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Abstract
This study presents a computational investigation of a flapping wing executing to and from horizontal motion with a fixed 
angle of attack or pitch orientation. The computational results compare well with the experimental results of Lua et al. (Exp 
Fluids 51(1):177–195, 2011). An attempt has been made to understand the effect of flapping frequency (f), Reynolds number 
(Re) and angle of attack ( � ) on flow features like vortex structures and wing–wake interaction. The present study is conducted 
for five different flapping frequencies, namely, f = 0.021, 0.21, 0.315, 0.42 and 2.1 Hz, four different chord-based Reynolds 
numbers, namely Re = 2000, 5000, 10,000 and 50,000 and two different angles of attack, namely � = 45◦ and � = 60◦ . 
Vorticity contours display variation of vortex structures with change in flapping frequency. The temporal history of result-
ant force coefficients show distinct characteristics like amplitude modulation, linear growth and decay, inflexional behavior, 
dual peak behavior, etc. Frequency spectrum of the lift coefficient reveals that the flapping frequency is most dominant and 
it is accompanied by several harmonics. At higher Reynolds number, the spectrum displays broadband character. The power 
content of the dominant frequency increases with increase in flapping frequency and decreases with increase in angle of 
attack. A short investigation on the effect of three-dimensionality of the flow is also presented in this study. Additionally, 
three-dimensional eddy resolving simulations were performed with IDDES.

Keywords Flapping frequency · Reynolds number · Angle of attack · Wing–wake interaction · Lift and drag coefficients · 
Frequency spectrum

1 Introduction

Insects and birds generate lift and thrust force by flapping 
their wings. The flapping wing kinematics can be broadly 
classified into three distinct motions, namely heaving (up 

and down translational motion), sweeping (forward and 
backward translational motion) and pitching (angular motion 
about the wing’s longitudinal axis). In a cycle, the flapping 
wing motion itself can be divided into translational and 
rotational phases. The translational phase consists of two 
half strokes, namely the upstroke and the downstroke. At the 
end of each half stroke, the rotational motion sets in, dur-
ing which the wing rapidly rotates and reverses its direction 
of motion (stroke reversal) for the consecutive half stroke. 
These stroke reversals preceding downstroke and upstroke 
are termed as pronation and supination, respectively.

Flapping wing MAVs, which are inspired by flapping 
motion found in natural fliers, have important advantages 
over conventional fixed and rotary wing aircraft including 
increased aerodynamic efficiency, enhanced maneuver-
ability and reduced noise. By conventional laws of aero-
dynamic theory based on steady flow over rigid wings at 
constant velocities, insects or birds would not be able to 
perform active flight. Ellington [6] performed experiments 
on insect wings under steady flow in a wind tunnel over the 
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range of velocities encountered during flapping flight and 
observed that the measured forces are substantially smaller 
than those required to maintain active flight. This failure of 
conventional steady-state theory to explain the aerodynam-
ics of flapping wings paved ways for the search of unsteady 
mechanisms which can explain these enhanced aerodynamic 
forces experienced during flapping flight. Weis-Fogh and 
Jensen [27] in a series of papers established that the energy 
budget of a wing stroke comprises at least three independent 
terms, namely, aerodynamic (due to wind forces), inertial 
term (due to the acceleration of the wing mass), and elastic 
(due to elastic deformations of the wing and body). Maxwor-
thy [12] is an excellent review of insect aerodynamics which 
emphasizes the importance of unsteady aerodynamics in 
insect flight. Spedding [18] emphasizes aerodynamic perfor-
mance augmentation through unsteady aerodynamics. These 
three papers have been a source of motivation for the present 
study to explore the unsteady aerodynamics through numeri-
cal simulations of a relatively simple flapping configuration. 
Some of the important unsteady aerodynamic phenomena 
pertaining to flapping flight are Wagner effect [22] which 
concerns the transient lift augmentation produced due to the 
sudden change of angle of attack of a wing or sudden change 
of freestream speed; apparent mass effect [6, 21], which con-
cerns a portion of the flow in the vicinity of the wing which 
gets dragged due to the wing motion; clap and fling mecha-
nism [19, 26] which is a technique by which rigid fling of a 
pair of wings generates high unsteady lift forces associated 
with high circulations around the separation vortices; and 
Kramer effect [8] which deals with a wing rotating from 
low to high angles of attack which results in a lift coefficient 
above the steady-stall value. This is associated with dynamic 
stall. Many of these unsteady aerodynamics concepts are of 
significant relevance for the present study because of their 
fundamental and generic nature in the domain of unsteady 
aerodynamics. However, none of the above mentioned 
effects could still explain the reason behind the high lift gen-
erated to sustain flight until [7] discovered the formation of 
the leading edge vortex (LEV), a translational mechanism 
in which a vortical flow structure is formed at the leading 
edge of the wing at high angle of attack which transiently 
generates additional lift forces. Birch and Dickinson [3] sug-
gested that the presence of axial flow along spanwise direc-
tion stabilizes this leading edge vortex. The stability and role 
of LEV in lift augmentation has been discussed by Shyy and 
Liu [17]. Dickinson et al. [5] conducted experiments on a 
fruit fly, Drosophila melanogaster and his results confirm 
the contribution of leading edge vortex to the necessary lift 
during translation portion of the wing stroke. His results also 
suggested that by properly timing the wing rotation, flapping 
wing can generate lift through rotational mechanism (rota-
tional circulation) in addition to that produced by the lead-
ing edge vortex. However, the most important hypothesis 

of his study is the wake capture. He proposed that although 
rotational circulation can explain the increase in forces at 
stroke reversal, but it is not the only factor. He hypothesized 
that the wake capture is the mechanism through which, dur-
ing the early phase of each stroke the wing benefits from 
the wake of the previous half stroke and hence an increase 
in lift force is observed. However, a computational study 
conducted by Sun and Tang [20] on similar flow kinematics 
suggested the opposite. They found that the wake from the 
previous stroke actually reduces the lift and they attributed 
it to the downwash created by the wake vortices. They pro-
posed that the effect of acceleration is responsible for the 
peak in lift coefficient observed. Lua et al. [11] conducted 
DPIV experiments on a 3D biconvex flapping wing with 
end plates, performing translational flapping motion in the 
form of “acceleration—constant velocity— deceleration” in 
various phases of flapping motion. Their results showed two 
possible outcomes from the wing–wake interaction. They 
termed the first outcome as wing–wake interaction of first 
kind in which on stroke reversal, the wing faces a pair of 
counter rotating wake vortices which leads to higher lift. The 
other outcome is wing–wake interaction of second kind in 
which wing encounters a single wake vortex and its vortex 
suction effect results in reduction of lift. They proposed that 
the outcome depends solely on the flapping motion kinemat-
ics and timing of the stroke reversal. Detailed reviews on 
aerodynamic modelling of flapping flight can be found in 
Ansari et al. [1] and Shyy et al. [16].

Over the years, several numerical tools have been devel-
oped to solve the Navier–Stokes equations with dynamic or 
moving boundaries to investigate the flow dynamics over a 
flapping wing. Wang [24] developed a fourth order accu-
rate Navier–Stokes solver to solve hovering insect flight and 
has extensively discussed the 2D mechanism [23] & role of 
drag force in hovering flight [25]. The limitations of panel 
method in predicting aerodynamic forces in a flapping flight 
have been discussed by Persson et al. [14], in which they 
compared potential flow solution of flow field over a flap-
ping elliptic planform wing with Navier–Stokes solution. In 
the last two decades, with advancement of computational 
power, researchers started investigating effect of wing shape 
parameters (planform shape, camber, twist, etc.) on flapping 
flight using numerical simulations [2, 9].

In the present study, the authors have performed a 
numerical investigation of the translational flapping wing 
kinematics “acceleration—constant velocity—deceleration” 
reported by Lua et al. [11] in their experimental work. More 
specifically, the present study focuses on the effect of vari-
ation of flapping frequency, Reynolds number and angle of 
attack on the aerodynamic forces acting on the wing with 
elliptic cross section of chord length 60 mm and maximum 
thickness to chord ratio 2%. Although force measurements 
on the 2D wing have been reported in Lua et al. [11], as 
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far as the authors are aware, this is probably the first time 
a computational parametric study on the above mentioned 
kinematics is being reported.

2  2D computational model

Ansys Fluent is a commercial CFD package and has inbuilt 
Dynamic mesh algorithms to model translating and rotating 
boundaries. The efficiency of this solver in the context of 
flapping wing kinematics has been well documented in the 
recent years [4, 10]. For the present study, incompressible 
viscous flow around a flapping wing is solved using Ansys 
Fluent. The governing equations for such a flow in absence 
of any source or body forces are the continuity equation and 
the Navier–Stokes equation in the following form,

In this study, a two-dimensional elliptic wing profile with 
a chord of length 60 mm and maximum thickness to chord 
ratio of 2% is chosen. The airfoil and the computational 
domain are created and meshed using Gambit. The region in 
which the above-mentioned governing equations are solved 
is called the computational domain. The accuracy of the 
results heavily depends upon the quality of the mesh used in 
the computational domain. Intensive care has to be taken to 
maintain high quality of the mesh during simulations. Also, 
the mesh has to be dynamic to allow and accommodate the 
motion of the wing. The present flow solver satisfies the geo-
metric conservation law on dynamically deforming mesh. 
The following section elaborates the computational domain 
selection for present simulations.

∇.v⃗ = 0

𝜌

(

𝜕v⃗

𝜕t
+ v⃗.∇v⃗

)

= −∇p + 𝜇∇
2
v⃗.

2.1  Computational domain selection

Initially a typical one-domain computational model is con-
sidered as shown in Fig. 1a. The elliptic wing is given a 
rotational motion and the mesh around the wing deforms. 
Large-scale deformations are observed in the mesh espe-
cially near the wing as the wing performs rotational motion 
as shown in Fig. 1b. While performing flow computations, 
these large-scale mesh deformations leave prominent flow 
features unresolved giving rise to a spurious flow field solu-
tion around the wing.

To avoid such large-scale mesh deformations near 
the wing, a two-domain approach with hybrid struc-
tured–unstructured mesh is followed. The computational 
domain is divided into two regions, namely inner and outer, 
as indicated by concentric circular regions as shown in 
Fig. 2. The outer region consists of unstructured triangular 
elements that deform and allow the movement for the inner 
region. The inner region is meshed with structured quadrilat-
eral elements. Structured quadrilateral elements in the inner 
region are expected to provide superior accuracy to resolve 
the boundary layer and vortex generation and interaction 

Fig. 1  a One-domain computa-
tional model and b large-scale 
deformations of the near wing 
mesh

Fig. 2  Two-domain computational model
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processes than unstructured mesh. The inner region moves 
along with the elliptic wing, i.e. it remains static with respect 
to the moving body and the outer region deforms. The evolu-
tion of the two-domain computational model following the 
translating motion is shown in Fig. 3.

This approach ensures a consistent high-quality mesh 
near the wing during its translation, which improves the 
accuracy of the computations and also significant amount 
of computational time is saved as only fewer cells have to 
be deformed and re-meshed at each time step. It is important 
to have unstructured triangular mesh in the deforming outer 
region because the Fluent Dynamic Meshing algorithms 
employed in the present study work only on unstructured 
triangular grid. The above-described two-domain approach 
was first suggested by Mueller [13] and was used by Prosser 
et al. [15], Lua et al. [10] and Dash et al. [4] to obtain accu-
rate results on moving meshes. In the present study, the two-
domain approach explained above has been used to compute 
the flow field around the translating wing.

2.2  Wing kinematics and user defined functions

The flapping wing kinematics performed in this study 
involves two sets of motions similar to that of experiments 
conducted by Lua et al. [11]. In the first motion, henceforth 
called as Motion A, the wing is fixed at a constant angle of 
attack and is first linearly accelerated to a maximum velocity, 
translates with this maximum velocity for a certain period of 
time before linearly decelerating to rest. The total duration 
of this motion is denoted by T. The linear acceleration and 
deceleration phases of the motion account for 16% of the 
total time period (T). Angle of attack is defined as the angle 

between the chord of the wing and the direction of the trans-
lational velocity of the wing. In the latter motion, henceforth 
called as Motion B, the wing is subjected to same motion as 
Motion A but in back and forth sense. Figure 4 shows the 
wing kinematics in Motion B. In one complete cycle, the 
wing begins motion with a downstroke (translational motion 
along –ve X-axis) and ends with an upstroke (translating 
motion along +ve X-axis). Since, there is no angular pitching 
involved at the end of upstroke and downstroke, the role of 
leading edge and trailing edge is exchanged as the direction 
of motion of the wing gets reversed. Hence, accordingly, the 
aerodynamic force coefficients also change their signs during 
each stroke. In Fig. 4, the direction of arrows indicates the 
direction of wing translation.

The parameters governing the above two motions are fre-
quency (f) and Reynolds number (Re). The frequency (f) of 
Motion B is defined as

The Reynolds number (Re) is defined based on the chord of 
the wing (c), the kinematic viscosity of the surrounding fluid 
( � ) and the maximum velocity ( Umax ) to which the wing is 
accelerated at the end of acceleration phase, i.e.

In the present study, Ansys Fluent Version 14, is used to per-
form dynamic mesh simulation. To provide a desired motion 
to the wing geometry and mesh, the built-in solver code 
needs to be complemented with User-Defined Functions 
(UDFs). UDFs are defined using DEFINE macro provided 
by Fluent and are dynamically linked to the Dynamic Mesh 
Zones in Fluent to provide the desired translational and rota-
tional motion to the wing and provide necessary translation 
and deformation to desired regions of the mesh.

3  Validation study

In this section, the above-developed computational model 
is subjected to a validation study. The validation presented 
here is a comparison with the DPIV experiments conducted 

f =
1

2T
.

Re =
U

max
c

�

.

Fig. 3  Evolution of the two-domain computational model following 
translating motion

Fig. 4  Wing kinematics of 
motion B
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by Lua et al. [11] involving a bi convex flapping wing of 
chord length 60 mm and wing span of 300 mm, performing 
wing kinematics identical to that of Motion A and Motion 
B as specified in Sect. 2.2 at a Reynolds number of 2000. 
The wing motion is performed in a quiescent medium of 
glycerin–water mixture. The time period of Motion A is 
T = 2.382 s and the frequency of Motion B is f = 0.21 Hz. 
The above experiment is numerically simulated using the 
computational model discussed earlier.

The boundary conditions applied at different boundaries 
indicated in Fig. 2 are briefly discussed below :

• No-slip boundary condition is employed on the translat-
ing wing surface.

• Consistent flux transport is enforced at the inner & outer 
grid interface.

• Zero net convective and diffusive flux transport is 
enforced at the farfield boundary.

The radius of the inner region of the computational domain 
is 8c whereas the radius of the outer region is 15c, where c 
is the wing chord. Some initial simulations were performed 
to ascertain that the 8c radius of the inner domain was suf-
ficient to contain most of the rapidly evolving flow features. 
For unsteady transient flow calculations, the pressure-based 
solver is used, PISO scheme is used for solving pressure 
velocity coupling, spatial discretization is performed using 
Green–Gauss Cell-based gradient technique, pressure Pois-
son’s equation is solved using second-order central differ-
encing scheme and time stepping is performed using first-
oder implicit scheme . An attempt has been made to compare 
the wing force measurements performed by Lua et al. [11] 
with the present simulation results at angles of attack of 
� = 45◦ and 60◦ , respectively. The drag ( FD ) and lift ( FL ) 
forces are defined as the forces parallel and normal to the 
wing’s translational motion, respectively, and their corre-
sponding coefficients are defined as follows where S is the 
wing planform area which is equal to the airfoil chord (c) for 
the two-dimensional case.

From Figs. 5, 6, 7 and 8, it is evident that the simula-
tions and experiment agree reasonably well. However, the 
minor difference in the force coefficients is expected to be 
due to the following reasons:

• Three-dimensionality of the flow Lua et al. [11] conducted 
experiments on a three-dimensional wing with uniform 
cross-sectional profile with two end plates to minimize 
three-dimensional effects. Though the flow around the 
wing tips is restricted, the flow over the leeward as well 
as windward surfaces of wing has the freedom to move 
along the wing span. Three-dimensionality of the flow 
may not be insignificant at large angles of attack when 
there is significant flow separation and accompanying 
three-dimensional flow instabilities. Hence, the wing 
surface flow in an experiment has an extra degree of 
freedom along spanwise direction which is absent in the 
two-dimensional simulation model.

• Transitional nature of the flow Though the Reynolds 
number is low, i.e. 2000, from Figs. 5, 6, 7 and 8, it is 
observed that the experimental force coefficients exhibit 
fluctuations whereas the computed force coefficients have 
a much more smoother character. These oscillations indi-
cate that the flow might have become transitional during 
experiment and this transition caused fluctuations in the 
experimental force coefficient values. The smoothness of 
the simulated data is due to the laminar modeling of the 
flow.

• Experimental uncertainties Effect of experimental uncer-
tainties and ambient perturbations are very difficult to 
replicate in a numerical study. Such effects would always 
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Fig. 5  Comparison of a coef-
ficient of drag and b coefficient 
of lift for � = 45
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contribute towards a difference between experimental 
and numerical data.

An attempt to examine the three-dimensionality of the flow 
has been made in the present study and reported in Sect. 5.4. 
The transitional nature of the flow has not been modeled in 
the present study. Most of the simulations have been per-
formed assuming laminar flow. The grid was refined appro-
priately for higher Reynolds number and higher frequency 
cases to ensure that all the relevant scales and transients are 
captured with reasonably good fidelity. Three-dimensional 

eddy resolving simulations have been reported in Sect. 5.5 
for one particular case, namely Motion B at Re = 50,000 
and � = 60◦ , to assess the effect of turbulence at the highest 
Reynolds number and angle of attack investigated.

4  Parametric study

This section describes the setup for the numerical simula-
tions performed in this study. The two parameters that are 
varied in this study are frequency (f) & Reynolds number 

Fig. 6  Comparison of a coef-
ficient of drag and b coefficient 
of lift for � = 60
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Fig. 7  Comparison of a coef-
ficient of drag and b coefficient 
of lift for � = 45
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Fig. 8  Comparison of a coef-
ficient of drag and b coefficient 
of lift for � = 60
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(Re). For the study on effect of frequency, the Reynolds 
number is held constant at 2000 and the study is performed 
for a few discrete frequencies, namely 0.021 Hz, 0.21 Hz, 
0.315 Hz, 0.42 Hz and 2.1 Hz. For study on effect of Reyn-
olds number, the frequency is held constant at 0.21 Hz and 
Reynolds number is varied from 2000, 5000, 10,000 to 
50,000. The study is conducted at wing angles of attack of 
� = 45◦ and � = 60◦ . The properties of the surrounding qui-
escent fluid are chosen to match that of glycerin–water mix-
ture with density � = 1076.6 kg/ m3 and kinematic viscosity 
of � = 2.722 x 10−6 m2∕s . Since the computational model 
used in the validation study gave reasonably good results, 
the same has been used in all the simulations in the para-
metric study. A grid independence study has been performed 
and a suitable mesh has been identified for each configura-
tion following guidelines of grid convergence index. In this 
numerical study, the framework of the experimental work 
reported by Lua et al. [11] is adopted. Simulation results are 
initially compared with experiments thereby demonstrating 
the suitability of the computational method (Sect. 3). Subse-
quently, the numerical simulations have been conducted over 
a wider range of parameters (Sect. 5). The highest flapping 
frequency simulated is 2.1 Hz. However, on the basis of 
flapping frequency, a comparison with the animal kingdom 
is difficult, since natural flyers’ wing beat frequencies are 

significantly higher in the investigated Reynolds numbers 
range.

5  Results and discussion

5.1  Effect of frequency

Figures 9, 10, 11, 12 and 13 show the instantaneous vorticity 
contours for Re = 2000, � = 45◦ and five different flapping 
frequencies, namely f = 0.021 , 0.21, 0.315, 0.42 and 2.1 Hz, 
respectively. The flapping frequency reported by Lua et al. 
[11] is 0.21 Hz. In the present study, the frequency has been 
varied over a range of two orders, covering a range from one 
order lower to one order higher of that of the above refer-
ence frequency of 0.21 Hz. During the stroke from right to 
left, i.e. downstroke, a clockwise leading edge vortex forms 
on the upper edge of the wing and simultaneously a counter 
clockwise trailing edge vortex forms on the lower edge of the 
wing. The evolution of these vortex structures is shown in 
(a)–(e) of Figs. 9, 10, 11, 12 and 13 . The leading edge vor-
tex is comparatively weak with respect to the trailing edge 
vortex for the lowest frequency. With increase in frequency, 
the leading edge vortex becomes significantly stronger and 
remains attached over most of the stroke, while the trailing 

Fig. 9  Vorticity contours 
for � = 45

◦ for Motion B for 
f = 0.021 Hz

Fig. 10  Vorticity contours 
for � = 45

◦ for Motion B for 
f = 0.21 Hz



144 S. S. Dammati et al.

1 3

edge vortex separates during the middle of the stroke. For-
mation of a secondary vortex near the upper wing tip on 
the leeward side is observed during the constant velocity 
phase for f = 0.21 , 0.315 and 0.42 Hz. This structure is not 
visible at f = 2.1 Hz. Also, the trailing edge vortex remains 
stable almost throught the stroke for f = 2.1 Hz. Towards the 
end of the stroke, two flow features are noticed. First, fresh 
leading and trailing edge vortices of opposite nature to those 
formed during acceleration phase are formed, however, they 
are much weaker than those formed during the accelerating 
phase. Second, wing–wake interaction occurs, where the 

shed vortices tend to slide along the neighboring region of 
the leeward surface of the wing. This feature is more pro-
nounced for f = 0.21 , 0.315 and 0.42 Hz. The shed vortices 
lie further away from the wing for f = 0.021 Hz. Vortex 
structures for the return stroke from left to right are shown in 
(f)–(j) of Figs. 9, 10, 11, 12 and 13. Wing–wake interaction 
occurs at the beginning of the return stroke due to the pres-
ence of residual vortex structures from previous stroke. Dur-
ing the remaining stroke flow, features predominantly similar 
to that of the previous stroke are observed. One distinct fea-
ture is observed for f = 2.1 Hz. Two counter-rotating vortex 

Fig. 11  Vorticity Contours 
for � = 45

◦ for Motion B for 
f = 0.315 Hz

Fig. 12  Vorticity Contours 
for � = 45

◦ for Motion B for 
f = 0.42 Hz

Fig. 13  Vorticity Contours 
for � = 45

◦ for Motion B for 
f = 2.1 Hz
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pairs are formed from the leading and trailing edges. These 
pairs remain stable almost all through the stroke and shed 
towards the end of the stroke. Such pair is visible only near 
the trailing edge for f = 0.42 Hz.

Figures 14, 15, 16, 17 and 18 show the time history of 
the lift and drag coefficients for Re = 2000, � = 45◦ case for 
the five different frequencies, respectively. Due to the kin-
ematic symmetry produced at this angle of attack, the drag 
and lift coefficients almost coincide with each other. Also, as 
the wing sweeps from right to left i.e. downstroke, the drag 
and lift forces act along positive X and Y directions, respec-
tively, while they change sign during the reverse stroke of 
the wing when it translates from left to right, i.e. upstroke. 
As the frequency increases, the peak positive and negative 
values of the force coefficients increase. If the force coeffi-
cient values for f = 0.021 Hz and f = 2.1 Hz are compared, 
they differ by approximately one order. The first negative 
peak is observed at the beginning of the second stroke. This 

peak has a larger magnitude than the first peak because of 
wake interaction of the first kind discussed by Lua et al. 
[11]. It is uniformly observed for the entire frequency range. 
This is because of the direct interaction of the wing with 
the residual vortices from previous stroke which leads to 
enhanced relative velocity and thereby force augmentation. 
At f = 0.021 Hz, during the right to left stroke, there is a 
sharp spike during the acceleration phase and a sharp fall 
during deceleration phase. In the uniform velocity phase, 
an oscillatory behavior of force coefficients is noticed. Dur-
ing the left to right stroke, i.e. upstroke, a rise during the 
accelerating phase is noted but without a spike and imme-
diately followed by the oscillatory behavior in force coef-
ficients. Starting from the third stroke, inflection points 
are noticed during both the acceleration and deceleration 
phase, which implies a momentary reduction in the rate of 
increase in the lift and drag. It is linked with shedding of 
leading and trailing edge vortices during different phases 

Fig. 14  Time history of force 
coefficients for f = 0.021 Hz & 
� = 45
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Fig. 15  Time history of force 
coefficients for f = 0.21 Hz & 
� = 45
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Fig. 16  Time history of force 
coefficients for f = 0.315 Hz & 
� = 45
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Fig. 17  Time history of force 
coefficients for f = 0.42 Hz & 
� = 45
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Fig. 18  Time history of force 
coefficients for f = 2.1 Hz & 
� = 45
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of a stroke. Reasonable periodicity is achieved from third 
stroke onwards. However, certain amounts of variations are 
noticeable even at later strokes which is expected to be due 
to nominal aperiodicity in vortex shedding and residual wake 
structures. For f = 0.21 Hz, the first stroke force growth is 
near linear but for second stroke onwards, the growth shows 
inflexional nature followed by occasional dual peak. This is 
followed by an almost linear decay followed by minimum lift 
point. A dual-negative peak is occasionally observed. Peri-
odic patterns are observed from 6th stroke onwards. These 
features are illustrated in Fig. 15. For f = 0.315 and 0.42 Hz, 
the inflexional trends persist and dual peaks become a more 
regular feature at f = 0.42 Hz. Periodicity is observed from 
6th stroke onwards for f = 0.315 Hz and from 4th stroke 
onwards for f = 0.42 Hz. Non-circulatory forces associated 
with wing acceleration and added mass effects dominate 
over circulatory or vortex related forces with increase in 
frequency. This leads to sharper temporal structure of force 
coefficients.

At this point, it may be worthwhile to relook at fea-
tures observable separately from the vorticity contours 
and force–time histories and attempting to correlate them. 
When the wing accelerates from rest while executing the 
downstroke, both the lift and drag forces increase rapidly 
and reach their respective maximum values by the end of 
the acceleration phase. As seen in Figs. 14, 15, 16, 17 and 
18, there is a sharp increase in the forces which is due to the 
combined effect of acceleration and the generation of the 
leading and trailing edge vortices from the top and bottom 
tips of the wing, respectively. As the wing enters the constant 
velocity phase of the stroke motion, the forces drop sharply 
during a short initial phase. This could be due to the end of 
the acceleration and initiation of constant velocity phase. 
After this short transient, a longer phase of gradual reduc-
tion follows until the end of the constant velocity phase. The 
leading edge vortex separates during this phase. The strength 
of this vortex, its location and distance from the wing, and 
wing traverse time influence the overall wing–wake interac-
tion which continues as the wing decelerates and stops. This 
is the stronger vortex out of the pair for all the frequencies 
apart from the lowest one. As the wing decelerates at the 
end of the constant velocity phase, it experiences another 
sharp reduction in forces caused due to wing deceleration. 
The first trailing edge vortex which had shed much earlier in 
the stroke and had diffused gradually was followed by for-
mation of a second trailing vortex, which is more distinctly 
visible for f = 0.21 , 0.315 and 0.42 Hz (Figs. 10, 11 and 
12). The reduction in the wing translation speed causes the 
strong leading edge vortex and a weak second trailing edge 
vortex to travel towards the leeward side of the wing. The 
proximity of these vortices with the leeward surface leads 
to impingement of their induced velocity on the wing which 
results in drag reduction. In particular, for f = 0.21 Hz, the 

close proximity of the strong leading edge vortex and sliding 
of the second trailing edge vortex over the leeward surface 
produces an additional inflexion point in the force curves. 
This is when the forces tend to increase for a short duration 
before monotonically decreasing to their minimum nega-
tive values marking the end of the stroke. This inflexional 
behavior systematically repeats for f = 0.21 Hz (Fig. 15), 
and intermittently repeats for f = 0.021 Hz (Fig. 14). How-
ever, it is not observed at higher frequencies. This once again 
corroborates the fact that proper synchronization between 
wing movement and vortex interaction can strongly influ-
ence the force history, thus indicating the possibility of an 
optimum frequency at which the effect of vortex induced 
velocities can be maximized. Since the wing continues to 
flap within its own wake, the influence of residual structures 
can be profound. Thus, when the wing reverses the direc-
tion and starts the upstroke, residual vortices would inter-
act with the wing. This is also true for the downstroke. For 
f = 2 .1 Hz, the residual structures from downstroke remain 
most coherent as seen in Fig. 13f–j and closely slide past 
the leading and trailing edges of the wing for the first half of 
upstroke. The suction peaks produced due to the leading and 
trailing edge vortices formed during upstroke are augmented 
by the close proximity of the residual vortices. The longer 
phase of gradual reduction of forces follows until the end of 
the constant velocity phase as usual, but least reduction is 
observed for f = 2.1 Hz compared to the other frequencies. 
This larger retention of forces is possible due to the coherent 
nature of the newly formed and residual vortex structures. 
They form strong vortex pairs by the end of the upstroke as 
seen in Fig. 13j. This effect is not so dominant for f = 0.315 
and 0.42 Hz and absent at lower frequencies. Thus, we see 
a close correspondence between the vortex structures and 
the force time history. In general, for larger frequencies, the 
non-circulatory forces associated with wing acceleration and 
added mass effects play a more dominant role over circula-
tory or vortex related forces as mentioned earlier.

Figures 19, 20, 21, 22 and 23 show the time history 
of the lift and drag coefficients for Re = 2000 , � = 60◦ 
case for the five different frequencies, respectively. Due 
to the kinematic asymmetry produced at this angle of 
attack, the drag coefficient is larger than the lift coef-
ficient. The force coefficients change sign due to change 
in wing sweep direction. Like in the case of � = 45◦ , as 
the frequency increases, the peak positive and negative 
values of the force coefficients increase and the force 
coefficient values for f = 0.021 Hz and f = 2.1 Hz dif-
fer by approximately one order. Many of the features 
observed in case of � = 45◦ are repeated. The first nega-
tive peak is observed at the beginning of the second 
stroke. This peak has a larger magnitude than the first 
peak because of wake interaction of the first kind. This 
behavior is observed for all frequencies. At f = 0.021 Hz, 
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Fig. 19  Time history of force 
coefficients for f = 0.021 Hz & 
� = 60
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Fig. 20  Time history of force 
coefficients for f = 0.21 Hz & 
� = 60
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Fig. 21  Time history of force 
coefficients for f = 0.315 Hz & 
� = 60
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in the uniform velocity phase, an oscillatory behavior of 
force coefficients is noticed. This oscillatory behavior is 
not noticed at higher frequencies. Inflexional behavior 
of force coefficients occurs less frequently at 0.021 Hz, 
but it is a regular feature at higher frequencies. Dual-
negative peaks are observed for f = 0.21 , 0.315 and 0.42 
Hz. For f = 0.021 Hz, reasonable periodicity is achieved 
from 10th stroke onwards. Periodic patterns are observed 
9th stroke onwards for f = 0.21 and 0.315 Hz, and 8th 
stroke onwards for f = 0.42 and 2.1 Hz. However, mar-
ginal variations are visible at later strokes perhaps due 
to nominal aperiodicity in vortex shedding and residual 
wake structures. For both � = 45◦ and 60◦ , the periodicity 
seems to be achieved within lesser number of strokes as 
frequency increases. Also, periodicity is achieved earlier 
at lower angle of attack. Like in the case of � = 45◦ , non-
circulatory forces dominate with increase in frequency 
at � = 60◦.

5.2  Effect of Reynolds number

Figures 24, 25, 26 and 27 show the time history of the 
lift and drag coefficients for � = 45◦ and f = 0.21 Hz at 
four different Reynolds numbers, namely Re = 2000 , 
5000, 10,000 and 50,000, respectively. With increase in 
Reynolds number, there is a reduction in the force coef-
ficients. With increase in Reynolds number, there is an 
increasing presence of multiple large- and small-scale 
inflexions and oscillations in the force histories. These 
are due to vortex shedding and wing–vortex interactions 
where vortex structures with a wide range of length and 
time scales are involved, which is typically observed at 
higher Reynolds numbers. Though the overall temporal 
history of force coefficients is expected to reach a certain 
degree of periodicity after a number of strokes, periodicity 
of small-scale features is unlikely to be achieved at higher 
Reynolds numbers.

Fig. 22  Time history of force 
coefficients for f = 0.42 Hz & 
� = 60
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Fig. 23  Time history of force 
coefficients for f = 2.1 Hz & 
� = 60
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Fig. 24  Time history of force 
coefficients for Re = 2000 & 
� = 45
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Fig. 25  Time history of force 
coefficients for Re = 5000 & 
� = 45
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Fig. 26  Time history of force 
coefficients for Re = 10,000 & 
� = 45
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Fig. 27  Time history of force 
coefficients for Re = 50,000 & 
� = 45
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Fig. 28  Time history of force 
coefficients for Re = 2000 & 
� = 60
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Fig. 29  Time history of force 
coefficients for Re = 5000 & 
� = 60
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Figures 28, 29, 30 and 31 show the time history of the 
lift and drag coefficients for � = 60◦ and f = 0.21 Hz at 
four different Reynolds numbers, namely Re = 2000, 5000, 
10,000 and 50,000, respectively. As observed for � = 45◦ , 
with increase in Reynolds number, there is increasing 
presence of multiple large- and small-scale inflexions and 
oscillations in the force histories. The force coefficients 
seem to vary temporally in in-phase manner. Reason-
ably periodic behavior of force coefficients is observed 
from as early as second stroke for Re = 50,000, however, 
such periodicity is not achieved at lower Reynolds num-
bers. This could be due to enhanced robustness of vortex 
structures at higher Reynolds number. Leading and trail-
ing edge vortices of various scales get shed from time to 
time which influence the force coefficient time history. 
The wing–wake interactions of both first and second kind 
seem to be occurring on multiple occasions during each 
stroke leading to the oscillatory force behavior.

5.3  Frequency spectrum analysis

Figures 32, 33, 34, 35 and 36 show the frequency spec-
trum obtained from the Fast Fourier Transform (FFT) of 
the lift coefficient of the flapping wing performing motion 
B at different frequencies for Re = 2000. The spectrum 
for f = 0.021 Hz at � = 45◦ shows the most dominant 
peak at St = 0.021 which corresponds to the forcing fre-
quency (Fig. 32). Another higher harmonic is observed at 
St = 0.063 . Couple of weaker harmonics with comparable 
power content are also observed at St = 0.105 , 0.147 and 
0.189. At the same frequency, when the angle of attack is 
increased to � = 60◦ , it is observed that the peak frequencies 
remain the same but the power content corresponding to 
each peak frequency is slightly decreased. For f = 0.21 Hz, 
the most dominant peak for both angle of attacks is observed 
at St = 0.21 with slight decrease in power content at higher 
angle of attack (Fig. 33). Couple of other harmonics are 

Fig. 30  Time history of force 
coefficients for Re = 10,000 & 
� = 60
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Fig. 31  Time history of force 
coefficients for Re = 50,000 & 
� = 60
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observed at St = 0.63, 0.48, 1.41, 1.47 and 1.89 with sig-
nificant decrease in power content at higher angle of attack. 
At f = 0.315 Hz, the most dominant peak is observed at the 
forcing frequency of St = 0.315 for both angles of attack 
(Fig. 34). Another higher harmonic is observed at St = 0.94 
in both cases but with significant decrease in power con-
tent at � = 60◦ . In case of � = 45◦ , weaker harmonics are 
observed at St = 1.57 , 2.20, 2.83, 4.1 and 4.72 whereas for 

� = 60◦ , weaker harmonics are visible at St = 2.2, 2.83 and 
4.72. At f = 0.42 Hz, the most dominant peak is observed 
at St = 0.42 with next higher harmonic at St = 1.26 with 
enhanced reduction in power content between � = 45◦ and 
� = 60◦ (Fig. 35). Other weaker harmonics with comparable 
power content are observed at St = 2.1, 2.94, 3.78 and 6.3 
in case of � = 45◦ and at St = 2.94, 3.78 and 6.3 in case 
of � = 60◦.At f = 2.1 Hz, the most dominant peak is again 

Fig. 32  FFT of lift coefficient 
for Re = 2000 & f = 0.021 Hz: 
a � = 45

◦ b � = 60
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Fig. 33  FFT of lift coefficient 
for Re = 2000 & f = 0.21 Hz: a 
� = 45

◦ b � = 60
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Fig. 34  FFT of Lift coefficient 
for Re = 2000 & f = 0.315 Hz: 
a � = 45

◦ b � = 60
◦
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observed at the forcing frequency of St = 2.1 for both angles 
of attack with an order of magnitude increase in power con-
tent for both angles of attack (Fig. 36). Notably, the decrease 
in power content of the most dominant frequency for � = 60◦ 
is observed to be highest for this frequency. Another higher 
harmonic is observed at St = 6.3 and with weaker harmonics 
at St = 10.5, 14.69, 18.87 and 31.48 in both the cases.

The forcing frequency is the most dominant frequency 
visible in the frequency spectrum over the entire frequency 
range that has been studied. In terms of power content, with 
increase in frequency, the power content of the most domi-
nant peak increases with highest being at f = 2.1 Hz and 
least at f = 0.021 Hz. The effect of angle of attack in fre-
quency spectrum is also observed. For a given frequency, the 
power content of dominant peak decreases at higher angle of 
attack and this difference is larger at higher frequencies. For 
a given forcing frequency, a large number of harmonics are 
observed at both angles of attack. This is expected because 
as the wing is pitched up to higher angle, the flow field in 
the wing–wake becomes very unsteady and complex which 
inturn affects the frequency spectrum of the flow field and 
consequently the forces acting on the body. It is interest-
ing to note that in all the cases, the energy content of the 

flow is distributed over a broad frequency spectrum with 
a richer content of higher frequencies which implies that 
higher harmonics of the forcing frequency are excited to a 
greater extent as opposed to the sub-harmonics.

Figures 37, 38, 39 and 40 show the frequency spectrum 
obtained from the Fast Fourier Transform (FFT) of the 
lift coefficient of the flapping wing performing motion B 
at different Reynolds numbers for frequency f = 0.21 Hz. 
For Re = 2000, the most dominant peak for both angle of 
attacks is observed at St = 0.21 with decrease in power con-
tent at higher angle of attack. Couple of other harmonics 
are observed at St = 0.63 , 0.48, 1.41, 1.47 and 1.89 with 
significant decrease in power content at higher angle of 
attack. As the Reynolds number is increased to 5000, the 
most dominant peak still corresponds to the forcing fre-
quency St = 0.21 and in terms of its power content, the dif-
ference between � = 45◦ & � = 60◦ becomes much smaller. 
Compared to Re = 2000, a decrease in power content of 
the most dominant peak is observed. Another relatively 
strong harmonic is observed at St = 0.63 in both the cases. 
Several weaker harmonics are observed for both angles of 
attack. For � = 45◦ , harmonics are visible at St = 0.315, 
0.42, 0.84, 0.99, 1.15, 1.26 and 1.68. For � = 60◦ , weaker 

Fig. 35  FFT of lift coefficient 
for Re = 2000 & f = 0.42 Hz: a 
� = 45

◦ b � = 60
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Fig. 36  FFT of lift coefficient 
for Re = 2000 & f = 2.1Hz : a 
� = 45

◦ b � = 60
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harmonics are observed at St = 0.94, 1.05, 1.21, 1.47, 1.63 
and 1.89. For Re= 10,000, the most dominant peak is again 
the forcing frequency St = 0.21 for both angles of attack but 
with a decrease in power content compared to that of Re = 
5000. The power content for � = 60◦ is quite close to that of 
� = 45◦ . At St = 0.63 , another dominant peak is observed in 

both the cases. Weaker harmonics are visible at St = 1.05 , 
1.42, 1.52, 1.62 and 1.83 for � = 45◦ and at St = 0.315,1.05, 
1.36, 1.67, 1.89 and 2.31 for � = 60◦ . At Re = 50,000, the 
forcing frequency St = 0.21 is again the dominant frequency 
with power content being nearly the same for both angles of 
attack. However, there is a substantial decrease in its power 

Fig. 37  FFT of lift coefficient 
for f = 0.21 Hz & Re = 2000: a 
� = 45

◦ b � = 60
◦
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Fig. 38  FFT of lift coefficient 
for f = 0.21 Hz & Re = 5000: a 
� = 45

◦ b � = 60
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Fig. 39  FFT of lift coefficient 
for f = 0.21 Hz & Re = 10,000: 
a � = 45

◦ b � = 60
◦
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content when compared to Re = 2000 , 5000 & 10,000. From 
above observations, we can say that with increase in Reyn-
olds number, the energy content of the dominant harmonic 
becomes weaker. More and more harmonics are excited as 
the Reynolds number increases since the flow becomes more 
receptive towards perturbations. The same can be confirmed 
by studying the slope of the least square straight line that 
can be fit into the FFT curve. For Re = 2000 & � = 45◦ , the 
slope is – 0.1823, whereas for � = 60◦ , the slope is – 0.1243. 
At Re = 50,000, for � = 45◦ and 60◦ , the slopes are – 0.0889 
and – 0.0861, respectively. It appears that the negative slopes 
are larger for Re = 2000 than Re = 50,000. The broadband 
nature at higher Re spreads the energy over a larger fre-
quency range. Hence, leading to a shallower slope at higher 
Re.

5.4  Three‑dimensionality of the flow

In moving boundary problems such as flapping wing, where 
the flow dynamics is highly non-linear and unsteady, the 
effect of three-dimensionality of the flow can be predomi-
nant. In experiments, the 2D analysis of a flapping wing is 
carried out using a 3D wing with end plates [11] to restrict 
flow from turning around wing tips and thereby minimizing 

the three-dimensional effect of the flow. However, the flow 
still has the freedom to move along spanwise direction in 
either way till the wing tip. Similar is the case with the bot-
tom surface. This kind of motion can be induced in highly 
unsteady flow such as flapping wing. A 2D simulation of 
such kind of flows suppresses the extra degree of freedom 
associated with the flow in experiments. Therefore, to com-
pletely replicate the 2D flapping wing experiments, it is 
more logical to perform simulations over a 3D wing with 
end plates.

In this section, we try to explore the effect of three 
dimensionality of the flow over a flapping wing on the aero-
dynamic force coefficients. The 2D computational model 
developed above in Sect. 2 is extruded in the third dimension 
to generate a 3D simulation model with wing tips forming 
the left and right boundaries of the computational domain. 
Therefore, in this way, the flow is not allowed to turn around 
at the wing tips on either sides. Flow over a 3D wing with 
chord of 60 mm and wing span of 300 mm, similar to the one 
used by Lua et al. [11] in their experiments, performing wing 
kinematics Motion A and Motion B as described earlier in 
Sect. 2.2 is simulated for both angles of attack � = 45◦ and 
� = 60◦ . The 3D aerodynamic force coefficients obtained are 
compared with the 2D results obtained in validation study 

Fig. 40  FFT of lift coefficient 
for f = 0.21 Hz & Re = 50,000: 
a � = 45

◦ b � = 60
◦
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Fig. 41  Comparison of a coef-
ficient of drag and b coefficient 
of lift for � = 45

◦ for Motion A
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(refer Sect. 3) and with experimental data of Lua et al. [11]. 
Figures 41, 42, 43 and 44 show the comparison of the res
ults.

From Figs. 41 and 42, it can be seen that the 2D simula-
tion results and 3D simulation results almost coincide for 
Motion A at both angles of attack. In case of Motion B, a 
slight deviation of 3D results from 2D results is observed 
from t∕T = 2.5–3.0 for � = 45◦ (refer Fig. 43). For � = 60◦ , 
the deviation from 2D results is clearly visible from t/T = 
2.5 (refer Fig. 44). This deviation of 3D simulation results 

from 2D results indicate a slight change in flow features 
along spanwise direction. It is quite interesting to note 
that in case of Motion B at both � = 45◦ & � = 60◦ , the 3D 
results are closer to the experimental results of Lua et al. 
[11] which is consistent and supports our argument about 
the three-dimensionality of flow in experiments. Also, it 
is observed that the effect of three-dimensionality of flow 
becomes dominant at higher angle of attack (in this case 
for � = 60◦ ) and for wing kinematics involving to and fro 
motion such as Motion B.

Fig. 42  Comparison of a coef-
ficient of drag and b coefficient 
of lift for � = 60

◦ for Motion A
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Fig. 43  Comparison of a 
coefficient of drag and and b 
coefficient of lift for � = 45

◦ for 
Motion B
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Fig. 44  Comparison of a coef-
ficient of drag and b coefficient 
of lift for � = 60

◦ for Motion B
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5.5  Three‑dimensional Eddy resolving simulations

Previous sections reported laminar flow computations 
performed predominantly for two-dimensional configura-
tions and a few on three dimensional configurations (refer 
Sect. 5.4). It is well known that a large angle of attack trans-
lational oscillation of an airfoil would produce large-scale 
flow separation, vortex shedding, vortex interaction and 
unsteady wake. Two-dimensional solution precludes the 
possibility of capturing spanwise unsteadiness for such a 
complex unsteady flow situation. Additionally, at the high-
est Reynolds number considered in the present study, Re = 
50,000, the flow is expected to manifest turbulent nature. 
The spanwise fluctuations would be augmented due to the 
presence of turbulence. An appropriate eddy-resolving tur-
bulence model needs to be employed to study and character-
ize the flow field. Improved Delayed detached Eddy simula-
tion (IDDES) was performed in the present study. The 2D 
domain considered for Re = 50,000 was extruded along the 
spanwise direction. The near wing inner domain was meshed 
using a fine structured grid with the first cell thickness of 
2e–5 m to resolve the finer eddy scales. Satisfactory mesh 

resolution was used along azimuthal and spanwise directions 
as well. IDDES essentially solves SST k − � RANS equa-
tions in the near-wall region and LES equations with Sma-
gorinsky model in the rest of the domain. Symmetry bound-
ary condition has been utilized at the spanwise boundaries 
and farfield for the three-dimensional laminar simulations 
reported in Sect. 5.4 as well as the IDDES Simulations.

The cell zones where the RANS equations and the LES 
equations are solved can be seen in Fig. 45, which show 
the contours of DES Turbulent Kinetic Energy (TKE) Dis-
sipation Multiplier ( � ). For 0 < 𝜉 < 1 , RANS equations are 
solved and for 1 < 𝜉 < 𝜉

max
 , LES equations are solved. From 

the contours, it is evident that the RANS computations are 
confined to a small region around the wing section, and 
beyond that region, the model switches to LES.

The transient formulation was limited to a first-order 
time-stepping implicit scheme because the remeshing of the 
tetrahedral cells required in the outer region to accommodate 
the wing movement could be satisfactorily accomplished 
only using this scheme. Also, higher time steps could be 
chosen for the implicit scheme without encountering numer-
ical instability and meshing issues. The timestep size for the 
current simulations is chosen as T/100. The solution at each 
timestep was considered to be converged when all the trans-
port equation residuals dropped below the value of 1e–5. 
The accuracy of spatial resolution is second order.

To ascertain the assumptions stated in the first paragraph 
of Sect. 5.5, laminar flow equations were solved. Figure 46 
shows a comparison between instantaneous vortex structures 
captured by 3D laminar simulation and IDDES for Motion 
B, Re = 50,000, � = 60◦ , t∕T = 3 . From the comparison, 
it is visible that IDDES has been able to better resolve the 
range of vortex structures that exist at this moderately high 
Reynolds number. Laminar simulation fails to capture the 
details. Further, it does not model the energy cascade which 
exists in turbulent flows, which leads to inaccurate predic-
tion of flow structures. Thus, for effective capturing of the 

Fig. 45  Contours of DES Turbulent Kinetic Energy Dissipation Mul-
tiplier in a RANS and b LES solver regions

Fig. 46  Comparison of instantaneous vortex structures captured using a 3D laminar simulation b 3D IDDES simulation; For Motion B, 
Re=50,000, � = 60

◦ , t∕T = 3
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energy cascade that exists in turbulent flows, eddy resolving 
simulations are necessary. Hence, IDDES simulations were 
considered and they were carried out up to t∕T = 8.

Figure 47 shows the instantaneous Lambda2 contours 
around the wing at � = 60◦ executing Motion B at t∕T = 6.8 . 
At this location, the wing has completed 80% of the down-
stroke and is approaching the end of the downstroke. The 
contours indicate a range of vortex structures spanning from 
small to large, which is expected due to the increasing scale 
separation, which occurs with an increase in Reynolds num-
ber. It also shows the eddy resolving capability of IDDES. 
The presence of turbulent fluctuations enables the forma-
tion of a strong leading and trailing edge vortex pair at the 
beginning of a stroke, as seen from the mid-span vorticity 
contours in Fig. 48. At this location, the wing has started 
its downstroke and has completed 20% of the stroke. The 
robustness of the vortex pair sustains all through the stroke, 
as is visible in Fig. 48 to corresponds to t∕T = 6.8 . Waviness 
in the shear layer indicates Kelvin–Helmholtz instability. 
However, that does not induce the breakdown of the shear 
layer. Intermittency in the shear layer appears to be limited.

Figures  49 and 50 show a comparison between 2D 
laminar simulation and 3D IDDES results for lift and drag 

Fig. 47  Lambda2 isosurfaces at t∕T = 6.8 ; For Motion B, Re = 
50,000, � = 60

◦

Fig. 48  a Vorticity contours 
at mid-span at t∕T = 6.2 . b 
Vorticity contours at mid-span 
at t∕T = 6.8 ; For Motion B, Re 
= 50,000, � = 60

◦

Fig. 49  Comparison of coef-
ficient of drag between 2D 
laminar simulation and IDDES 
for Motion B, Re = 50,000, 
� = 60

◦
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coefficients. There is a significant similarity in trend. How-
ever, in general, the peak values of IDDES exceed those of 
laminar simulations. The strong leading and trailing edge 
vortices produce strong suction peaks, which manifest in 
the form of a spike in the force coefficients. The enhanced 
turbulent mixing augments cross-momentum exchange that 
feeds significant tangential momentum to the near wall layer 
in the leeward wing surface. This reduces the pressure drag 
and augments lift. However, it also leads to a higher skin 
friction coefficient. The interplay of these effects can be seen 
in the force coefficient history. The cycle-to-cycle variations 
seem to be larger in the IDDES simulations. There is a slight 
phase difference between the two results, which exists sys-
tematically over several cycles of simulations which have 
been performed.

To conclude on the relative magnitudes of the transient 
terms, convective derivative terms, Pressure Gradient (PG) 
terms and Reynolds Stress (RS) terms, a comparative table 
(refer Table 1) is shown below. A term of the order of 1e + 
n is indicated by the number ‘n’ in the table. Following this 
approach, each of the terms corresponding to X, Y and Z 

Reynolds averaged momentum equations from the present 
IDDES simulations are reported.

It is observed that the transient term is a weak term which 
is possible because its effect is strong only during the end 
of a stroke and beginning of another, where significant tem-
poral changes occur due to large acceleration. Wake capture 
and added mass effects could interact in a complex man-
ner during stroke reversal. However, during the steady wing 
sweep, the transient term remains weak, and therefore in a 
cycle average sense its effect is not significant. The effect is 
weakest along the spanwise direction. Convective terms and 
the Reynolds stress terms are the most dominant and are of 
comparable magnitude, which clearly indicates the neces-
sity of implementing an eddy resolving simulation for Re = 
50,000 case. The pressure gradient is slightly weaker than 
these terms. Its effect is weakest along the spanwise direc-
tion. A detailed budget of turbulent kinetic energy and dissi-
pation for Re = 50,000 could reveal more about the physics. 
However that falls beyond the scope of the present work.

6  Conclusion

A numerical investigation of the translational flapping wing 
kinematics reported in the experimental work of Lua et al. 
[11] was attempted in the present study. The wing executed 
a to-and-fro horizontal flapping motion with a fixed pitch 
orientation or angle of attack. The present study focused 
on the effect of flapping frequency, Reynolds number and 
angle of attack on various aspects like vortex structures pro-
duced by the wing motion, wing–vortex interaction, aero-
dynamic forces and their frequency spectra. Although force 

Fig. 50  Comparison of coeffi-
cient of lift between 2D laminar 
simulation and IDDES for 
Motion B, Re = 50,000, � = 60

◦

Table 1  Comparison of relative magnitudes of the transient terms, 
convective derivative terms, pressure gradient terms and Reynolds 
Stress terms for Motion B, Re = 50,000, � = 60◦

Momentum 
equation

Transient 
term

Convective 
terms

PG terms RS 
gradient 
terms

X 1 4 3 4
Y 1 4 3 4
Z 0 4 2 4
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measurements and DPIV results for the above kinematics has 
been reported in Lua et al. [11], for f = 0.21 Hz, Re = 2000 
and � = 45◦ & 60◦ , to the best of the authors’ knowledge, a 
detailed computational parametric study on the above men-
tioned kinematics has not been reported earlier. The present 
study was performed for five different frequencies, namely 
f = 0.021 , 0.21, 0.315, 0.42 and 2.1 Hz, four different Reyn-
olds numbers, namely Re = 2000, 5000, 10,000 and 50,000 
and two different angles of attack, namely � = 45◦ & 60◦ to 
obtain a greater insight on effects of the above parameters. 
The properties of the working fluid used in the experiments 
were exactly replicated in the numerical simulations.

A mesh based on two-domain approach was generated 
around the moving wing which provided consistently high 
quality for every phase of the wing motion and was com-
putationally cheap. The numerical procedure was initially 
validated by comparing the numerical force coefficient 
data with experimental results of Lua et al. [11] for both 
Motion A (one time translation of the wing) and Motion 
B (to-and-fro flapping of the wing). Major features of the 
force time history could be captured quite well using the 
Ansys Fluent Version 14 laminar flow solver with the use of 
dynamic meshing-based two-domain approach for the vali-
dation problem. This was achieved without incorporating 
any transition and turbulence model. After completing the 
validation study, a set of computational meshes were gener-
ated for the entire range of flapping frequencies, Reynolds 
number and angle of attack in a systematic manner following 
grid convergence index guidelines.

Subsequently, the instantaneous vorticity contours of the 
flow were studied for Re = 2000, � = 45◦ and five different 
flapping frequencies, namely f = 0.021 , 0.21, 0.315, 0.42 
and 2.1 Hz, respectively. Leading and trailing edge vortices 
are formed from the wing tips during wing stroke and they 
shed from time to time forming residual vortices. Their fre-
quency-related variations were identified. Wing–wake inter-
action of first kind which occurs on stroke reversal and the 
second kind in which wing encounters a single wake vortex 
were both noticed for these various test cases.

Temporal history of drag and lift coefficients was stud-
ied for Re = 2000, � = 45◦ and 60◦ for five different flap-
ping frequencies to study the effect of flapping frequency. 
The drag and lift coefficients almost coincided for � = 45◦ 
while drag was relatively higher for � = 60◦ . When the 
wing changed sweep direction, sign of the force coefficients 
reversed. As the frequency increased, the peak positive and 
negative values of the force coefficients increased. The first 
negative peak was observed at the beginning of the second 
stroke. This peak had a larger magnitude than the first peak 
because of wake interaction of the first kind. This effect was 
observed uniformly over the entire frequency range. For both 
angles of attack, nominal periodicity of force coefficients 
was achieved within lesser number of strokes as flapping 

frequency increased. Also, periodicity was achieved earlier 
at lower angle of attack. Non-circulatory forces associated 
with wing acceleration and added mass effects dominated 
over circulatory or vortex-related forces with increase in 
frequency. This was visible through the sharper temporal 
structure of force coefficients.

Temporal history of drag and lift coefficients was studied 
at f = 0.21 Hz, � = 45◦ and 60◦ at four different Reynolds 
numbers, namely Re = 2000, 5000, 10,000 and 50,000, for 
studying the effect of Reynolds number. With increase in 
Reynolds number, multiple large- and small-scale inflexions 
and oscillations were visible in the time history of force coef-
ficients. These were due to vortex shedding and wing–vortex 
interactions caused by vortex structures comprising a wide 
range of length and time scales. This is a typical character 
of high Reynolds number flows.

From the FFT of lift coefficient time history, it was con-
cluded that the forcing frequency is the most dominant fre-
quency over the entire range of frequencies in the spectrum 
for the different Reynolds numbers and angles of attack 
studied. With increase in frequency, the power content of 
the dominant frequency increased while with increase in the 
angle of attack, its value decreased. The broadband nature 
of Reynolds number was also observed in the frequency 
spectra.

The effect of three-dimensionality of the flow was briefly 
studied by comparing 3D simulation results (wing with end 
plates) with two-dimensional experimental results. This 
effect was more clearly visible in to-and-fro wing kinemat-
ics, i.e. in Motion B, than in Motion A. Also, the effect 
became more prominent with increase in angle of attack.

Three-dimensional laminar and eddy resolving simula-
tions using IDDES were performed to study the Motion B 
at Re = 50,000, � = 60◦ . Larger lift and drag force peaks are 
predicted using IDDES when compared with 2D laminar 
simulations. Strong and stable leading and trailing edge vor-
tices and a wide range of vortex structures are captured by 
IDDES compared to 3D laminar simulation. Further, relative 
comparisons of the order of magnitudes of terms in Reyn-
olds averaged momentum equation indicate that Reynolds 
stresses are significant at this Reynolds number.
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