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Abstract
Background Environmental exposure and genotype variation influence DNA methylation. Studies on the effects of geno-
type variation were performed mainly on European ancestries. We analyzed the genetic effects on cord blood methylation 
of Koreans.
Methods As part of the Korean Exposome study project, DNA was extracted from 192 cord blood samples for analysis. 
Cord blood samples were genotyped via Asian Precision Medicine Research Array analysis and methylation was measured 
using the Methylation EPIC Beadchip kits. The associations between genotypes and CpG methylation were analyzed with 
matrix eQTL.
Results Conditional analysis revealed 34,425 methylation quantitative trait loci (mQTLs), and trans-mQTLs constituted 
7.2% of all the associated CpG sites. About 80% of the total trans-associations were trans-chromosomal and the related SNPs 
were concentrated on chromosome 19. According to the results of DAVID, cis-mQTL-related SNPs resulting in amino acid 
substitutions were related to signal peptides or glycosylation.
Conclusion We identified genotype variations associated with DNA methylation in the cord blood obtained from Koreans.
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Introduction

Recent studies have shown that environmental exposures 
and genotype variation affect human traits and diseases via 
epigenetic mechanisms (Feinberg 2018). Epigenetics is a 
study of the changes in gene function in the absence of gene 
mutations, and involves transmission of specific acquired 
traits to the offspring regardless of the gene sequence. DNA 
methylation is one of the important epigenetic mechanisms 
that regulate gene expression. It entails a typical widespread 
genetic variation that alters gene function in the absence of 
a mutation, for transmission to offspring, and is associated 
with disease development.

However, the exact mechanisms underlying pathogenesis 
due to altered DNA methylation have yet to be elucidated. 
Recent studies investigating the relationship between DNA 
methylation and disease or human traits explain the underly-
ing possible mechanisms (Stricker et al. 2016).

Cord blood DNA methylation studies have successfully 
identified CpG loci associated with in utero environmental 
exposure or related to health outcomes (Joubert et al. 2016; 
Küpers et al. 2019). Systemic analysis of genetic effects on 
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methylation during human life span suggests that the genetic 
component of methylation is causally related to complex 
traits (Gaunt et al. 2016).

Until now, studies investigating the effect of genotype 
on methylation in different tissue types have been mainly 
based on European ancestries (Shi et al. 2014). Because eth-
nic groups show differences in genetic variation as well as 
environmental exposure, studies are needed to analyze the 
genetic effects on DNA methylation in different ethnicity. 
In this study, we analyzed the genetic effects on cord blood 
methylation in Koreans.

Methods

Study samples

As part of the Korean Exposome study project, 192 cord 
blood samples were selected for analysis. This study 
received ethical approval from the Kangwon National Uni-
versity Hospital IRB (B-2017-11-006).

Genotype data

Cord blood was genotyped with the Asian Precision Medi-
cine Research Array (APMRA, Affymetrix). DNA samples 
were hybridized to an array in the GeneTitan MC Instru-
ment (Affymetrix, CA, USA) according to the  GeneTitan® 
Multichannel Instrument User’s Manual, using the Axiom 
APMRA 96-ARRAY. After ligation, the arrays were stained 
and imaged on the GeneTitan MC Instrument (Affymetrix, 
CA, USA).

The quality control of genotype data was conducted with 
plink v1.90b3.44 (Chang et al. 2015) and WISARD 1.3.3. 
Samples were filtered according to the following standards: 
(1) male subjects with X chromosome inbreeding coefficient 
less than 0.8 or female subjects with X chromosome inbreed-
ing coefficient larger than 0.2, (2) subjects with the geno-
type missing rate greater than 5%, (3) related subjects based 
on the identity-by-state (IBS) matrix value larger than 0.8, 
and (4) outliers from MDS plots drawn with three principal 
component (PC) scores. The filtering of variants was per-
formed with the missing rate (> 5%), the Hardy–Weinberg 
equilibrium (HWE) p value (< 10−5), and the minor allele 
frequency (MAF, < 5%).

Missing genotypes in the filtered data were filled in the 
pre-phasing step with SHAPEIT v2.r837 (Delaneau et al. 
2012). The phased genotype data were then imputed to the 
whole-genome sequencing data level with IMPUTE 2.3.2 
with 1000 Genome Project phase 3 reference data contain-
ing 2504 subjects (Howie et al. 2009, 2011, 2012). The 
screen size of 3 Mbp and the buffer size of 1 Mbp were 
used. The same procedure of variant filtering was used after 

the imputation, and the results with information score not 
less than 0.9 were retained.

Methylation data

DNA methylation was measured using MethylationEPIC 
BeadChip kits (Illumina, CA, USA) according to the manu-
facturer’s instructions. The BeadChips were imaged via Illu-
mina iScan System (Illumina, CA, USA) using the manufac-
turer’s standard protocol.

Sample quality control of methylation data was conducted 
with an R package meffil (Min et al. 2018). The CpG sites 
were filtered with R packages ENmix (Xu et al. 2015) and 
minfi (Aryee et al. 2014). The outliers were detected based 
on the difference in X–Y chromosome probe intensity, and 
defective subjects were filtered out according to the medians 
of methylated and unmethylated signals, control probe inten-
sities, or the discordance with the genotype data. Also, CpG 
sites were removed (1) if more than 5% of the samples were 
flagged as bad (detection p value > 10−6 or bead number 
< 3), (2) or if the corresponding probe contains an SNP at 
the CpG interrogation or at the single-nucleotide extension.

The raw intensity data were background corrected with 
ENmix (Xu et al. 2015), with the background normal distri-
bution parameters estimated with out-of-band values. The 
corrected intensities were subjected to beta-mixture quan-
tile normalization method (Teschendorff et al. 2012). Batch 
effects were adjusted by ComBat (Johnson et al. 2007). The 
resulting beta values were inverse normal transformed (INT) 
as the regression models assumed the normality of the data.

Cell composition estimation

From the methylation data, the leukocyte composition 
for each sample was estimated with Houseman algorithm 
(Houseman et al. 2012). The Bakulski reference was used 
as cord blood reference panel for the estimation of CD8+, 
CD4+, natural killer cells, monocytes, granulocytes, B cells, 
and nucleated red blood cells (Bakulski et al. 2016). In the 
following analysis, the granulocytes were eliminated to 
avoid multi-collinearity, since the variance inflation factor 
was the largest.

Methylation quantitative trait loci (mQTL) analysis

The associations between genotypes and CpG methyla-
tions were analyzed with matrix eQTL (Shabalin 2012), 
using codes written by Gaunt et al. (2016). The regression 
analysis was adjusted for maternal age, birth history (0/1), 
infant sex, leukocyte compositions, and ten genotype PC 
scores. The missing values in the maternal information were 
imputed with the average of the values obtained from the 
other subjects.
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Multiple testing was adjusted by Bonferroni correc-
tion and the genome-wide significance cut-off was set as 
1.672 × 10−14. The results were marked as cis if the SNP and 
the CpG site were within 1 Mb to each other, and otherwise, 
the results were designated as trans. The Manhattan plots 
were drawn using an R package qqman (Turner 2014).

Conditional analysis

To select the most representative variants associated with 
the methylation of each CpG site, the conditional association 
analysis was performed with COJO in GCTA64 1.92.0 beta2 
(Yang et al. 2011, 2012). The summary statistics derived 
from the results of mQTL analysis were used, and a stepwise 
model selection procedure was adopted to select the SNPs. 
The circos plot was drawn with an R package circlize (Gu 
et al. 2014).

Functional annotation analysis

To investigate the functional significance of the methylation-
related variants, we used DAVID 6.8 (Huang et al. 2008, 
2009). From the results of conditional analysis, we annotated 
each SNP with the predicted genetic or protein consequence 
based on Ensembl GRCh37. The unique list of annotated 
genes was used as an input for DAVID. We used two types of 
lists: the whole list of annotated genes and the list of genes 
annotated with non-synonymous variations.

Results

Quality control (QC)

The overall QC flow and the results are shown in Fig. 1. 
Following QC of genotype data, 1 subject was removed due 
to the missing rate, 2 subjects were excluded as related sub-
jects, and 2 subjects were considered as outliers from MDS 
plots. For variants, 6853, 2421, and 392,159 were removed 
according to the missing rate, the HWE p value, and the 
MAF, respectively. As a result, 187 subjects and 365,296 
variants remained, 354,681 of which were autosomal. Only 
autosomal variants were used in the following steps.

After the imputation, 10,658,914 variants were added to 
the data. Among a total of 11,013,595 SNPs, 2,115,146, 
45, and 5,124,791 were deleted because of the missing rate, 
the HWE p value, and the MAF, respectively. Additionally, 
91,206 variants with an information score lower than 0.9 
were discarded, resulting in a balance of 3,682,407 variants.

QC was performed for methylation data as well. After 
4 subjects were detected as outliers and 4 were marked as 
bad subjects, and 1 of them was both an outlier and a bad 
subject, the remaining number of subjects was 185. Among 
CpG sites, 6169 sites with a bad quality in more than 5% 
of the subjects were discarded. Furthermore, 29,043 SNP-
containing probes were excluded, and 812,115 CpG sites 
only on autosomes were used in the analysis.

Fig. 1  Flowchart outlining the quality control (QC) steps. The left describes the QC of the genetic data, consisting of subject filtering, variant 
filtering, and imputation steps. The right describes the QC of the methylation data, composed of subject filtering and site-filtering steps
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Among 192 subjects, 181 common to all of the geno-
type, methylation, and covariate files were used in the mQTL 
analysis. These subjects were used in the following analyses.

mQTL analysis

Among 2.991 × 1012 tests (3,682,407 × 812,115), 1,613,688 
SNP and CpG site pairs showed significant association, 
116,693 (7.23%) of which were trans-mQTLs. For each 
locus, 57 methylation sites at most were significantly asso-
ciated. However, each of the CpG sites was associated 
with a much larger number of mQTLs. For example, the 
methylation of cg11707556 was significantly related to the 
genotypes of 3294 SNPs. The results involving the genotype 
MAF under 0.15 tended to be fewer than the others.

We observed several spots, on chromosome 10 for exam-
ple, where the SNPs associated with a large number of CpG 
sites were concentrated. Most of them were due to the cis-
mQTLs, while the peak on chromosome 11 (rs7952713) 
consisted of 44 trans-associations (Fig. 2). Rs7952713 is on 
the intron of a gene LDLRAD3, which encodes low-density 
lipoprotein receptor class A domain-containing protein 3. 
Six SNPs on chromosome 10 showed a cis-mQTL relation 
with the largest number of 57 CpG sites. The positions of 
SNPs ranged from 123,207,298 to 123,212,302, which were 
located upstream of FGFR2. The related CpG sites were 
located between 122,740,998 and 123,492,885, ranged from 
upstream of MIR5694 to downstream of FGFR2.

Major histocompatibility complex (MHC)-related regions 
[chr6:28,477,797–33,448,354 in build GRCh37, accord-
ing to Genome Reference Consortium (GRC)] contained 

more than 25,000 significant results, with 7114 unique 
loci and 342 CpG sites. Twelve SNPs around the position 
29,643,877–29,648,377, ranging from the body of the gene 
ZFP57 to the downstream, had the largest number of corre-
lated CpGs of 45, which matched the peak of the Manhattan 
plot on chromosome 6 (Fig. 2). Among the significant asso-
ciations with SNPs in the MHC-related regions, 413 (1.61%) 
were trans-mQTLs. This proportion is much lower than the 
overall proportion of trans-mQTLs (7.23%). Besides, only 
200 (0.79%) among the significant mQTLs with the CpGs 
in the MHC-related regions were trans-mQTLs.

Interestingly, we could find an SNP on chromosome 16 
(rs3809627) had trans-mQTL relationships with 14 CpG 
sites on chromosome 4 with the positions from 81,048,483 
to 81,119,473. The region ranged from the upstream to the 
body of the gene PRDM8, which encodes a protein belong-
ing to a conserved family of histone methyltransferase. 
Rs3809627 is on the 5′-UTR of a transcript of TBX6, T-box 
transcription factor 6.

Conditional analysis

We conducted the conditional analysis, and 34,425 associa-
tions (among 1,613,688) with 34,272 unique CpG probes 
were genome-wide significant after stepwise model selec-
tion. Among the 153 sites linked to 2 SNPs, 28 sites carried 
both cis- and trans-mQTLs. Both CpG sites with cis-mQTL 
and sites with trans-mQTL showed regional differences 
in abundance, with lower proportions in the shelf regions 
(Fig. 3). Compared with the sites carrying cis-mQTL, the 
CpG sites with trans-mQTL were concentrated on the body 
of CpG islands. We also found that the abundance varied 
between genetic locations and the highest proportions except 
CpG sites without the annotation were inside the body of 
genes (Fig. 4).

The circus plot of trans-mQTLs is presented in Fig. 5. 
About 80% of the total 1508 trans-associations were trans-
chromosomal. The related SNPs were concentrated on sev-
eral regions such as chromosome 19, and the CpG sites were 
densely located on several areas such as chromosomes 16 
and 17.

Functional annotation analysis

According to the results of DAVID, cis-mQTL-related SNPs 
resulting in amino acid substitutions were related to signal 
peptides or glycosylation. However, trans-mQTL-related 
SNPs, regardless of the non-synonymous variation, were 
highly related to Kruppel-associated box (KRAB) domain, 
a transcriptional repression domain which is in zinc -fin-
ger proteins. Interestingly, SNPs containing both cis- and 
trans-mQTL were also linked to the KRAB domain. The 

Fig. 2  Manhattan plots representing the number of associated CpG 
sites for each genetic variant. Each point indicates a p value for each 
variant. Points are ordered by their genomic position, and different 
chromosomes are indicated by alternating colors of black and gray
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significance was lost when the SNPs were restricted to the 
non-synonymous variants.

Discussion

In this study, we identified 34,425 mQTLs based on the 
genotype and methylation data collected from the cord 
blood of Koreans. We found that 7.23% of all CpG sites 
were trans-mQTL, and compared with the sites containing 
cis-mQTL, CpG sites with trans-mQTL were concentrated 
on the body of CpG islands. Overall, these conclusions are 
closely related to the results reported by Gaunt et al. (2016), 
in which 7% of the mQTLs identified showed trans-effects, 
and the cis genetic effects on methylation levels increased 
substantially in the regulatory region.

In this study, approximately 80% of the total 1508 trans-
associations were trans-chromosomal, whereas 65% of 
trans-associations were trans-chromosomal in Gaunt et al. 
(2016). The related SNPs were concentrated on chromosome 
19, which was similar to a previous report (McRae et al. 
2018). We also found that the abundance differed between 
genetic locations and the highest proportions except CpG 
sites without the annotation were inside the body of genes.

DNA methylation at the genome level is a measurable 
trait where environmental or genetic variations occur. DNA 
methylation mediates the effects of environmental and 
genetic variation on complex diseases (Bell et al. 2011). 
Cord blood methylation not only affects birth outcome and 
children’s health outcome, but is also related to health out-
come during the course of life (den Dekker et al. 2019). 
The role of genetic variation in DNA methylation has been 
demonstrated by studies investigating the heritability using 
twin pairs and families across various tissues (Boks et al. 
2009; Gordon et al. 2012; McRae et al. 2014).

MHC regions, on chromosome 6, are dense of diverse 
genes, about 40% of which were estimated to have immune 
system functions (Consortium TMs 1999). In this study, 
more than 25,000 mQTL relations could be found in the 
regions. Importantly, several genetic loci nearby ZFP57 
had negative correlations with a number of CpG sites that 
were also annotated with ZFP57 which plays a crucial role 
in maintenance of DNA methylation status (Mackay et al. 
2008; Takahashi et al. 2019; Ferguson-Smith 2011). This 
may indicate that the methylation status of ZFP57 itself 
can be regulated by the genotype of ZFP57 or several loci 
in MHC-related regions, further affecting methylation sta-
tuses of several regions. CpG positions whose methylation 

Fig. 3  Proportion of CpG sites 
with cis- (red), trans- (green), 
and both (blue) mQTLs anno-
tated with the relative positions 
to UCSC CpG islands. Sites 
with multiple categories of 
annotations were counted in 
duplicate. N_shelf, N_shore, 
Island, S_shore, and S_shelf 
indicate shelves 2 kb–4 kb 
upstream from islands, ~ 2 kb 
upstream positions flanking 
islands, body of CpG islands, 
~ 2 kb downstream positions 
from islands, and 2 kb–4 kb 
downstream from islands 
respectively
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statuses were correlated with the genotype of loci in MHC 
regions include MOG and RYR1.

The analyses also found that a locus on the 5′-UTR of 
TBX6 (chromosome 16) was related to several methylation 
positions nearby PRDM8. Rs3809627 has been reported to 
be a potential regulator of the expression of TBX6 (Consor-
tium EP 2012; Wu et al. 2015), and this gene plays an impor-
tant role in spine development during somitogenesis as a 
transcription factor (Chen et al. 2016). PRDM8 was found to 
relocate laforin and malin from cytoplasm to nucleus (Turn-
bull et al. 2012), possibly affecting the glycogen metabolism 
in cytoplasm. It may be hypothesized that the altered expres-
sion of TBX6 may be related to several glycogen-related phe-
notypes such as Lafora disease.

The previous meta-analysis by Pregnancy and Childhood 
Epigenetics (PACE) consortium revealed over 6000 CpG 
sites of which the methylation statuses in newborn blood 
were significantly differed by the maternal smoking (Joubert 
et al. 2016). We found that 398 of the reported sites were 
found to have significant mQTLs, including the positions 
annotated with some noticeable genes such as PRDM8 and 
BHMT2. This result may indicate that the effect of maternal 
smoking on the infant methylation statuses can be partially 
amplified or canceled out due to the genotype. For example, 

minor alleles of SNPs nearby BHMT2 (e.g., rs486580) are 
positively correlated with the methylation of CpG sites 
annotated with BHMT2 (e.g., cg08328513), and the mater-
nal smoking may further increase the methylation amount 
of the sites (Joubert et al. 2016).

Our study is significant in two aspects. First, previous 
studies mostly focused on non-Hispanic whites, and results 
derived from Asians have been very limited. Genotypes vary 
by the population or ancestry, and their effects on the pheno-
type can be different by the population (Carlson et al. 2013). 
Therefore, our association results between DNA methyla-
tions and the genotypes may provide biological insights 
applicable to the Asian subjects, and can be utilized in later 
multi-omics studies of cord blood from similar population 
(Koh and Hwang 2019). Second, we used the Illumina EPIC 
array with the wider coverage to analyze DNA methylation. 
This EPIC array covers over 850,000 methylation sites and 
can reveal further methylation statuses of CpG sites not cov-
ered with Illumina Infinium HumanMethylation450. There-
fore, our findings may provide some clue of novel biological 
pathways explaining the relationships between genotypes, 
DNA methylations, and the phenotypes.

A significant amount of research has been conducted to 
determine the role of genetic component in methylation 

Fig. 4  Proportion of CpG sites 
with cis- (red), trans- (green), or 
both (blue) mQTLs annotated 
with genomic locations relative 
to genes. Sites with multiple 
annotation categories were 
counted in duplicate. TSS1500, 
TSS200, UTR, and ExonBnd 
indicate 200–1500 nucleotide 
upstream from transcrip-
tion start site (TSS), ~ 200 
nucleotide upstream from TSS, 
untranslated region, and exon 
boundaries, respectively
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and its effects on disease. The mQTL is related to a tran-
scription factor binding or histone modification or is 
directly related to gene expression (Banovich et al. 2014). 
Significantly, the overlap between mQTLs in brain tissue 
and disease SNPs was shown in schizophrenia (Hannon 
et al. 2015), and blood mQTLs were enriched in SNPs 
related to Crohn’s disease, hypertension, and rheumatoid 
arthritis (Gaunt et al. 2016). The overlap between mQTLs 
and disease SNPs with height, ulcerative colitis, Crohn’s 
disease, and coronary heart disease was also demonstrated 
in a recent report; however, substantial genetic variations 
in DNA methylation remain to be identified (McRae et al. 

2018). Future studies may have to address issues related to 
low frequency and rare variants (Richardson et al. 2016).

Our study has several limitations, which are worth men-
tioning here. First, since the data were obtained only from 
cord blood, age-related changes could not be analyzed. Other 
studies investigated the effect of methylation over time and 
the effects of genetic variation and environmental changes 
with age. In fact, according to the studies conducted at 
five different stages in life, DNA methylation was affected 
by genetic and environmental factors; however, genetic 
effects decreased and environmental effects increased with 
time. To understand the impact of environment, we need 

Fig. 5  Circos plot of trans-mQTLs. Sections are separated by chro-
mosomes, marked by the outermost texts, and aligned in the clock-
wise direction. Values from outside are as follows: − log10 (p value) 

of each association (dark red points), the density of genetic loci (pink 
curves), the density of related CpG sites (blue curves), and transasso-
ciation between CpG methylations and mQTLs (curved lines)
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chronological data, because DNA methylation changed over 
time (Moon et al. 2019). Second, our sample size is rela-
tively small, and thus, it is difficult to generalize our results. 
Mapping genetic effects requires a much larger sample size. 
The lack of direct data supporting the relationship with dis-
ease is another limitation of our study. Therefore, in addition 
to the analysis of the mQTL, a future study of the distribu-
tion of mQTL according to the disease is desirable.

Conclusion

This study identified cis- and trans-mQTLs from cord blood 
obtained from a Korean birth cohort. We found a number 
of significant correlations between genotypes and methyla-
tions around functional genes such as ZFP57, TBX6, and 
PRDM8. These findings may provide some biological clues 
about pathogenesis mechanisms underlying several complex 
diseases via DNA methylations. It should be noted that our 
study provides the first mQTL results from Korean cord 
bloods.
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