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Abstract	A cquired erlotinib resistance (AER) during 
cancer treatment remains a major clinical challenge 
that results in the recurrence and metastasis of cancers. 
Therefore, we sought to identify differentially express­
ed genes (DEGs) by performing a meta-analysis of 
AER-related microarray datasets and discover biomark­
ers by conducting a systemic in-silico analysis. Using 
the RankProd algorithm, we identified 775 DEGs (536 
up-regulated and 239 down-regulated). Functional 
enrichment analyses of the total DEGs suggested that 
“cell adhesion” and “cytokine-cytokine receptor inter­
actions” may be closely associated with AER process. 
Some DEGs shared target sites of the potential micro­
RNA including miR-21, miR-200b/c, miR-429 and 
miR-9. Target sites of FOXJ1, NFAT, FOXO4, and JUN 
were also significantly enriched. From the protein- 
protein interaction network, we clustered four func­
tional modules by p-value and node density and found 
hub genes with many interacting neighbors. Finally,  
we identified seven candidate hub DEGs (TIMP3, 
SPARC, ITGA1, CCNA1, SOX2, KRT14, and PTPRZ1) 
for AER development.

Keywords	 Meta-analysis, Microarray, Differentially 
expressed genes (DEGs), Acquired drug resistance, Er­

lotinib

Acquired drug resistance is a major challenge for mole­
cular targeted cancer therapies, as it results in chemo­
therapeutic failure (e.g., cancer recurrence or metasta­
sis) in most patients who initially respond to anti-can­
cer drugs1,2.

Erlotinib, an oral low-molecular weight quinazoline 
derivative, is a first-generation EGFR-tyrosine kinase 
inhibitor (TKI) that was approved by the US Food and 
Drug Administration (FDA) in 2004 as a second-line 
treatment for advanced non-small cell lung cancer 

(NSCLC) patients who harbor EGFR-activating muta­
tions (e.g., an in-frame deletion in exon 19 or a point 
mutation in exon 21)3. As an antagonist of the tyrosine 
kinase activity of EGFR, erlotinib selectively and re­
versibly binds to the ATP binding site of the intracel­
lular tyrosine kinase domain and prevents auto-phos­
phorylation of the domain, thereby inhibiting subse­
quent downstream signaling pathways such as the Ras/
Raf/MEK/extracellular signal-regulated kinase (ERK), 
phosphatidylinositol-3-kinase (PI3K)/AKT/mammali­
an target of rapamycin (mTOR), or Janus kinase (JAK)/
signal transducer and activator of transcription (STAT) 
pathways4.

However, as observed with other chemotherapeutic 
drugs, most patients with EGFR-mutant cancers de­
velop acquired resistance to erlotinib shortly after an 
initial positive response. Several possible mechanisms 
underlying acquired gefitinib resistance (AGR) in solid 
cancers have been suggested: (1) variation in the target 
oncogene, such as alternative expression of tyrosine 
kinase isoforms, secondary mutations in the tyrosine 
kinase domain (e.g., T790 mutation, altered trafficking 
of EGFR, ERBB3 activation, or HER2 amplification); 
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(2) bypass signaling pathway against inhibition of on­
cogene addiction, such as compensatory activation of 
downstream signaling pathways and redundant activa­
tion of other survival pathways (e.g., MET amplifica­
tion, activation of MAPK1 and NFκB signaling, AXL 
kinase expression, and PTEN loss); and (3) histologic 
transformation (e.g., epithelial-to-mesenchymal trans­
formation (EMT) and small-cell transformation)4-9.

Despite large-scale clinical efforts to treat cancer pa­
tients who eventually develop acquired erlotinib resis­
tance (AER), the mechanisms and genetic factors re­
sponsible for AER have not yet been discovered. Can­
cer research must include insightful investigations to 
elucidate AER’s complex etiology; the recently devel­
oped high-throughput microarray technology allows a 
detailed observation of gene expression under a variety 
of conditions10,11. In three previous microarray stud­
ies on AER cancer cell lines, numerous differentially 
expressed genes (DEGs) were identified as candidate 
AER biomarkers12,13. However, the lists of candidate 
genes were largely inconsistent between studies due to 
small sample sizes, low sample qualities, or differenc­
es in the laboratory protocols and platforms used. In 
order to minimize the uncertainty resulting from these 
variables, we identified DEGs that were consistently  
identified in all pair-wise samples by performing a 
meta-analysis of multiple microarray datasets. We also 
conducted a systemic analysis of the identified DEGs 
in a protein-protein interaction (PPI) network to recog­
nize their topological positions at the protein level. To 
our knowledge, this is the first meta-analysis of mul­
tiple gene expression profiles from AER-related mi­
croarray datasets.

Selection of microarray datasets for meta-analysis 
related to AER

We extracted 38 GEO samples (GSMs) from three mi­
croarray datasets, which met our criteria for meta-anal­
ysis. All three GEO series (GSEs) were microarray 
expression profiles of only the cancer cell lines that 

acquire erlotinib-resistance by the step-wise increasing 
treatment of erlotinib. The microarray results of three 
GSEs were achieved by using two cancer cell lines such 
as head and neck cancer cells (GSE62061 and 49135) 
and lung cancer cells (GSE 38310), on “Illumina” gene 
chip as GEO platforms (GPLs) (Table 1).

Identification of up- and down-regulated DEGs by 
meta-analysis

From meta-analysis of microarray datasets based on 
rank product algorithm, we identified total 775 DEGs 

(536 up- and 239 down-regulated) across above-men­
tioned three microarray datasets under the significance  
threshold of P<0.05, which was depended on the 
estimated percentage of false-positives. While 416 
“gain” DEGs were uniquely identified only in the me­
ta-analysis, 6904 “lost” DEGs were identified in any 
individual analysis but not in the meta-analysis (Figure 
1A). The 20 most significantly up- or down-regulated 
DEGs, with P<1.0E-10, are shown in Table 2.

Among the up-regulated DEGs, genes with the larg­
est mean log2FC were BMPER (BMP binding endo­
thelial regulation), followed by DFNB59 (deafness, 
autosomal recessive 59) and PSG5 (pregnancy specific 
beta-1-glycoprotein 5). The down-regulated DEGs 
with the largest mean log2FC were determined by the 
descending order as follows: TCN1 (transcobalamin 
I), AKR1B10 (aldo-keto reductase family 1, member 
B10), and PTPRZ1 (protein tyrosine phosphatase, re­
ceptor-type, Z polypeptide 1).

In addition, a subset of top 25 up- and down-regulat­
ed DEGs across the three microarray datasets was vi­
sualized by heat maps that exhibit differential expres­
sion of individual datasets (Figure 2).

Functional and pathway enrichment analysis of  
the total DEGs

The most enriched GO hierarchy-biological process 
terms were listed in the following descending order: 
“cell adhesion”, “immune response”, and “regulation 

Table 1. Characteristics of individual studies selected from GEO of NCBI for meta-analysis.

   Dataset
Sample

Drug Cancer cell Platform
Erl-S Erl-R

GSE62061 12 12 Erlotinib Head and neck cancer cell
(Cal-27, SSC-25, FaDu, SQ20B)

Illumina HumanHT-12 V4.0
expression beadchip

GSE49135   3   3 Erlotinib Head and neck cancer cell
(HN5)

Illumina HumanHT-12 V4.0
expression beadchip

GSE38310   3   6 Erlotinib Lung cancer
(HCC827, ER3, T15-2)

Illumina HumanHT-12 V3.0
expression beadchip

GEO gene expression omnibus, GSE gene expression series, Erl-S erlotinib-sensitive, Erl-R erlotinib-resistant
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of cell proliferation” (Figure 1B). The most overrep­
resented GO terms in molecular function and cellular 
component were “calcium ion binding” and “plasma 
membrane”, respectively.

The most enriched KEGG pathway terms were as 
follows (in order): “cytokine-cytokine receptor interac­
tion”, “cell adhesion molecules (CAMs)”, and “com­
plement and coagulation cascades” (Figure 1C).

Gene regulation network analysis of the top 20 up- 
and down-regulated DEGs

To identify the network regulating gene expression of 
the top 20 up- and down-regulated DEGs that might 
directly affect AER, we examined potential microRNAs 
and transcription factors that target the DEGs depend­

ing on their upstream DNA sequence (Table 3). The 
target gene sites of the following microRNAs were sig­
nificantly enriched in the DEGs: miR-21, miR-200b/c, 
miR-429 and miR-9. The target gene sites of transcrip
tion factors such as FOXJ1, NFAT, FOXO4, and JUN 
were also enriched by some DEGs.

PPI network analysis of the top 20 up- and  
down-regulated DEGs

To understand biological interaction of the identified 
DEGs at protein level, we constructed a PPI network 

(include 208 nodes and 984 edges) of proteins encoded 
by the top 20 up- and down-regulated DEGs from all 
three huge databases (Figure 3).

The PPI network was further divided into four sub- 

Figure 1. Differential gene expression profiles of this meta-analysis. (A) Venn diagram showing the distribution of DEGs identified 
from the meta-analysis of 3 microarray datasets and the individual analyses of each dataset. GO function (B) and KEGG pathway (C) 
terms of total DEGs were functionally enriched by DAVID online resources under a significance threshold of p-value<0.05. BP, 
Biological process; MF, Molecular function; CC, Cellular component.

(A)	 (C)

(B)	
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networks depending on the p-value and node density 
on CluterONE Cytoscape plugin (Figure 4) and pro­
teins of each sub-network were functionally enriched 
by GO function (biological function) and KEGG path­
way (data not shown). The hub DEGs with degree (de­
fined as number of interactions) greater than 15 in the 
PPI network were shown in Table 4.

Discussion

Erlotinib is one of the most extensively used molecu­

lar-targeted cancer therapies for various solid cancers, 
but its clinical effectiveness is severely reduced by ac­
quired resistance during treatment. The development 
of AER is multifactorial, and the precise mechanisms 
and genetic factors responsible are not yet fully un­
derstood. In this respect, we identified 775 genes that 
were consistently differentially expressed, as deter­
mined by a meta-analysis of three independent micro­
array datasets. Among these, we identified 184 genes 
as novel DEGs in our meta-analysis that were not 
identified in the individual studies, suggesting a high 
possibility of these genes to be novel biomarkers for 

Table 2. The top 20 most significantly up- or down-regulated genes in the DEGs identified by meta-analysis.

Entrez ID    Symbol -Log2FC P-value Gene name

Up-regulated genes
168667 BMPER 6.95270

<1.0E-05

BMP binding endothelial regulator
494513 DFNB59 6.58465 Deafness, autosomal recessive 59
5673 PSG5 6.48217 Pregnancy specific beta-1-glycoprotein 5
23461 ABCA5 6.12518 ATP-binding cassette, sub-family A (ABC1), member 5
3672 ITGA1 6.04478 Integrin, alpha 1
3730 KAL1 5.66942 Kallmann syndrome 1 sequence
8995 TNFSF18 5.29755 Tumor necrosis factor (ligand) superfamily, member 18
9586 CREB5 5.29616 cAMP responsive element binding protein 5
1544 CYP1A2 5.28874 Cytochrome P450, family 1, subfamily A, polypeptide 2
84913 ATOH8 5.27516 Atonal homolog 8 (Drosophila)
283392 LOC283392 5.25663 Hypothetical LOC283392
3823 KLRC3 5.19938 Killer cell lectin-like receptor subfamily C, member 3
3425 IDUA 5.13094 Iduronidase, alpha-L-
113263 GLCCI1 5.08415 Glucocorticoid induced transcript 1
6678 SPARC 5.01613 Secreted protein, acidic, cysteine-rich (osteonectin)
81704 DOCK8 5.00027 Dedicator of cytokinesis 8
5675 PSG6 4.69312 Pregnancy specific beta-1-glycoprotein 6
55790 CSGALNACT1 4.56498 Chondroitin sulfate N-acetylgalactosaminyltransferase 1
7078 TIMP3 4.46576 TIMP metallopeptidase inhibitor 3
83660 TLN2 4.36085 Talin 2

Down-regulated genes
6947 TCN1 -6.45155

<1.0E-05

Transcobalamin I (vitamin B12 binding protein, R binder family)
57016 AKR1B10 -5.93070 Aldo-keto reductase family 1, member B10 (aldose reductase)
5803 PTPRZ1 -3.61576 Protein tyrosine phosphatase, receptor-type, Z polypeptide 1
9635 CLCA2 -3.29541 Chloride channel accessory 2
4680 CEACAM6 -3.28471 Carcinoembryonic antigen-related cell adhesion molecule 6
338382 RAB7B -3.13399 RAB7B, member RAS oncogene family
1272 CNTN1 -3.02910 Contactin 1
8900 CCNA1 -2.28873 Cyclin A1
771 CA12 -2.77362 0.00071 Carbonic anhydrase XII
793 CALB1 -4.46685 0.00076 Calbindin 1, 28 kDa
3861 KRT14 -1.52601 0.00083 Keratin 14
221393 GPR115 -5.26884 0.00090 G protein-coupled receptor 115
6657 SOX2 -2.02380 0.00100 SRY (sex determining region Y)-box 2
3854 KRT6B -1.41676 0.00111 Keratin 6B
3848 KRT1 -5.23841 0.00117 Keratin 1
56341 PRMT8 -5.74658 0.00125 Protein arginine methyltransferase 8
3860 KRT13 -2.82175 0.00125 Keratin 13
1244 ABCC2 -2.81959 0.00130 ATP-binding cassette, sub-family C (CFTR/MRP), member 2
3850 KRT3 -5.14066 0.00133 Keratin 3
6511 SLC1A6 -4.31755 0.00136 Solute carrier family 1 (aspartate/glutamate transporter), member 6

Log2FC = log2
 (class1/class2), FC fold change, class1 erlotinib-sensitive, class2 erlotinib-resistant
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AER development.
Primary analysis of gene expression patterns, which 

depend on p-values and the log2FC of DEGs, revealed 
that several of the top 50 up- or down-regulated genes 
are found in a variety of tumors and cancers. In partic­

ular, most of the top 20 up- and down-regulated genes 
are involved in the development of various cancers 
such as breast cancer, colorectal cancer, gastric can­
cer, ovarian cancer, and lung cancer. In addition, some 
DEGs were identified in drug-resistant cancer cells: 

Figure 2. Heat-map representation of expression profiles for the top 25 up- and down-regulated DEGs across three microarray data­
sets. In heat-map representation, clustering of selected genes was performed by hierarchical clustering algorithm using average link­
age method and euclidean distance measure.

Table 3. The potential regulatory elements that target the top 20 up- and down-regulated DEGs.

 Regulatory elements Target sequence Genes  P-Value

microRNA
miR-21 ATAAGCT SOX2, TIMP3, GLCCI1 1.45E-04
miR-200b/c, miR-429 CAGTATT SOX2, CREB5, PTPRZ1, TLN2 7.32E-04
miR-9 TAGCTTT SOX2, TIMP3, CREB5 1.15E-03

Transcription factor
FOXJ1 NNNTGTTTATNTR SOX2, CREB5, ATOH8 7.44E-04
NFAT NWGGAAANWN CREB5, KRT14, PTPRZ1 1.62E-03
FOXO4 TTGTTT SOX2, CREB5, ITGA1, CALB1, ATOH8, KRT14, TLN2 1.83E-03
JUN TGANTCA CREB5, SPARC, KRT14, TLN2, KRT13 2.77E-03
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ABCA5 (resistance to multidrug), ITGA1 (oxaliplatin), 
CYP1A2 (trastuzumab), SPARC (5-FU), TIMP3 (tamox­
ifen), AKR1B10 (doxorubicin), CEACAM6 (tamoxifen), 
CCNA1 (arsenic trioxide), SOX2 (gefitinib), KRT1 (cis­
platin) and ABCC2 (multidrug).

For the full DEG list, functional enrichment analysis 
by the GO hierarchy and KEGG pathway showed that 
a large proportion of the genes was concerned with the 
following cellular processes of oncogenesis and tumor 
development: epithelial development (ectoderm de­
velopment, GO0007398), apoptosis (regulation of cell 
proliferation, GO0042127; regulation of apoptosis, 
GO0042981), immune response (immune response, 
GO0006955; regulation of cytokine production, GO
0001817; cytokine-cytokine receptor interaction, hsa
04060), transcription (transcription, GO0006350), drug 
metabolism (response to drug, GO0042493; metabo­

lism of xenobiotics by cytochrome P450, hsa00980), 
signal transduction (cell surface receptor linked signal 
transduction, GO0007166; Toll-like receptor signaling 
pathway, hsa04620), and EMT (cell adhesion, GO­
0007155; cell adhesion molecules, hsa04514; ECM- 
receptor interaction, hsa04512).

Gene regulation network analysis of the top 20 up- 
and down-regulated DEGs showed that some genes 
significantly shared target sites of potential transcrip­
tion factors and microRNA, which may participate in 
cellular process of AER. For example, it was reported 
that miR-200b/c and miR21 confer acquired resistance 
to erlotinib by modulating activation of EMT and mi­
gration in NSCLC cell14-16. In the case of transcription 
factor, Takeuchi K et al. revealed that the activation of 
c-Jun N-terminal kinase (JNK) is critical for apoptosis 
induced by EGFR-TKIs in NSCLC cell17.

Figure 3. Protein-protein interaction network of the top 20 up- and down-regulated DEGs. We constructed the PPI network of pro­
teins encoded by the top 20 up- and down-regulated DEGs under three huge databases, such as BioGRID, STRING, and HPRD on­
line sources. The color of node signifies proteins that are encoded by the DEG. The color of nodes - Grey; DEG-encoding proteins.
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To evaluate fully the biological significance of AER- 
related DEGs in complex diseases such as cancer, com­
prehensive knowledge of the topological position of 
each DEG within the PPI network is just as valuable as 
the fold change and p-values of the individual genes. 
In addition, hub nodes are known to have a large ef­
fect on network organization within organic systems 
and play important functions in the maintenance of the 
system. Accordingly, we identified functional modules 
and hub proteins in a PPI network of the top 20 up- 
and down-regulated genes, by combining several large 
databases of the known network. The four functional 
modules, which comprised the most significant DEG- 
encoding proteins and other known proteins in the net­
work, were significantly enriched by GO and KEGG 
pathway terms associated with the typical biological 
processes of AER, including anti-apoptosis and indefi­
nite cell proliferation (modules 1, 3, and 4), cancer sig­

naling pathway (modules 1, 3, and 4), or deregulated 
drug metabolism (modules 2 and 4). Finally, we iden­
tified 7 candidate hub genes that constitute function­

Table 4. The hub genes that degree greater than 15 in PPI net­
work.

   Gene Regulation type Degree

CCNA1
CYP1A2
TIMP3
SOX2
KRT14
SPARC
CALB1
PTPRZ1
KRT1
ITGA1

Down
Up
Up

Down
Down

Up
Down
Down
Down

Up

59
33
28
26
24
24
23
21
19
17

Figure 4. Functional modules in the protein-protein interaction network. From PPI networks of proteins encoded by the top 20 up- 
and down-regulated DEGs, we clustered four functional modules, using ClusterONE Cytoscape plugin: Module 1 (A), Module 2 (B), 
Module 3 (C), and Module 4 (D).

(A)	 (B)

(C)	 (D)
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al modules in the PPI network of the reliable DEGs, 
including three up-regulated genes (ITGA1, SPARC, 
and TIMP3) and four down-regulated genes (CCNA1, 
KRT14, SOX2, and PTPRZ1).

Integrins are αβ heterodimeric cell adhesion recep­
tors for cell-cell and cell-extracellular matrix interac­
tions, and play a direct role in the progression, angio­
genesis, and metastasis of cancers. It was reported that 
upregulation of the αvβ3, α5β1, αvβ5, and α6β4 inte­
grins was found in many types of cancer. ITGA1 (the 
alpha 1 subunit of integrin receptors) is also known 
to activate the Ras/Raf/MEK/ERK signaling pathway 
during cellular proliferation and migration of mamma­
ry carcinoma cells and is significantly upregulated in 
colorectal cancer18,19.

SPARC (secreted protein acidic and rich in cyste­
ine) is a multifaceted protein engaged in different bi­
ological processes including bone mineralization, cell 
proliferation and migration, morphogenesis, differen­
tiation, and angiogenesis20. Overexpression of SPARC 
promotes bone metastasis and EMT in highly metastat­
ic tumors including glioblastomas, melanoma, breast 
cancer, and prostate cancer and is closely associated 
with poor patient survival.

The TIMP (tissue inhibitor of metalloproteinase) 
family consists of four homologous proteins (TIMP1-4) 
that are involved in multifunctional processes such as 
cellular proliferation, pro-MMP activation, migration, 
invasion, and apoptosis. TIMP3 has been reported as 
a tumor suppressor that inhibits inflammation, tumor 
growth, and angiogenesis in some cancers21.

Interestingly, CCNA1 (cyclin A1), which exhibited 
the highest degree in the PPI network, was identified 
as a significantly down-regulated gene in the DEG list. 
CCNA1 is an important cell cycle regulator and bel­
ongs to the highly conserved cyclin family. It is charac­
terized by a dramatic periodicity in protein abundance 
throughout the cell cycle and functions as an activating 
subunit in the enzymatic complex of cyclin-dependent 
kinases. Several studies recently demonstrated that 
expression of CCNA1 was down-regulated and that it 
might be an important tumor suppressor in head and 
neck, cervical, and nasopharyngeal cancers22,23.

SOX2, a member of the sex-determining region Y- 
box family, is a master transcription factor that is es­
sential for embryonic development, including stem cell 
fate determination and differentiation. Recent studies 
revealed that SOX2 was down-regulated in gastric 
carcinomas, and its exogenous expression suppressed 
cellular proliferation by inhibiting cell-cycle arrest and 
apoptosis in gastric epithelial cell lines24.

Keratins are the intermediate filament (IF)-forming 
proteins present in epithelial cells, and form the largest 
protein family, comprising 54 gene products in humans. 

They are expressed in epithelial cell type or differenti­
ation state-specific manner, play many crucial roles in 
epithelial cells, and serve as prognostic marker able to 
determine the origin of epithelial tumors25.

PTPRZ1 is a member of the receptor-type protein ty­
rosine phosphatase family. Receptor-type protein tyro­
sine phosphatases (RPTPs) are involved in regulating 
cell signaling pathways in cooperation with tyrosine 
kinases to control cell proliferation, differentiation, 
adhesion, and migration, which are closely relevant to 
the pathogenesis of human diseases such as diabetes, 
autoimmune diseases, and cancer26.

In conclusion, we identified 775 DEGs that are like­
ly to be involved in the cellular process of AER, by 
performing a meta-analysis of three microarray data­
sets for cancers with AER. Also, the systemic PPI net­
work analysis of the significant DEGs provided insight 
into some possible processes underlying AER. This 
topological information of multiple gene expression 
profiles may help in understanding the complex nature 
of AER development and provide a novel gene expres­
sion signature that facilitates future chemotherapy re­
search.

Materials & Methods

Selection of microarray datasets qualified for  
meta-analysis

According to the Preferred Reporting Items for Sys­
tematic Reviews and Meta-Analysis (PRISMA) guide­
lines published in 2009, we thoroughly investigated 
the adequacy of microarray datasets retrieved on Gene 
Expression Omnibus (GEO) database of National Cen­
ter for Biotechnology Information (NCBI) (http://www.
ncbi.nlm.nih.gov/geo/) and ArrayExpress database of 
European Molecular Biology Laboratory- European 
Bioinformatics Institute (EMBL-EBI) (http://www.ebi.
ac.uk/arrayexpress/). We selected the microarray data­
sets in the meta-analysis if it contained: (1) gene ex­
pression profiles of cancer cell lines that acquire drug- 
resistant or drug-derivative characteristic by step-wise 
increasing doses of erlotinib; (2) enough and high- 
quality microarray datasets suitable for meta-analysis; 
(3) datasets that were established on definite platforms 

(e.g., microarray chip of Affymetrix or Illumina).

Meta-analysis of microarray datasets with different 
platforms

We performed meta-analysis of multiple gene expres­
sion profiles across microarray datasets gleaned from 
different platforms, by means of rank product algo­
rithm (RankProd package in R, http://www.r-project.
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org/) implemented in the INMEX online program (http: 
//inmex.ca/INMEX/)27-29. Before meta-analysis of the 
datasets, intensity values for gene expression were 
processed by log2-transformation and quantile normal­
ization to ensure that their mean and unit variance was 
zero, and all probe IDs from each dataset were anno­
tated as Entrez IDs for data consistency (limma pack­
age in R).

Enrichment analysis by GO hierarchy and KEGG 
pathway

To interpret biological implications of the DEGs in ac­
quired erlotinib-resistant cancer cells, we carried out 
functional enrichment analysis of Gene Ontology (GO) 
hierarchy (biological process, molecular function, and 
cellular component) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway, using the DAVID 

(Database for Annotation, Visualization, and Integrat­
ed Discovery) online program under a significance 
threshold of P<0.05 (http://david.abcc.ncifcrf.gov/).

Gene regulatory network analysis

For prediction of a gene regulation network containing 
the identified DEGs, we performed enrichment anal­
ysis of potential transcription factors and microRNAs 
based on a comparison of upstream DNA sequences 
with database of gene annotation sets retrieved from 
MSigDB (http://www.broadinstitute.org/gsea/msigdb/
index.jsp/).

The hypergeometric algorithm and Benjamini-Hoch­
berg adjustment were used for statistical method and 
multiple test correction of the network analysis, re­
spectively30.

Protein-protein interaction network analysis

To construct protein-protein interaction (PPI) network 
of proteins encoded by the DEGs (top 20 up- and down- 
regulated), we mapped the gene list into the immense 
database of already-known networks and screened sig­
nificant protein-protein interactions under Biological 
General Repository for Interaction Datasets (BioGRID)  

(http://thebiogrid.org/), STRING (http://string.embl.de), 
Human Protein Reference Database (HPRD) (http://
hprd.org/) online sources31,32. The PPI network was 
screened on a genome-wide scale using Cytoscape 
software. In the network, distinct modules were further 
identified by using the Cytoscape plugin, ClusterONE 

(http://apps.cytoscape.org/apps/clusterone)33. The over­
represented biological terms of genes that form distinct 
modules were enriched by DAVID program.

In this study, nodes with degrees larger than 15 were 
considered as hub proteins depending on degree of in­

teraction.
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