alternative backup cell death program, which occurs when apop-
tosis is compromised. The RIPK3-dependent modification of MLKL 
induces the translocation of MLKL to cell membrane resulting in 
lysis of a cell.
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Necroptosis also appears to contribute to multiple acute 
tissue injury models. A study using a model of kidney I/R 
reported protection of RIPK3-deficient mice but interest-
ingly, the protection was minimal in MLKL-deficient mice 
(Newton 2016b). Another acute kidney model induced by 
toxic folic acid demonstrated that RIPK3 or MLKL did not 
contribute to the early stage of renal injury, but later when 
the TWEAK signaling-dependent necroptosis occurred, 
ablation of RIPK3 or MLKL reduced the late injury of 
kidney in the model (Martin-Sanchez 2018). In addition 
to kidney models, RIPK3-deficient mice were protected 
from long-term adverse post-infarct remodeling following 
I/R injury-induced myocardial infarction (Luedde 2014). 
Furthermore, the contribution of RIPK3 to lung injury was 
reported in a murine model of acute lung injury (ALI). The 
study demonstrated that both necroptosis-dependent and 
-independent functions of RIPK3 can contribute to the phe-
notype of an LPS-induced ALI model. Importantly, RIPK3 
inhibitor ameliorated lung injury and reduced inflammation 
in this model (Chen 2018).

Beside acute tissue injury models, necroptosis has been 
reported in neurodegenerative diseases. RIPK3 deficiency 
markedly improves neurological and systemic disease in a 
mouse model of Gaucher’s disease (GD). When GD was 
induced by daily injection of a GlcCerase inhibitor, RIPK3-
deficient mice showed considerably improved survival and 
motor coordination. In a mouse amyotrophic lateral sclerosis 
(ALS) model, the RIPK1, RIPK3 and MLKL–dependent 
necroptosis was observed in the central nerve system. In this 
optineurin-deficient ALS mice, the axonal pathology was 
rescued by RIPK3-deficiecy (Ito 2016).

Collectively, the studies discussed above synchronously 
propose crucial roles of necroptosis in the development of 
pathophysiology. It is worth to note that some studies sug-
gested there are MLKL-independent, therefore necropto-
sis-independent roles of RIPK3 (Chen 2018; Alvarez-Diaz 
2016). In this regard, when studying the role of necroptosis 
in vivo, it is important to confirm if the identified RIPK3-
dependent phenotypes are also MLKL-dependent, therefore, 
ensuring bona fide necroptosis-driven pathology.

Conclusion

Investigating the details of the mechanism regulating necrop-
tosis is critical to understand physiological roles of necrop-
tosis in the pathogenesis of human diseases. The key sign-
aling molecules in necroptotic pathway are largely distinct 
from those involved in other pathways including apoptosis 
and inflammation. So far, therapeutic potentials of targeting 
necroptosis have been reported mainly in mouse models. 
It remains to be demonstrated if blocking necroptosis is a 
viable strategy to treat human diseases.

The development of specific inhibitors against RIPK3 
was initially perused to achieve specific therapeutic ben-
efits in the necroptosis-associated pathophysiology of the 
disease. But it turned out that the inhibition of RIPK3 
either by specific inhibitors or mutations leading to inacti-
vation of its kinase activity not only block necroptosis but 
promotes spontaneous apoptosis (Mandal 2014). Hence, 
it seems a specific inhibitor against MLKL will be a better 
strategy to target necroptosis in the clinic.
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