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Abstract
Active gust load alleviation is an important technology for designing future passenger airplanes to be lighter and thus more 
environmentally friendly. Unsteady Reynolds-averaged Navier–Stokes (URANS) simulations are typically used to accurately 
calculate gust loads, but because of their high computational cost, they can only be performed at a few selected operating 
points. In simpler potential theory models, stall is neglected, resulting in loss of accuracy. In this paper, a low-order unsteady 
aerodynamics wing model is presented, which is able to represent well compressible flow with stall. Furthermore, the model 
offers the possibility to modularly incorporate actuators, which allows the design and evaluation of active load alleviation 
systems. The model is based on a conventional unsteady 2D airfoil model including a dynamic stall model. The dynamic 
stall model requires viscous steady coefficients, e.g. from 2D steady RANS computations. This 2D airfoil model is coupled 
with a 3D steady-state lifting line model. The model is applied to the LEISA research airplane and extensively validated 
with URANS results. It performs well in calculating gust loads with and without simultaneous flap deflections, and provides 
significantly more accurate results in the case of stall than when stall is neglected.

Keywords Lifting line · Unsteady aerodynamics · Dynamic stall · Gust load alleviation

1 Introduction

For the certification of commercial aircraft, it must be dem-
onstrated, among other load cases, that the structure can 
withstand strong gusts. The requirements are described in 
FAR25 and CS25 [1, 2]. Several methods are available for 
calculating gust loads [3]. However, accurate calculation of 
gust loads is difficult because complex aerodynamic pro-
cesses must be considered. Wu et al. [4] provide an overview 

about gust load codes. Dussart et al. [3] makes a rough rank-
ing of aerodynamic models according to complexity and 
fidelity. Highfidelity methods such as unsteady Reynolds-
averaged Navier–Stokes (URANS) simulations can be used 
to calculate the aerodynamics very accurately [5]. But due 
to the enormous computational effort, this method is only 
available for a limited number of selected operating points. 
Midfidelity methods such as doublet-lattice method (DLM) 
or unsteady vortex-lattice method (UVLM) are used by 
default on a large scale to calculate gust loads [5]. However, 
these methods are based on the assumption of incompress-
ible, frictionless flow as well as flat bodies. While the influ-
ence of compressibility can be easily and well corrected [6], 
the nonlinear behavior of stall is difficult to correct. With-
out correction for stall, gust loads may be calculated too 
large, i.e., conservatively [7, 8]. DeLaurier [9] introduced 
the modified strip theory (MST), a lowfidelity method based 
on the principle of indicial functions, which is often used 
for aeroelastic flight dynamics models [3, 10–12]. However, 
this method, unlike DLM and UVLM, does not consider 
spanwise flow interactions. Ritter et al. [13] found signifi-
cant errors in strip theory when comparing strip theory and 
various UVLM programs for gust loads. MST, as described 
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by Andrews [10], was compared to (steady) RANS simula-
tion results in [14], and high accuracy is found. However, 
the comparison is limited to steady-state operating points. 
MST was extended by Kim et al. [15] to take dynamic stall 
into account, which is quite easy with this method since 2D 
airfoil dynamic stall can be used.

For 2D airfoil flows, semi-empirical models of low order 
are long established for dynamic stall due to their simplicity 
and satisfactory accuracy [16, 17]. These models are based 
on the concept of indicial functions by using linear differen-
tial equations which approximate the Wagner function [18]. 
This linear model is extended by a delayed flow separation 
point ahead of the trailing edge and an optional dynamic 
leadingedge vortex, both requiring nonlinear steady-state lift 
coefficients with stall. These 2D steady-state lift coefficients 
can be obtained from RANS simulations or experimentally 
with comparatively little effort.

There are also numerous publications on corrections 
with viscous 2D airfoil data for steady-state 3D wing flows 
[19–24]. Van Dam [20] coupled a finitestep method of 
Weissinger [25], which is a lifting line method, with 2D 
viscous section data. The viscous correction is applied itera-
tively by changing the section angle of attack. Gallay et al. 
[21] added a modification which results in better conver-
gence and unique solution in post-stall scenarios. However, 
the previously mentioned publications on 3D wing flows do 
not provide models for unsteady flows.

Parenteau et al. [26] propose two unsteady models for 
3D  wings. The first model, however, does not include 
dynamic stall, the second model requires unsteady 2D air-
foil solutions and covers only periodic dynamic stall. 
Sugar-Gabor [27] presents an unsteady lifting line model 
that features the geometrically discretized circulation used 
in UVLM in the wake. The model is coupled with viscous 
2D airfoil data. While the steady-state lift and drag coef-
ficients look satisfactory up to the onset of stall, we doubt 
good results for dynamic stall since no model is included 
for the flow separation point as is typical for 2D mod-
els (see above). Dias [28] has coupled a lifting line method 
with a dynamic stall model, which shows good agreement 
with experimental data. However, this model is limited to 
unswept wings and is only superficially described.

Previous work about gust load alleviation [7, 8, 29] has 
shown that dynamic stall may influence the peak gust loads 
of airplanes using costly URANS simulations. In that work, 
2D and 3D calculations were performed while the aircraft 
is not free to pitch or plunge. In addition, dynamic trailing-
edge flap deflections are simulated with and without simul-
taneous gust interaction. With this paper, we aim to provide 
the following contributions. The aim of this work is to effi-
ciently and accurately reproduce these results. Therefore, we 
present a novel efficient continuous-time unsteady aerody-
namics wing model which accounts for stall. An overview 

of the model was already shown in [30]. The model is a 
coupling of lifting line (LL) method with the concept of 
indicial functions (IF) including a nonlinear (NL) dynamic 
stall model. In the further course the model is called non-
linear indicial functions lifting line  (NL-IF-LL) model. 
The model includes a modular implementation of spanwise 
distributed actuators. Moreover, the model is implemented 
in the publicly available Library of Aircraft Dynamics and 
Control.1 For validation, the presented model is compared 
with URANS simulation results for gust simulations and 
dynamic trailing-edge flap deflections.

When calculating gust loads of airplanes, the flexible 
movements of the airplane must of course be taken into 
account. Nevertheless, since this work is only concerned 
with the aerodynamics model and its validation, the use of a 
rigid and unaccelerated aircraft is reasonable to avoid addi-
tional, unnecessary complexity. A coupling of the NL-IF-LL 
model with flexible equations of motion is of course possi-
ble, but not the subject of this work. Incidentally, the condi-
tions of a rigid and unaccelerated airplane are approximately 
satisfied in gust interactions when precise flap deflections are 
simultaneously executed to compensate for the gust loads.

The outline of the paper is as follows. Section 2 presents 
the NL-IF-LL model in detail. In Sect. 3, results of the NL-
IF-LL model are compared with RANS and URANS models 
for different scenarios. Finally, Sect. 4 draws conclusions 
and summarizes the limitations.

2  Unsteady nonlinear lifting line model

In this section, the NL-IF-LL model is described. Figure 1 
shows an overview of the NL-IF-LL model. The model is 
divided into submodels, each of which has a subsection 
devoted to it, as noted in the boxes. The formula symbols 
are introduced in the following subsections. The last section, 
Sect. 2.6, describes the calculation of the total lift coeffi-
cient and the wing root bending moment coefficient from the 
local coefficients. In addition, the algorithm is summarized 
in Algorithm 1 in the appendix for better understanding.

2.1  3D to 2D and 2D to 3D

The lifting line method ensures that for a swept wing with 
sweep angle � the lift curve slope is decreased by the fac-
tor cos� compared to an unswept wing. However, the angle 
of attack used in the 2D airfoil data is too small by a factor 
of cos� . Therefore, in order for the stall to occur at the 
correct angle of attack, the 2D angle of attack �2D must be 
increased about the factor 1∕ cos� relative to the 3D angle 

1 Data available online at https:// github. com/ iff- gsc/ LADAC.
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of attack �3D . Furthermore, however, it should be noted here 
that there is a special characteristic of stall in swept wings 
along the span [31]. Typically, the local maximum lift coef-
ficient increases steadily from the wing tip to the wing root. 
This course of the maximum lift coefficient over the span 
depends on parameters such as sweep angle, aspect ratio 
and Mach number. This characteristic could be taken into 
account here empirically via a factor fcL,max

 dependent on the 
span position, which indicates the ratio between local maxi-
mum lift coefficient and the maximum lift coefficient of the 
airfoil used. The 2D airfoil angle of attack is consequently 
calculated as follows:

where �0 is the angle of attack at zero lift. The 2D angle of 
attack �2D will be denoted by � in the further course. The 
dimensionless pitch rate is defined as [18]

with the airfoil chord length c and the airspeed V. The 
manipulation factor of the 2D angle of attack compared to 
the 3D angle of attack must be compensated at the end of 
the 2D calculations. For this purpose, the 3D coefficients 
are manipulated by the inverse factor compared to the 2D 
coefficients:

The 2D model also uses velocity V, Mach number M, and 
chord length c as parameters (denoted without index 2D in 
this work). These 2D parameters must also be changed com-
pared to the 3D parameters:

(1)�2D = � = (�3D − �0)∕
(

cos� fcL,max

)

+ �0

(2)q = �̇�c∕V

(3)cL,3D = cL =
(

c
f

L
+ c�

L

)

cos� fcL,max

(4)cm,3D = cm =
(

cf
m
+ c�

m

)

cos� fcL,max

(5)cD,3D = cD = c
f

D
cos� fcL,max

(6)V = V∞ cos�

where V∞ is the 3D velocity, M∞ is the 3D Mach number 
and c3D is the 3D chord (measured parallel to the fuselage). 
In this work, it has been found that the best results are 
obtained when correcting the 2D Mach number with the 
mean sweep angle of the 50% chord line �50%.

2.2  Unsteady airfoil model

We use the unsteady 2D airfoil aerodynamics model for com-
pressible flow from Leishman and Nguyen [18]. The definition 
of the incident flow and the aerodynamic coefficients is shown 
in Fig. 2. Due to a dynamic change of the angle of attack � , 
there is an effective angle of attack �E , which is delayed with 
respect to the angle of attack. The drag coefficient acts in the 
direction of the free flow, the lift coefficient acts perpendicular 
to it. The reference point of the pitching moment coefficient is 
at the 25% point of the chord length.

The input variables to the unsteady airfoil model are the 
angle of attack � and the dimensionless pitch rate q. Further-
more, the model contains eight state variables x1, x2,… , x8 , 
which represent first order delays of the input variables [18]:

(7)M = M∞ cos�50%

(8)c = c3D∕ cos�

(9)ẋ1 =
1

c∕(2V𝛽2b1)

(

𝛼 − 𝛼0 + 0.5q − x1
)

Fig. 1  Overview of nonlinear 
unsteady airfoil model with 
spanwise downwash coupling. 
The index i of all variables has 
been omitted for simplicity
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Fig. 2  Definition of airfoil inflow and coefficients
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with the Prandtl–Glauert factor

and time constants depending on Mach number [18]:

with the speed of sound a. The tunable parameters in the 
equations are defined in Table 1.

Finally, the model outputs of the unsteady airfoil model 
can be computed [18]:

(10)ẋ2 =
1

c∕
(

2V𝛽2b2
)

(

𝛼 − 𝛼0 + 0.5q − x2
)

(11)ẋ3 =
1

K𝛼TI

(

𝛼 − 𝛼0 − x3
)

(12)ẋ4 =
1

KqTI

(

q − x4
)

(13)ẋ5 =
1

b3K𝛼M
TI

(

𝛼 − 𝛼0 − x5
)

(14)ẋ6 =
1

b4K𝛼M
TI

(

𝛼 − 𝛼0 − x6
)

(15)ẋ7 =
1

c∕(2V𝛽2b5)

(

q − x7
)

(16)ẋ8 =
1

KqM
TI

(

q − x8
)

(17)� =
√

1 −M2

(18)K� =
�1

1 −M + ��M2
(

A1b1 + A2b2
)

(19)Kq =
�2

1 −M + 2��M2
(

A1b1 + A2b2
)

(20)TI = c∕a

(21)K�M
=

A3b4 + A4b3

b3b4(1 −M)

(22)KqM
=

7

15(1 −M) + 3��M2b5

where �E is the effective angle of attack, cL� is the lift curve 
slope, cc

L
 is the circulatory part of the lift coefficient, cnc

L
 is 

the non-circulatory part of the lift coefficient, cc
m
 is the circu-

latory part of the pitching moment coefficient and cnc
m

 is the 
non-circulatory part of the pitching moment coefficient. In 
Eq. (26), xac is the dimensionless aerodynamic center rela-
tive to the chord length. When coupled with the dynamic 
stall model, xac = 0.25.

2.3  Dynamic stall model

Leishman and Beddoes (B–L) extended the unsteady 2D 
airfoil model from Sect. 2.2 to account for dynamic stall 
[16]. The B–L model includes trailing edge separation as 
well as leading edge separation. Since for the studies in this 
work, no distinct leading edge separation was apparent, we 
omitted the leading edge separation. For the drag coeffi-
cient, we made a few changes to the B–L model according 
to Hansen et al. [17] to get better validation results. The 
model extension about dynamic stall requires static analytic 
functions of the aerodynamic coefficients as shown in Fig. 3. 
The data points needed for this purpose were obtained in 
this work by steady-state RANS simulations. To improve 
the database, auxiliary points for small angles of attack are 
generated by linear extrapolation. To obtain an analytical 
model from the data points, a suitable function must first be 
selected. The function for the static lift coefficient cst

L
 used in 

[16] has a kink and leads to quite large approximation errors 
with the present airfoil. The function from [32] also leads 
to large approximation errors, since it cannot represent a 
relative sharp change in lift coefficient during stall followed 
by relatively long almost linear decrease (occurs primarily 
at M = 0.669 and M = 0.746 ). Therefore, we modified the 

(23)�E = A1x1 + A2x2

(24)cc
L
= cL��E

(25)cnc
L
=

4

M

(

� − x3
)

+
1

M

(

q − x4
)

(26)cc
m
= cc

L

(

0.25 − xac
)

−
�

8�
x7

(27)cnc
m
=

1

M

(

A3x5 + A4x6 − �
)

−
7

12M

(

q − x8
)

Table 1  Unsteady airfoil 
aerodynamic parameters

A
1

A
2

A
3

A
4

b
1

b
2

b
3

b
4

b
5

�
1

�
2

0.625 0.375 1.5 −0.5 0.310 0.312 0.25 0.1 0.5 0.85 0.73
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function from [32]. We have replaced the tanh(a1(� − �∗)) 
function by a function with a sharper curvature tanh(�̄�) [30]:

with

In Eq.  (28), �0 is the angle of attack at zero lift coeffi-
cient, cL�0 is the lift curve slope at �0 without compressibil-
ity correction, Δcstall

L
 is the magnitude of stall lift coefficient 

loss (negative), �∗ is the angle of attack at which the stall 
magnitude is haft reached, and a1 is the abruptness factor of 
the stall onset. The parameters were optimized using Mat-
lab’s nonlinear least-squares solver lsqcurvefit with 
the start points �0 = −2◦ , cL�0 = 6.3 , Δcstall

L
= 0 , �∗ = 7◦ , 

a1 = 5∕◦ and with the boundary conditions −7◦ ≤ �0 ≤ 7◦ , 
1.7 ≤ cL�0 ≤ 17 ,  −1.5 ≤ Δcstall

L
≤ 0 ,  4◦ ≤ �∗ ≤ 30◦ and 

0.2∕◦ ≤ a1 ≤ 20∕◦ . The results are shown in Table 2.
The dynamic stall model considers trailing edge flow 

separation. For this purpose, the dimensionless separa-
tion point f is defined, which is shown in Fig. 4. For fully 
attached flow, f = 1 and for fully detached flow, f = 0 . The 
separation point can be obtained from the given static ana-
lytical lift coefficient function cst

L
 [17]:

(28)cst
L
=

cL𝛼0

𝛽
sin

(

𝛼 − 𝛼0
)

+ Δcstall
L

[1 + tanh (�̄�)]

(29)�̄� =

3
∑

i=1

(

a1(𝛼 − 𝛼∗)
)(2i−1)

(2i − 1)

In Eq. (30), division by zero must be avoided. For this pur-
pose, f is set to 1 for angles of attack of approximately �0 . 
Since  f ≤ 1 applies, the lift curve slope cL� in Eq. (30) is 
defined as [17]:

To represent the dynamics of the stall, a new state x9 is intro-
duced that represents a delay of the circulatory lift coef-
ficient cc

L
 [16]:

where Tp is a dimensionless time constant, which is selected 
to be Tp = 1.7 in this work. The delayed circulatory lift coef-
ficient [16]

is used to calculate an angle of attack that would result in 
this quasi-steady lift coefficient if the lift curve were linear 
[16]:

For this angle of attack the corresponding quasi-steady sepa-
ration point according to Eq. (30) can be obtained [16]:

Another state x10 is introduced which represents a delay of 
this separation point [16]:

where Tf  is a dimensionless time constant, which is selected 
to be Tf = 3 in this work. Finally, from the delayed separa-
tion point [16]

(30)f st(�) =

⎛

⎜

⎜

⎝

2

�

cst
L
(�)

cL�(� − �0)
− 1

⎞

⎟

⎟

⎠

2

(31)cL� = max
(

cst
L
(�)∕(� − �0)

)

(32)ẋ9 =
1

Tpc∕(2V)

(

cc
L
+ cnc

L
− x9

)

(33)c�
L
= x9

(34)�f = c�
L
∕cL� + �0

(35)f � = f st
(

�f
)

(36)ẋ10 =
1

Tf c∕(2V)

(

f � − x10
)

(37)f �� = x10

−4 −2 0 2 4 6 8 10
−0.5

0

0.5

1

1.5

Angle of attack, degree

L
if
t
co

effi
ci
en

t

M = 0.143
M = 0.351
M = 0.569
M = 0.669
M = 0.746
reconstructed

Fig. 3  Steady F15 airfoil lift coefficient model based on steady 
RANS data for multiple Mach numbers [30]

Table 2  Parameters of analytic lift coefficient reconstruction for the 
F15 airfoil obtained by curve fit

M �
0
∕◦ c

L�0 Δcstall
L

�∗∕◦ a
1

0.143 − 2.358 6.484 − 0.030 9.599 6.502
0.351 − 2.595 6.736 − 0.249 11.56 8.667
0.569 − 2.472 6.930 − 1.457 13.88 3.882
0.669 − 2.329 7.262 − 0.637 7.766 11.81
0.746 − 2.144 8.358 − 0.909 6.365 6.938

wake

separation point
f · c

c

V

Fig. 4  Trailing edge separation point defined in the Kirchhoff flow 
past a flat plate according to [17]
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the lift coefficient considering trailing edge flow separation 
can be obtained [16]:

Good results for the drag coefficient were obtained using the 
method of [17]:

where cst
D
 is the static drag coefficient. Good results for the 

pitching moment coefficient were obtained using the method 
of [16]:

where K0 , K1 , K2 and m can be adjusted for different airfoils 
and Mach numbers [16]. For this purpose, optimization can 
be used as in the calculation of the parameters of the steady-
state lift coefficient function in Eq. (28).

2.4  Unsteady devices models

This section describes the unsteady 2D aerodynamics of 
control devices. At this point, any and also multiple control 
devices are conceivable. However, we limit ourselves here to 
trailing-edge flaps, which are typically installed on wings.2

A relative flap depth x� is defined to each wing strip as 
shown in Fig. 5. The downward positive flap deflection is 
denoted by �.

We use the linear potential-theoretic model for unsteady 
flap aerodynamics from [33]. This includes two state vari-
ables z1 and z2 for the modeling of the circulatory part of the 
lift coefficient. The state equation is [33]:

(38)c
f

L
= cL�

�

1 +
√

f ��

2

�2

cos �E + cnc
L

(39)c
f

D
=
(

c
f

L
− cst

L

)

sin � + cst
D

(40)cf
m
= cst

m
+
[

K0 + K1(1 − f ) + K2 sin (�f
m)
]

c
f

L

(41)

[

ż1

ż2

]

=

[

0 1

−b1b2(2V∕c)
2𝛽4 −

(

b1 + b2

)

(2V∕c)𝛽2

][

z1

z2

]

+

[

0

1

]

𝛿qs

For the non-circulatory part, two further states would be 
necessary, which, however, only play a significant role at 
very high flap dynamics. In Eq. (41), �qs is the quasi-sta-
tionary flap deflection depending on the flap deflection � , its 
time derivative and the local flap hinge sweep angle �� (i.e. 
the flap deflection is converted into a corresponding angle 
of attack) [33]:

In Eq. (42), F10 and F11 are geometric quantities defined as 
follows [33]:

with

The lift coefficient due to flap deflection can be calculated 
from the states [33]:

2.5  Spanwise downwash

This section describes the coupling of the spanwise aero-
dynamics of a wing that is discretized into multiple strips, 
each of whose aerodynamics is modeled using the 2D airfoil 
models described in the previous Sects. 2.2–2.4. For a wing, 
it should be noted that the spanwise distributed strips influ-
ence each other by an induced angle of attack. This induced 
angle of attack is realized in this work by a steady lifting line 
model. Since the proper correction of the Mach number via 
manipulation of the influence coefficients is quite laborious, 
this section is divided into two subsections. Section 2.5.1 
describes the spanwise downwash model without proper 
Mach number correction. Mach number correction is then 
discussed in Sect. 2.5.2.

2.5.1  Basic model without Mach number correction

The effective angle of attack of the local wing segments 
along the span is manipulated by an induced angle of 
attack �ind computed by a steady lifting line model simi-
lar to [20, 24]. With this correction, the unsteady aero-
dynamics model computes the same lift distribution as 
the steady lifting line model for steady-state cases. In the 
steady-state lifting line method, the wing is covered by 

(42)𝛿qs =

(

F10

𝜋
𝛿 +

F11c

4𝜋V
�̇�

)

cos𝜑𝛿

(43)F10 =
√

1 − e2 + arccos e

(44)F11 = (1 − 2e) arccos e + (1 − e)
√

1 − e2

(45)e = 1 − 2x�

(46)

c�
L
= 2�∕�

[

(b1b2)(2V∕c)
2�4

(

A1b1 + A2b2
)

(2V∕c)�2
]

[

z1
z2

]

δ

c

xδc

Fig. 5  Definition of flap geometry

2 For active gust load alleviation, leading-edge flaps can be used in 
addition to trailing-edge flaps to compensate for the torsional moment 
due to gust and trailing-edge flap deflection. This was also done in 
[8], the results of which are used for validation in Sect. 3. Since we 
could not find a simple unsteady 2D model for leading-edge flaps in 
the literature, we have omitted leading-edge flaps in this work.
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horseshoe vortices of constant circulation Γi , see Fig. 6. 
The horseshoe vortices are placed on the 25% chord line 
and parallel to the incident flow. The control points are 
located on the 75% chord line.

First, the circulation associated with the previously 
calculated lift coefficients is calculated for all strips 
i ∈ [ 1...N ] along the span:

The circulation can be used to determine the induced veloc-
ity at the control points caused by the circulation. The 
induced velocity at control point i by a single horseshoe vor-
tex j of constant circulation Γj can be calculated with [34]:

Here r1,ij is the position vector from the left corner of the 
horseshoe vortex j to the control point i and r2,ij is the posi-
tion vector from the right corner of the horseshoe vortex j 
to the control point i, see Fig. 6B. The scalars r1,ij = |r1,ij| 
and r2,ij = |r2,ij| are the absolute values of the position vec-
tors. v∞,j is the unit vector in the direction of the inflow at 
strip j. The boundary condition requires that the flow at all 
control points has no velocity in the direction of the normal 
vector of the strip [6]. That is, the sum of the induced veloci-
ties of all horseshoe vortices in the direction of the normal 
vectors together with the incident flow in the direction of the 
normal vectors equals zero [6]:

(47)Γi =
1

2
V∞c

c
L,i
ci

(48)

Vind,ij =
Γj

4�

(

v∞,j × r2,ij

r2,ij
(

r2,ij − v∞,j ⋅ r2,ij

) +

(

r1,ij + r2,ij
)(

r1,ij × r2,ij

)

r1,ijr2,ij
(

r1,ijr2,ij + r1,ij ⋅ r2,ij

)

−
v∞,j × r1,ij

r1,ij
(

r1,ij − v∞,j ⋅ r1,ij

)

)

= vind,ijΓj

Eq. (49) can be simplified by using the definition of the so-
called influence coefficients matrix [6]

and by the scalar inflow velocity in direction of the normal 
vector

so that Eq. (49) becomes:

Since the inflow Vn,i is known for each strip i, the corre-
sponding inflow angle of attack of the lifting line model can 
be calculated:

The corresponding expected lift coefficient from the nonlin-
ear airfoil data without any spanwise downwash

is used to compute the necessary induced angle of attack of 
each strip

This induced angle of attack for each strip �̄�ind,i is subtracted 
from the inflow angle of attack �∞,i , see Fig. 1:

(49)Vi ⋅ ni =

(

V∞,i +

N
∑

j=1

vind,ijΓj

)

⋅ ni = 0

(50)Aij = vind,ij ⋅ ni

(51)Vn,i = V∞,i ⋅ ni

(52)Vn = −A�

(53)�ll,i = arcsin

(

Vn,i

V∞,i

)

(54)cL,∞,i = 2��ll,i

(55)�̄�ind,i =
cL,∞,i − cc

L,i

2𝜋

i =

Γ1

n1

n2

n3

n4

1

2

3

4

(a) Wing section with horseshoe vortex lattice
model.

Γj

ni

Vind,ij

v∞,j

r1,ij

r2,ij

(b) Induced velocity due to a horseshoe vor-
tex.

Fig. 6  Wing section with horseshoe vortex lattice model for solving the lifting-line problem based on [6]
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This adjusts the angle of attack �i of the unsteady airfoil model. 
To avoid iterations at each time step, the calculated induced 
angle of attack is filtered with a first-order low pass filter:

If the time constant Tdw is small enough, this method con-
verges against the iterative solution, but has the advantages 
that the model is smooth and less computationally intensive.

It should be pointed out at this point that the spanwise 
course of the lift coefficient with this method shows slight 
oscillations during stall. The problem can be easily elimi-
nated by a further spanwise coupling. According to Eq. (58)

the time derivative of x10,i is extended by an increment Δẋ10,i 
which is to be added to the result from Eq. (36). This allows 
a smooth course of the trailing edge separation point to be 
achieved. The factor Kf  should be chosen as small as pos-
sible and so that the oscillations just disappear.

2.5.2  Mach number correction

Mach number leads to an increase in the lift curve slope 
of the airfoil in the transonic region, as can be seen from 
Eq. (17), Eq. (28) and Fig. 3. However, to correctly account 
for the influence on the spanwise lift distribution, an adjust-
ment of the influence coefficients, see Eq. (50), must be 
made [6]. The wing depth must be increased by a factor 
of 1∕� , see Eq. (17). For this, the horseshoe vortices keep 
their original position, but the control points are shifted 
backwards. We call the Mach number corrected influence 
coefficients matrix AM . We note that if only a Mach-number-
dependent 2D airfoil lift curve slope is used instead of an 
influence coefficients correction, this will result in an incor-
rect spanwise lift distribution.

However, there is now a problem with the Mach number 
correction of the influence coefficients, because a Mach-
number-dependent lift curve slope, see Eq. (28), is also cou-
pled in via the airfoil data. Thus, an influence coefficient 
matrix ÃM must be found for which the Mach-number-cor-
rected lift distribution is established when Mach-number-
dependent lift curve slopes are used simultaneously. For 
this purpose, the model for the local lift coefficients is first 
linearized so that an analytical equation is obtained for the 
local lift coefficients. We use Eqs. (47), (51), (52), (53), (54), 
(55) and (57), where �̇�ind,i = 0 for a stationary result, and 
Eq. (53) is linearized: �ll,i ≈ Vn,i∕V∞,i . Moreover, we use a 
linear function for the lift coefficient: cc

L,i
= cL�,i

(

�i − �0,i
)

 , 
where cL�,i is the local lift curve slope and �0,i is the local 

(56)�3D,i = �∞,i − �ind,i

(57)�̇�ind,i =
1

Tdw

(

�̄�ind,i − 𝛼ind,i
)

(58)Δẋ10,i = Kf

(

2x10,i − x10,i−1 − x10,i+1
)

zero lift angle of attack. If now all local variables with 
index i are bundled into vectors, e.g. cL� = [ cL�,1 … cL�,N ]T , 
c = [ c1 … cN ]T , the analytical lift coefficient can be calcu-
lated from above equations:

with the lift curve slope matrix CL� ∈ ℝ
N×N

where E ∈ ℝ
N×N is the identity matrix. In Eq. (60), the lift 

curve slope matrix CL� depends on the local lift curve slope 
vector cL� and the influence coefficients matrix A . The cor-
rect spanwise lift distribution is obtained when cL� = cL�0 
and A = AM , where cL�0 is the airfoil lift curve slope with-
out compressibility correction, see Eq. (28), and AM is the 
Mach number corrected influence coefficients matrix, see 
above. If one wishes to obtain the same lift distribution 
when cL� = cL�0∕� is used as the airfoil lift curve slope, the 
following relation applies:

where ÃM is the influence coefficient matrix we are looking 
for. Equation (61) solved for ÃM gives

2.6  Total coefficients

The total coefficients can be determined by integrating the 
local coefficients. Since the wing was discretized into strips, 
the total coefficients can be calculated by summation. Since 
we assume small angles of attack, only the local lift coef-
ficients can be used when calculating the total lift coefficient 
and the wing root bending moment coefficient. For the total 
lift coefficient

the local lift coefficients are multiplied by the area of the 
strip, where Δyi is the width of the ith strip, and divided by 
the reference area S. The wing root bending moment is often 
used as a performance quantity in load reduction systems. 
In combination with the total lift, it also provides informa-
tion on the spanwise lift distribution. The wing root bend-
ing moment coefficient for the right wing is calculated as 
follows:

(59)cL = CL�

(

�∞ − �0

)

(60)
CL�

(

cL� , A
)

= diag
(

2�cL�
)

×
[

diag
(

cL�

)

− (2�E) − A diag
(

cL�

)

(�E) diag(c)
]−1

(61)
CL𝛼

(

cL𝛼 = cL𝛼0, A = AM

)

∶= CL𝛼

(

cL𝛼 = cL𝛼0∕𝛽, A = ÃM

)

(62)
ÃM =

[

AM diag(�)diag(c)diag
(

cL𝛼0

)

− 2 diag(�) + 2E
]

×
[

diag(�)diag(c)diag
(

cL𝛼0

)]−1

(63)CL =
1

S

N
∑

i=1

cL,iciΔyi
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where −1 ≤ �i ≤ 1 is the dimensionless span coordinate of 
the i-th strip, �root is the dimensionless span coordinate of 
the wing root, and bi is a boolean variable to consider only 
strips outside �root:

3  Validation

In this section, the reduced-order NL-IF-LL model pre-
sented in Sect. 2 is compared with URANS models. The 
results from the URANS simulations are taken from [7, 
8, 29]. For details on the URANS models, please refer to 
these publications.

Section 3.1 describes the airplane and the simulation 
scenario. Then, in Sect. 3.2, a validation of the 2D airfoil 
model is performed. Subsequently, gust loads for the 3D 
wing are validated in Sect. 3.3. Flap deflections are vali-
dated in Sect. 3.4. Finally, gust loads with simultaneous, 
dynamic flap deflections are validated in Sect. 3.5.

(64)CWRBM =
1

S∕2

N
∑

i=N∕2+1

cL,iciΔyi
(

�i − �root
)

bi

(65)bi =

{

1 if 𝜂i − 𝜂root > 0

0 otherwise

3.1  Airplane and simulation scenario

To study the aerodynamic model presented in Sect. 2, we 
apply it to the DLR aircraft “Leiser Start und Anflug” 
(LEISA), which is a short-to-medium range, single-aisle, 
twin-engine aircraft [35]. Figure 7a shows the RANS model 
geometry of the wing-fuselage configuration and illustrates 
the trailing edge setup for active load alleviation. The five 
spanwise-segmented flaps were designed for active control 
of maneuver and gust loads [8]. The transonic DLR-F15 
airfoil is used as the reference airfoil of the wing. Table 3 
shows the main geometric parameters of the LEISA wing.

Figure 7b shows the geometry of the NL-IF-LL model 
with 25% chord line and control points. A discretization 
of the wing in N = 40 strips was chosen. With the N = 40 
strips, the NL-IF-LL model comes to a total of 40 ⋅ 13 = 520 
states, per strip 10 for the unsteady airfoil aerodynamic 
states xi, 2 for the unsteady flap aerodynamics states zi and 1 
for the unsteady spanwise downwash angle of attack �ind,i . In 
the area of the fuselage the wing is continued. A time step 
size of 0.001 seconds and an Euler forward solver are chosen 
for the simulation.

Cruise flight is used as the operating point, which for the 
LEISA configuration is a lift coefficient of CL = 0.5 at an 
altitude of 10668m and a Mach number of M∞ = 0.8 . In the 
international standard atmosphere, this corresponds to an 
airspeed of V∞ = 237.2m∕s . The wing root bending moment 
is calculated with respect to �root = 0.1037.

In the simulations of the F15 airfoil, there is a lift coef-
ficient of cL = 0.656 , at an altitude of 10668m and a Mach 
number of M = 0.74 , which corresponds to an airspeed 
of V = 219.4m∕s.

The FAR25 and the CS25 describe all loads due to 
wind that must be considered [1, 2]. In this paper, dis-
crete upward “1-cos” gusts of various lengths � at cruise 

Table 3  Main geometrical parameters of the LEISA configuration

Span Aspect ratio Taper ratio Leading edge 
sweep

Twist Dihedral

40m 9.14 0.20 30◦ −0.86◦ 5.0◦

Fig. 7  LEISA configuration

(a) RANS geometry with illustration
of segmented trailing-edge flaps. (b) NL-IF-LL geometry.
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altitude, exactly as in [7, 8], are studied. The vertical gust 
velocity is defined as:

with

where x = ∫ V∞dt is the gust penetration distance. The refer-
ence gust velocity Uref and the flight profile alleviation factor 
Fg are functions of the flight altitude. At the selected alti-
tude the reference gust velocity is given as Uref = 18.46m∕s . 
Conservatively, we assume that Fg = 1 , which means that the 
aircraft operates always at the cruise altitude. The studied 
gusts are illustrated in Fig. 8.

We assume that the gust is constant in the lateral direc-
tion. Because of the wing sweep angle, it is taken into 
account that the gust reaches the wing strips with a time 
delay. The local angle of attack of the ith strip

(66)U =

{

Uds

2

(

1 − cos
(

2�x

�

))

if 0 ≤ x ≤ �,

0 otherwise.

(67)Uds = UrefFg

(

�

213.4m

)1∕6

, 18.29m ≤ � ≤ 213.4m

where Ui is gust velocity at the ith strip and the vectors are 
represented in a forward-right-down coordinate system.

3.2  Airfoil

According to Fig. 1, the NL-IF-LL model includes a lin-
ear “unsteady airfoil model” and a nonlinear “dynamic stall 
model”. For 2D airfoils, these models can be used indepen-
dently. In this section, we refer to the linear “unsteady air-
foil model” as the IF model and the linear “unsteady airfoil 
model” combined with the “dynamic stall model” as the 
NL-IF model. The URANS data in this section was obtained 
from [29].

Figure 9a shows a comparison of the lift coefficient of the 
IF model with the URANS model for three gust interactions. 
At the beginning and end of the gust, the lift coefficients are 
similar. However, there is a huge difference in the middle 
part. The linear IF model produces a course of the lift coef-
ficient which qualitatively corresponds approximately to the 
course of the 1-cos gust. In the URANS simulation, stall 
occurs, so that the maximum lift coefficient is relatively low.

Figure 9b shows a comparison of the lift coefficient of 
the NL-IF model with the URANS model for the same three 
gusts as in Fig. 9a. The NL-IF model agrees much better 
with the URANS model than the IF model. Typical for the 
course of the lift coefficients is that the course is not sym-
metrical in contrast to the IF model. This is due to the fact 
that the flow separates with a delay during dynamic stall, 
which can lead to a short exceeding of the maximum sta-
tionary lift coefficient. The NL-IF model tends to reproduce 
the initial course of the lift coefficient better than the course 
during the decay of the gust. Moreover, the NL-IF model 

(68)�∞,i = arcsin
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Fig. 8  1-cos design gust velocity profiles according to FAR25 and 
CS25
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Fig. 9  Comparison of 2D linear indicial function (IF) model and nonlinear dynamic stall (NL-IF) model with URANS model for multiple gust 
wavelengths using the F15 airfoil
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calculates a somewhat too large maximum lift coefficient 
for the shortest gust.

3.3  Wing

In this section, the NL-IF-LL model presented in Sect. 2 
is validated for the 3D wing. In addition to the NL-IF-LL 
model, a variant with deactivated dynamic stall model is 
also used, which is called IF-LL accordingly. For a steady-
state analysis of the wing model with stall, a variant with 
unsteady aerodynamics disabled is also used, which is 
denoted NL-LL in this section.

Figure 10 shows a steady-state validation of the NL-LL 
model. The RANS results were taken from [8]. The steady-
state spanwise lift distribution in cruise is shown in Fig. 10f. 
Here, the colored circles indicate the spanwise position at 
which the local lift coefficients over the angle of attack are 
shown in Fig. 10a–e. It can be seen in Fig. 10a–e that the 
NL-LL local lift curve slopes below stall are in very good 
agreement with RANS results. For the NL-LL model, the 
maximum local lift coefficient in Fig. 10d and e without 

manipulation would be slightly higher at about 0.9, i.e., 
where the sweep-corrected airfoil also has its maximum 
lift. The manipulation leading to the earlier stall at the 
outer wing region was performed via the parameter  fcL,max

 
in Eq. (1). This scaling factor, which is 1 by default, was 
reduced to 0.85 towards the wing tip. Although the perfor-
mance of the NL-LL model for steady-state stall is satisfac-
tory, unfortunately the model does not include a semi-empir-
ical determination of the parameter  fcL,max

—so the parameter 
must be calibrated for each wing by experimental or simula-
tive results.

In the next step, an interaction with a 1-cos gust of 
reduced strength is simulated. Figure 11 shows the com-
parison of the NL-IF-LL model, the IF-LL model and the 
URANS model. The URANS results were taken from [7]. 
Due to the reduced gust strength of Uds = 10m∕s instead 
of Uds = 14.49m∕s , only very weak stall occurs in this sce-
nario. The IF-LL model provides a slightly too high load 
because the weak stall is not taken into account. The NL-
IF-LL model provides very accurate results. It can be seen 
from the good agreement of the wing root bending moment 
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Fig. 10  Local lift vs. angle of attack at five spanwise positions (a–e) and spanwise lift distribution in cruise (f) of the LEISA configuration
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coefficient in Fig. 11b that the spanwise distribution of the 
lift also agrees well.

Figure 12 compares IF-LL model results for stronger 
gusts of various lengths, as shown in Fig. 8, with URANS 
results. It can be seen that the lift coefficient for the URANS 
model does not increase further from a gust length of 
about � = 110m . This is due to the fact that strong flow 
separation occurs. For the wing root bending moment coef-
ficient, the maximum even decreases for longer gusts. The 
IF-LL model does not take stall into account and delivers 
lift coefficients that are clearly too high, especially for the 
long, strong gusts. The highest occurring increase of the lift 
coefficient ΔCL,max = max(CL) − 0.5 is about 50% too high. 
For the wing root bending moment coefficient, the highest 
occurring increase is even more than 60% too high.

Figure 13 shows the same simulations as Fig. 12, except 
that the IF-LL model has been replaced by the NL-IF-LL 
model. It can be seen that the NL-IF-LL model calculates 
significantly lower loads than the IF-LL model. For the lift 
coefficient, the largest deviations occur in the two shortest 
gusts. The maximum occurring value is too high. Apart from 
the two shortest gusts, the courses of the lift coefficients are 
satisfactory. For the wing root bending moment coefficient, 
there are larger deviations. This indicates that the spanwise 

lift distribution in the NL-IF-LL model is somewhat inac-
curate. For the second and third shortest gusts, the maximum 
coefficients occurring are slightly too small. During decay, 
the coefficients are too high for all gusts. An analysis has 
shown that the dynamic stall occurs somewhat delayed at 
the wing tip. Subsequently, there is a stronger collapse of 
lift at the wing tip than can be explained by the 2D dynamic 
stall model. We were able to correct the static stall error 
caused by wing sweep with the correction factor  fcL,max

 (see 
above). However, we suspect that there is also a dynamic 
characteristic that is not included in the model and is also 
caused by wing sweep. Nevertheless, the NL-IF-LL model 
is a significant improvement over the IF-LL model.

3.4  Flaps

In this section, the presented NL-IF-LL model is vali-
dated for trailing-edge flap deflections. For this purpose, 
the steady-state spanwise lift distribution due to individual 
static flap deflections are compared with RANS results in 
Fig. 14. Since there are no unsteady aerodynamics in this 
scenario and since there are no flow separations, the NL-IF-
LL model reduces to a lifting-line model, called LL model. 
If the flaps are not deflected, it results in very well matched 

Fig. 11  Comparison of IF-LL 
and RANS for one gust 
( � = 50m , U

ds
= 10m/s ) using 

the LEISA configuration
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Fig. 12  Comparison of IF-LL (without dynamic stall model) and RANS for multiple gust wavelengths using the LEISA configuration
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spanwise distribution of the lift coefficient. In case of indi-
vidual flap deflections, the courses differ more from each 
other. The total lift coefficient is very similar, but in the outer 
area of the wing the local lift coefficient is too high and in 
the inner area too low. This is mainly due to limitations of 
the LL model. Local lift due to trailing-edge flap deflection 
is applied at the 1/4 chord line in the LL model. In reality, 
however, the local lift is increased behind the 1/4 chord line. 
For a backward swept wing, the influence on the outer wing 
area is then higher than on the inner wing area.

Figure 15 shows results for dynamic trailing-edge flap 
deflections. Here, the trailing-edge flaps are deflected simul-
taneously as described in [8] so that they would approxi-
mately compensate for a 1-cos gust. Since no flow separa-
tions occur in this scenario, the NL-IF-LL model is referred 
to here as IF-LL. The course of the IF-LL model agrees 
quite well with the URANS simulations. However, when 
the flap deflection is reduced, the coefficients of the IF-LL 
model return to their original values somewhat faster. This 
error could possibly be reduced by a different choice of the 
IF model parameters, see Table 1.

3.5  Combined gust and flap deflections

In this section, the results of the NL-IF-LL model are vali-
dated for a gust encounter with simultaneous trailing edge 
deflection. The URANS results of this section were taken 
from [8]. In Fig. 16, the loads during the gust encounter 
(gust only) with � = 50m are shown again as in Fig. 11. 
Furthermore, the loads are shown which result when the 
trailing-edge flaps are deflected in addition to the gust (gust 
+ flaps), as described in the previous Sect. 3.4. In addition 
to the results of the full NL-IF-LL model, results with stall 
disabled, referred to as IF-LL, are shown. It can be seen that 
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Fig. 13  Comparison of NL-IF-LL (with dynamic stall model) and URANS for multiple gust wavelengths using the LEISA configuration
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Fig. 14  Comparison of LL and RANS for steady spanwise lift distri-
bution with single flap deflections of −8◦ using the LEISA configura-
tion

Fig. 15  Comparison of NL-IF-
LL and URANS for simultane-
ous flap deflections correspond-
ing to one gust with � = 50m 
and U

ds
= 14.49m/s using the 

LEISA configuration
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the NL-IF-LL model calculates a significantly more accurate 
wing root bending moment than the IL-LL model. This is 
apparently due to the fact that stall occurs in the outer region 
of the wing even with flap deflection. Overall, the lift and 
wing root bending moment of the NL-IF-LL model are sat-
isfactory. It should be noted that this is a complex scenario, 
so moderate deviations are not surprising.

4  Conclusions and limitations

Previously published, computationally expensive URANS 
simulations have shown that dynamic stall can reduce gust 
loads on commercial airplanes. However, it should be noted 
that the aircraft in these simulations was rigid and unaccel-
erated. In this paper, a novel physics-based, low-order wing 
model, NL-IF-LL, is presented that can also represent stall. 
The model represents a combination of indicial functions for 
unsteady 2D aerodynamics with a semi-empirical dynamic 
stall model and a lifting line model.

The NL-IF-LL model is compared to the URANS results 
for gust interactions. The gust loads are calculated much 
more accurately with the NL-IF-LL model than when the 
stall is neglected.

Moreover, the NL-IF-LL model is designed so that load 
alleviation devices can be integrated in a modular fashion. 
The implementation of load alleviation devices is described 
as an example for trailing-edge flaps.

Finally, the NL-IF-LL model is compared to URANS 
results for gust interactions with simultaneous dynamic 
trailing-edge flap deflection to compensate for the gust 
load. Here it can be seen that also in this scenario the 
consideration of the model for the dynamic stall achieves 
more accurate results than without this consideration. It 

follows that in the design and simulation of intensive gust 
load alleviation systems, where the assumption of a rigid 
and unaccelerated aircraft is approximately fulfilled, the 
consideration of dynamic stall may indeed be relevant.

The NL-IF-LL model has three main limitations from 
which future work can be derived: (1) One limitation con-
cerns the modeling of the stall. It has been found that the 
static stall at the wing tip occurs earlier than would be 
expected from the maximum local airfoil lift coefficient 
(see Sect. 3.3 and Fig. 10). This effect can presumably 
be traced back to the sweep and could be easily corrected 
retrospectively via the parameter  fcL,max

 . However, there is 
still a mismatch for dynamic stall. In the URANS simula-
tions, strong dynamic lift collapses occur at the wing tips 
due to stall, the strength of which cannot be explained and 
reproduced by the NL-IF-LL model. Therefore, the loads 
are still slightly wrong with the NL-IF-LL model (see 
Fig. 13b). We suspect that the strong dynamic stall at the 
wingtips is due to the backward sweep, because detach-
ment regions could propagate backward and thus outward. 
This effect could be analyzed in the future using wings 
with different parameters to derive a reduced-order model 
for this purpose. (2) Another limitation is the spanwise 
lift distribution at local trailing-edge flap deflections. For 
swepts wings, the center of lift is slightly shifted inwards 
with the lifting line method (see Fig. 14). To avoid this, 
the model could be further developed in the future to dis-
cretize the wing in the depth direction so that trailing-edge 
flaps have their own panels. (3) The unsteady lift due to 
dynamic trailing-edge flap deflection returns to its original 
value somewhat too quickly (see Fig. 15). This could be 
improved by optimizing the parameters in Table 1. While 
the parameters in Table 1 fit well for the clean airfoil, they 
do not seem to be optimally suited for the trailing-edge 
flaps.

Fig. 16  Comparison of NL-
IF-LL, IF-LL and URANS 
for gust response ( � = 50m , 
U

ds
= 14.49m/s ) with and with-

out gust load alleviation using 
the LEISA configuration
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Appendix A: Nonlinear indicial function lifting line (NL‑IF‑LL) algorithm

Algorithm 1  Nonlinear indicial function lifting line (NL-IF-LL) algorithm
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