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Abstract
Purpose of review: Tyrosine kinase inhibitors (TKIs) 
have shown clear survival benefits as effective targeted 
therapies in various hematological and solid malig-
nancies. Important evidence, however, has shown that 
TKIs may lead to adverse effects such as cardiovascu-
lar toxicities, via off-target as well as on-target mech-
anisms. This review presents an overview of TKI-in-
duced cardiotoxicity mechanisms, clinical manifesta-
tions, diagnosis, monitoring, and management options. 
Furthermore, we discuss current preclinical efforts and 
future investigations into alternative therapeutics for 
minimizing the cardiotoxicities associated with tyro-
sine kinase-targeted therapies.
Recent findings: Accompanying with the significant 
improvements toward targeted anticancer treatment, 
cardiotoxicity-related adverse effects are increasingly 
reported and have become an important public health 
issue. The TKI-induced cardiovascular toxicities in-
clude myocardial ischemia, heart failure, QT prolon-
gation, and hypertension. Thus, the early awareness of 
cardiotoxicities, initiation of appropriate management, 
and close follow-up, may enhance the benefits of TKI 
therapy.

Keywords: Neoplasm, Drug therapy, Cardiotoxicity, 
Heart failure

Introduction

Cancer and cardiovascular disease are the two leading 
causes of death in the world1. Recently, targeted ther-
apies have become a powerful tool in cancer manage-
ment, with significant survival benefits2. The develop-
ment of tyrosine kinase inhibitors (TKIs) has provided 
a great step forward in targeted cancer treatments3. 
More than 30 TKIs are currently in clinical use or un-
dergoing advanced clinical trials4-8. Tyrosine kinases 

(TKs) are enzymes that activate proteins by transfer-
ring a phosphate group to the tyrosine residues of pro-
teins in signal transduction cascade. TKIs are highly 
selective for inhibiting tyrosine phosphorylation and 
do not inhibit protein kinases that phosphorylate serine 
or threonine residues4.

There are two main drug classes of targeted cancer  
therapies: TK monoclonal antibodies (rituximab, alem
tuzumab, trastuzumab, etc.) and small molecule TKIs 

(sorafenib, sunitinib, dasatinib, imatinib, nilotinib, etc.)  

(Table 1). TKIs were expected to be less toxic than 
conventional anticancer drugs, as they target the spe-
cific proteins involved in cancer cell proliferation. How-
ever, their widespread use has raised concern regarding 
cardiotoxicity and off-target effects9. The spectrum of 
cardiovascular toxicities associated with TKIs includes 
heart failure (HF), arrhythmia/QT prolongation, hyper-
tension, and acute coronary syndrome (ACS)/myocar-
dial ischemia. The risk of cardiac damage is higher in 
patients with a prior history of cardiac disease4.

Currently, there is no clear consensus on the defini-
tion of cardiotoxicity. The Cardiac Review and Eval-
uation Committee of Trastuzumab-associated Cardio-
toxicity defines cardiotoxicity as a decline of the left 
ventricular ejection fraction (LVEF), HF symptoms, an 
asymptomatic reduction of LVEF ≥10 to <55% or a  
symptomatic fall in LVEF ≥5 to <55%10,11. The US 
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Food and Drug Administration (USFDA) defines LVEF  
is a 40-49% with a ≥10% absolute decrease below 
baseline or a <40-45% drop with receptor tyrosine- 
protein kinase ERBB2 (also known as HER2) as being 
necessary to be monitored10. The American Society of  
Echocardiography and European Association of Cardio
vascular Imaging define cardiotoxicity as global longi-
tudinal strain (GLS) with a 10-15% early reduction10. 
Cardiotoxicities may be categorized as acute and chro
nic and can be classified into type I (early onset) and 
type II (late onset)4. Type I refers to irreversible cardio-
myocyte (CM) injury, which is usually caused by anth-
racyclines and conventional chemotherapeutics, while 
type II is typically caused by novel biological-targeted 
inhibitors or antibodies12.

This review describes the underlying mechanisms of 
the cardiotoxicities associated with TKI treatment and 
discusses current trends and importance of preclinical 
studies for assessing cardiotoxicity. We also present  
diagnostic tools, monitoring methods, and manage-
ment options that are available in clinical practice for 
targeted anticancer therapeutics.

Mechanisms of targeted therapy-induced 
cardiotoxicity

TK inhibition has been described to cause cardiotox-
icity by several different mechanisms (Figure 1). One 
of the most eminently evaluated targeted therapies is 
inhibitors of the vascular endothelial growth factor 

(VEGF) signaling cascade. VEGF induces angiogene-
sis through binding the VEGF receptor (VEGFR). The  
inhibition of angiogenesis stops growing tumors from 
seizing the body’s natural processes10,13. Another pop
ular target for cancer treatment is the erythroblastic 
leukemia viral oncogene B (ERBB), commonly referred 
to as HER. Normally, ERBB facilitates the prolifera-
tion, growth, and repairing of abnormal cells within the 

body. However, similar to the VEGF signaling path-
way, oncogenic mutations in ERBB dominate cellular 
processes and encourage cancer cell proliferation14. 
TKI- and anti-VEGF-induced cardiotoxicity can occur 
through both on-target and off-target mechanisms. On- 
target cardiotoxicity takes place through drug interac-
tions with the intended target kinases and homologous 
kinases CMs15. A representative drug that causes off- 
target cardiotoxicity is sunitinib16.

Cardiotoxicity from VEGF-targeted therapy

VEGFR is one of the most important receptor tyrosine 
kinases (RTKs). The VEGF family is composes of seven  
members-VEGF-A, VEGF-B, VEGF-C, VEGF-D, 
VEGF-E, VEGF-F, and placental growth factor. VEGF- 
A is the most typical component, and the mRNA of 
VEGF-A is expressed in various tissues of the body, 
such as the lungs, heart, and kidneys10,13. Consequently,  
the VEGF signaling pathway plays a critical role in  
multiple signaling pathways that affect vasculature, and 
alterations to the VEGF pathway have been shown to 
have deleterious effects17.

VEGF binds to three different receptors-VEGFR-1 

(Flt-1), VEGFR-2 (Flk-1), and VEGFR-318. The bind-
ing of VEGF to VEGFR-2 launches a tyrosine signal-
ing cascade, which expedites cell growth, proliferation, 
migration, and vasodilation, all of which are important 
for angiogenesis19. Historically, the VEGF pathway can 
be targeted using several different methods, including 
recombinant receptors, monoclonal antibodies, or in-
hibitors of downstream kinase expression (TK inhibi-
tion) and signaling pathways20.

Current anti-angiogenesis therapies, including VEGF 
inhibitors, have been shown to have adverse effects on 
the cardiovascular system10,13,21,22. Anti-VEGF thera-
pies, such as specific VEGF antibodies and VEGFR 
TKIs, exacerbate left ventricular (LV) dysfunction, hy-
pertension, QT interval prolongation, ischemic events, 

Table 1. Classification of tyrosine kinase-targeted anticancer agents

Targets VEGFR ERBB/HER BCR-abl PDGFR

Classes Monoclonal antibody Small molecule TKI Monoclonal antibody Small molecule TKI Small molecule TKI

Agents

Ramucizumab Sunitinib ERBB1 (HER1) Imatinib
Bevacizumab Neratinib Cetuximab Lapatinib Dasatinib

Pazopanib Panitumumab Erlotinib Nilotinib
Sorafenib Gefitinib
Axitinib ERBB2 (HER2)
Afatinib Pertuzumab Lapatinib
Regorafenib Trastuzumab

VEGFR: vascular endothelial growth factor receptor, ERBB: erythroblastic leukemia viral oncogene B, ERBB1 (HER1): human epidermal growth 
factor receptor, ERRB2 (HER2), BCR-abl: fusion protein encoded by the Philadelphia chromosome, PDGFR: platelet derived growth factor 
receptor, TKI: tyrosine kinase inhibitor.
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thromboembolic events, the rapid acceleration of ath-
erosclerosis, and cardiovascular disease and even cause 
death23. The most common cardiovascular adverse 
effect associated with these drugs is hypertension, due 
to increased endothelin-1 production, decreased nitric 
oxide production, and capillary rarefaction in the endo-
thelium7. Coronary microvascular dysfunction caused 
by the loss of vascular pericytes has been described 
in in vivo studies of sunitinib4,8. In terms of LV dys-
function, the molecular mechanisms of cardiotoxicity 
caused by TKIs remain poorly understood. The sug-
gested mechanisms of sunitinib- and sorafenib-induced 
cardiotoxicity include the following24: inhibition of 
platelet-derived growth factor receptor (PDGFR) sig-
naling, inhibition of angiogenic growth factors, inhibi-
tion of c-Kit signaling, impaired prosurvival signaling, 
alterations in AMP-activated protein kinase (AMPK) 
activity that result in mitochondrial dysfunction, and 
energy compromise.

Cardiotoxicities from ERBB1 (HER1)- and ERBB2 

(HER2)-targeted therapies

Anticancer therapies that target the ERBB family of 
TKs have been successfully used in the treatment lung 
and breast cancer subtypes25,26 cancer. These inhibitors 
are being increasingly studied in a variety of malig-

nancies, including gliomas27 and prostate28, ovarian29, 
colorectal30, pancreatic31, and head and neck32 cancers. 
However, the ERBB pathways that are inhibited by 
anticancer therapies also play roles in the maintenance 
of cardiac homeostasis, and their inhibition can have 
important cardiovascular adverse effects, which most 
remarkably have led to LV systolic dysfunction and 
overt HF25.

The ERBB family consists of four membrane-bound 
protein TKs that are often mentioned under different 
names that reflect their distinct receptor functions and 
paths of discovery25. The ERBB family of RTKs in-
cludes ERBB1 to 4, which share a common transmem
brane RTK structure that includes an extracellular 
region, a single transmembrane-spanning region, and 
a cytoplasmic TK domain25. Each ERBB RTK has spe-
cific ligand binding characteristics that cause recep-
tor hetero- or homo-dimerization, and the activation 
of intrinsic TK domains results in phosphorylation of 
specific TKs within the cytoplasmic domain25. There 
are three main pathways that can be induced upon the 
activation of ERBBs: the phosphatidylinositol 3-kinase 

(PI3K)-protein kinase B (Akt) pathway, the mitogen- 
activated protein kinase (MAPK)-rat sarcoma virus 
oncogene (Ras)-extracellular signal-regulated kinase 

(ERK) pathway, and the Janus kinase-signal transducer 
and activator of transcription protein (STAT) pathway, 

Figure 1. Mechanism of cardiotoxicity from tyrosine kinase-targeted therapy. Tyrosine kinase inhibitors bind their receptors ex-
tracellularly or intracellularly. Agent binding induces the initiation of various cellular signaling pathways. These processes are ulti-
mately manifested as cardiovascular toxicities including heart failure, hypertension, myocardial ischemia, and arrhythmias. TKI: ty-
rosine kinase inhibitor, VEGFR: vascular endothelial growth factor receptor, EGFR: epidermal growth factor receptor (also known 
as ERBB1 or HER1), PDGFR: platelet derived growth factor receptor, BCR-abl: fusion protein encoded by the Philadelphia chro-
mosome, PI3K: phosphatidylinositol 3-kinase, Akt: protein kinase B, MAPK: mitogen-activated protein kinase, Ras: rat sarcoma 
virus oncogene, Erk: extracellular signal-regulated kinase, JAK: Janus kinase, STAT: signal transducer and activator of transcription 
protein, BAD: Bcl-2-antagonist of cell death, Bcl: B-cell lymphoma, Bcl-xL: B-cell lymphoma-extra large, Cyt: cytochrome, NO: 
nitric oxide, HF: heart failure, LV: left ventricle, ACS: acute coronary syndrome, IHD: ischemic heart disease.
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which are all responsible for the regulation of the cel-
lular growth, metabolism, and survival33-36.

Cancer therapeutics that target ERBBs predominantly 
use two strategies: humanized monoclonal antibodies 
against the extracellular receptor domains or adminis-
tration of small molecule TKIs, which can target both 
receptor and non-receptor TKs25. Antibody binding 
leads to receptor internalization, prevents activation of 
the downstream signaling pathways, and decreases re-
ceptor expression on the cell surface25. Small molecule 
TKIs function as ATP analogues and inhibit down-
stream intracellular signaling by blocking ATP bind-
ing sites on the catalytic domain of the receptor TK37. 
Importantly, the interruption ERBB receptor down-
stream signaling releases cytochrome C (Cyt C) from 
the mitochondria and reverses Bcl-2-antagonist of cell 
death (BAD) inhibition, which suppresses antiapoptotic 
B-cell lymphoma-extra large (Bcl-xL) expression, in-
duces caspase activation, and leads to cell death25.

Cardiotoxicity from other receptor TKIs

Several TKIs including dasatinib, imatinib, and nilotinib 
target the BCR-Abl kinase and the PDGFR, which TK  
targets in chronic myelogenous leukemia. These agents 
have been reported to cause thromboembolism and 
pulmonary hypertension4.

Clinical manifestations of TKI-induced 
cardiotoxicity

Clinical manifestations of cardiotoxicity from TKIs 
have various features that are due to several different 
mechanisms.

Hypertension

TKIs that disturb the VEGF signaling pathway have 
been reported to elevate blood pressure38. The frequency 
of such adverse events varies between 11% and 45%, 
in patients treated with VEGFR inhibitors9. Hyperten-
sion incidences have been estimated to range from 17-
42% with sorafenib and 15-47% with sunitinib7,39,40. 
The onset of TKI-related hypertension is variable and 
can occur 1 year after treatment or within 24 hours. 
The available data demonstrate that the risk of hyper-
tension substantially depends on tumor type. The risk 
of developing hypertension is significantly higher in 
patients with renal cell carcinoma (RCC) than those 
with non-RCC tumors41.

Heart failure and LV dysfunction

According to the European Society of Cardiology (ESC) 
Position Paper9, LV dysfunction occurs most frequent-

ly with the use of sorafenib (4-8%), sunitinib (2.7-19%), 
and pazopanib (7-11%), and less frequently with lapa-
tinib (0.2-1.5%) and imatinib (0.2-2.7%).

Acute coronary syndrome/Myocardial ischemia

TKIs exert a wide range of adverse effects on coronary 
vessels, including vasospasm (sorafenib, nilotinib), 
direct antiangiogenic and proatherogenic effects on en-
dothelial cells (nilotinib, ponatinib), procoagulant ef-
fects (sorafenib, sunitinib, nilotinib), and acceleration 
of atherosclerotic processes (sorafenib, nilotinib). The 
risk of arterial thrombosis has been estimated to be 
1.4% for sunitinib and 1.7% for sorafenib9,42.

Arrhythmia/QT prolongation

A variety of arrhythmias can develop after TK-target-
ed anticancer therapy. One severe form is ventricular 
arrhythmia (torsade de pointes), which results from 
the prolongation of the QT interval. These arrhyth-
mias may be due to indirect influences, through ACS/
ischemia, or direct TKI electrophysiological effects 
on CMs or LV dysfunction. A significant QT-prolon-
gation has been described for sunitinib, vemurafenib, 
sorafenib, cabozantinib, nilotinib, and vandetanib9,43.

Monitoring and treatment of TKI-induced 
cardiotoxicity

Cardiac monitoring prior to and during anticancer 
treatment mainly focuses on several biomarkers and 
cardiac imaging modalities, such as echocardiography, 
cardiac magnetic resonance imaging (MRI), and nucle-
ar multiple gated acquisition scans, to assess changes 
in cardiac function25.

Biomarkers play crucial roles in the early detection 
of cardiotoxicity. The abnormal or elevated expression 
levels of several biomarkers can be used as indicators 
for evaluating and screening risk factors for future car-
diotoxicities. Interleukin-6 (IL-6) leads to inflamma-
tion and increases blood pressure. The overexpression 
of IL-6 plays a role in drug resistance, inhibits cell 
apoptosis, and promotes angiogenesis10,44. Increases in 
brain-type natriuretic peptide (BNP), N-terminal-pro- 
BNP, and troponin (Tn)-I have all been linked to drops 
in LVEF4,10,45. Plasma myeloperoxidase levels are also 
predictive of decreased myocardial function22. Innova-
tive imaging parameters have been explored to detect 
early markers of myocardial injury that occur before 
definite changes in LVEF are observed. Myocardi-
al strain or GLS assessments, using speckle tracking 
echocardiography, have become the most hopeful pre-
dictors of future LVEF decline25. Cardiac MRI has re-



Mol Cell Toxicol (2018)  14:247-254 251

cently emerged and is used as a gold standard imaging 
technique. It is accurate, reliable, reproducible, and has 
higher sensitivity than 2D- or 3D-echocardiography 
in identifying early changes in regional and global LV 
function, and its high contrast-to-noise ratio presents 
outstanding structural characteristics46,47. Current rec-
ommendations for LV assessment after ERBB2-target-
ing trastuzumab treatment are as follows: serial echo-
cardiograms at baseline and every three months are 
recommended during trastuzumab therapy. If LVEF 
decreases >16 points or 10-15 points from baseline 
to below the lower normal limit, hold trastuzumab for 
four weeks and perform cardiology consultation. If 
LVEF remains reduced or if any symptoms of HF are 
observed, consider the permanent discontinuation of 
trastuzumab treatment25.

Providentially, most patients with ERBB-targeted 
drug-associated cardiotoxicities recover cardiac func-
tion after early cardiotoxicity identification, appropriate 
monitoring, and management48,49. In addition to tem-
porarily discontinuing ERBB-targeted therapy, stan-
dard HF managements, including renin-angiotensin- 
aldosterone system antagonists and β-adrenergic block-
ing agents, are the main therapeutic strategies25,50.

Preclinical investigations of cardiotoxicities 
related to TKIs

As above described, some TKIs are associated with se-
vere cardiotoxicities. Given these life-threatening com-
plications, cardiovascular safety has been recognized 
as a challenging aspect for basic researchers, drug 
developers, clinicians, and regulators, all of whom are 
investigating strategies to predict, detect, and prevent 
drug-associated cardiotoxicity1,5,51. However, preclini-
cal platforms for assessing drug-induced cardiotoxicity 
use animal models, which inaccurately predict human 
cardiac pathophysiology because of interspecies dif-
ferences in cardiac electrophysiology, structure, and 
genetics3,52. Therefore, new approaches are needed to 
estimate the cardiotoxicity of anticancer drugs. Over 
the last 10 years, published preclinical studies have re-
vealed that TKIs lead to cardiotoxicity in isolated per-
fused hearts, human-induced pluripotent stem cell-de-
rived CMs (hiPSC-CMs), and tissue-engineered heart 
tissue (TEHT), all of which predict a drug’s potential 
for cardiac toxicity relatively well1.

Previously, an isolated retrograde perfused rat heart 
model was used to evaluate changes in LV function, as 
assessed by LV pressure parameters, flow rates, heart 
rate, and protein biomarkers that included tumor ne-
crosis factor-alpha, BNP, IL-6, and cardiac Tn-T and 
Tn-I53. HiPSC-CMs recapitulate many of the physio-

logical characteristics of adult human CMs and are of 
growing interest as in vitro models for identifying drug 
toxicities and responses, determining potential drug 
targets, and understanding the mechanisms underlying 
genetic disease. Furthermore, they may predict rele-
vant human effects more inexpensively and accurately 
than other cell or animal models54. TEHT is an in vitro 
force-producing, 3D cardiac tissue model with high 
levels of reproducibility. This system is composed of 
a dissociated fibrin matrix and CMs, between flexi-
ble silicone posts55. A recent study demonstrated the 
effects of nine small-molecule TKIs on TEHTs from 
neonatal rat CMs by analyzing histologies, contractile 
functions, organelle ultrastructures, and creatine kinase 
and lactate dehydrogenase activities56.

With this information, regulatory agencies and drug 
developers are now able to better evaluate TKI-in-
duced cardiotoxicities. As a result, since 2013, more 
TKIs have been approved and certified, and those with 
various TKI-induced cardiotoxicities in preclinical 
studies have been submitted for regulatory review1. 
Choosing the appropriate preclinical investigation pa-
rameters is the key to carrying out a successful study. 
Thus, designing and applying a stringent preclinical 
platform, both in vivo and in vitro, is necessary for as-
sessing a new drug’s cardiotoxic potential1.

Conclusion & Future directions

Research into molecular pathways of ERBB signaling 
and the discovery of ERBB2/HER2 therapy-related 
cardiac dysfunction has revealed a new role of neureg-
ulin (NRG) in cardiac homeostasis. NRG is a peptide 
growth factor that binds and activates ERBB2/ERBB4 
and ERBB4/ERBB4 heterodimers and homodimers, 
causing the activation of downstream kinases25. During  
embryogenesis, NRG signaling regulates the prolif-
eration, growth, and differentiation of neonatal CMs, 
whereas in the adult heart, the NRG pathway is in-
volved in preventing pathologic remodeling and main-
taining the myocardial architecture57,58. The discovery 
of NRG as a stress-induced mediator of myocardial re
pair give rise to investigation into recombinant NRG-1β 
as a potential therapeutic candidate for systolic HF59, 
thus providing an attractive example of distinct oppor-
tunities to identify new cardiovascular disease targets. 
NRG is also being explored as a biomarker in patients 
receiving ERBB2/HER2-targeted therapies and anthra
cyclines, as higher baseline NRG levels have been 
suggested to identify patients who are at higher risks 
for significant myocardial toxicities60,61.

Cardiovascular toxicities from anticancer therapies 
should be minimized, if possible. The improved pre-
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clinical screening of anticancer agents for minimal car-
diac drawbacks will greatly benefit cancer therapies1. 
To access difficulties in drug development, the National 
Institutes of Health (NIH) recently funded efforts to re-
invent 3D micro-fluidic organ systems (“tissue/organ- 
on-a-chip”) using stem cell-derived human cells that 
represent the characteristics and function of at least 10 
major organ systems62. The use of these human organ 
micro-systems, which remain viable in culture condi-
tions for at least a month, can avoid species differences 
between humans and current animal models in identi-
fying specific drug metabolizing enzymes and cellular 
responses. Such systems may be able to predict and 
screen for drugs that have anticancer efficacy, while 
minimizing myocardial toxicity, in the same in vitro 
platform1.

The level of homology of intracellular mediators 
and receptors between normal and malignant cells can 
cause on-/off-target therapeutic toxicities. To develop 
drugs with little or no unwanted adverse effects on crit
ical organs, such as the heart, other strategies may be 
needed, such as pharmacological distinction between 
myocardial and cancer targets or drugs with greater 
cancer-specific potencies that generate antitumor ac-
tivities at concentrations far below those that induce 
cardiotoxicity1. For instance, the co-administration of 
apoptosis/necrosis inhibitors or autophagy inducers63, 
which target unique proteins specific to the cardiotox-
icity pathways of chemotherapeutic drugs, is one such 
promising approach. This will help overcome cardio-
toxicities, without compromising the antitumor activity 
of the drugs that are intended to treat a certain cancer3. 
Another promising strategy is the activation of com-
pensatory signaling pathways. For example, VEGFR2/
PDGFR-inhibiting TKIs can augment a survival of 
CM and rescue cardiotoxicity by activating compen-
satory prosurvival insulin/insulin-like growth factor-1 
signaling pathways64. In future, more efforts and stud-
ies towards identifying different proteomic or genetic 
differences between cancer and healthy tissues may 
facilitate the development of anticancer agents with 
low or no cardiotoxicity1. However, for the time being, 
we should keep in mind that TKIs cause cardiovas-
cular toxicities, including heart failure, hypertension, 
QT prolongation, and myocardial ischemia. Therefore, 
early identification of crucial cardiotoxicities, regular 
monitoring, initiation of proper treatment, and close 
follow-up, will enhance the benefits of TK-targeted 
therapy.
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