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Abstract
This paper focuses on motion prediction for a ship navigating through sea swell. Ship motion prediction may be useful for 
helicopter maritime operations, notably for search and rescue missions. An efficient prediction method based on adaptive 
notch filters is proposed for non stationary perturbations. Classic methods of prediction are reviewed for comparison. An 
application using real ship motion data is considered in a performance evaluation. Finally, a comparative analysis based on 
prediction performance and real-time implementation constraints is presented.
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1  Introduction

1.1 � Context

Search and rescue (SAR) missions are among the most dif-
ficult technological and human challenges. This is especially 
true when aimed at rescuing people on board a sinking 
boat. Hoisting from a helicopter remains the only solution 
to quickly intervene and evacuate people in distress. This 
operation is often challenging for the pilot because it forces 
him to stabilize the helicopter above a moving boat and to 
precisely position the rescuer on the deck. Weather condi-
tions are often unfavorable, resulting in substantial move-
ment of the boat and its mast, if it has one. In this situation, 
the pilot’s workload is very high, and the risk of collision 
between the rescuer and the boat is not negligible. Knowing 
the boat’s movement over a time horizon of a few seconds 
can be very useful to make the pilot’s task easier and to 
reduce the risk of collision. In addition, sending this pre-
diction information to the helicopter autopilot can help to 
stabilize the machine in a safe area and accurately bring the 
rescuer to the estimated landing point. Prediction of boat 
movements is, therefore, essential to increase the safety 

of SAR missions. Another example of the potential utility 
of ship motion prediction is for missions of maritime pilot 
hoisting on tanker ships. During night operations, the long 
decks of tankers can be mistaken with the horizon. Large 
and slow movements of the ship can disorient the helicopter 
pilot and lead to dangerous control of the machine. Knowing 
the ship attitude a few seconds in advance can significantly 
help the autopilot to follow the ship, which will allow the 
pilot to focus his attention on the safety aspects of the hoist-
ing operation.

1.2 � Objective and contribution

The context of our work is the navigation and control of 
helicopters with avoidance of environmental perturbation 
effects. In SAR missions, ship movements are considered to 
be environmental perturbations. It is often crucial to predict 
the perturbation signals to compensate for or address their 
effects. For safe stabilization of a helicopter moving above a 
ship, adaptive prediction is well suited for perturbation com-
pensation and avoidance of deviations of ship movements. 
Several prediction methods (ARMA, MCA and ANF) will 
be presented and compared.

Our main objective is to obtain a good prediction of the 
main perturbations over a few seconds to compensate for 
their effect on control to achieve a good trajectory following 
[1, 5]. We focus on the prediction of the attitudes and linear 
speeds of a moving ship. Then, our main contribution is 
the definition of a pertinent and efficient prediction method.
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In the context of the estimation of perturbations [9], 
specific features have to be considered. For a moving ship 
excited by swell, the perturbations are nonstationary and 
their frequency spectrum is composed of narrow bands 
with slowly varying frequencies and varying amplitudes 
and phases. Adaptive notch filters are well suited for the 
prediction of nonstationary narrow band perturbations [8, 9].

This paper is organized as follows. After this introduc-
tion, Sect. 2 is devoted to related previous work in literature 
and background definition. In Sect. 3, we present several 
prediction approaches using some well-known methods, 
such as ARMA modeling and minor component analysis 
(MCA), and then propose the use of adaptive notch filters 
(ANF). The proposed approach, based on ANF, is shown to 
be the most efficient and fast adaptive predictor. Section 4 
presents an application of the methods on real data acquired 
from a ship maneuvering under swell perturbation. Finally, 
a comparative study is conducted. This study emphasizes 
the interest in using the proposed method based on ANF for 
ship motion prediction.

2 � Background and previous work

2.1 � Background

Figure 1 presents the environment of a helicopter hoist oper-
ation in a SAR mission. Given a boat (coordinate system Rb : 
(�⃗xb, �⃗yb, z⃗b) ) navigating on a rough sea with speed ��⃗Vb , swell 

perturbation causes the boat to rotate around �⃗xb (roll axis) 
and �⃗yb (pitch axis). The final objective consists of guiding 
the helicopter (coordinate system Rh : (�⃗xh, �⃗yh, z⃗h) ) so that the 
rescuer (in orange in the Fig. 1) hanging on the hoisting rope 
can land safely on the boat aft deck.

We propose to predict boat motion with a prediction hori-
zon of a few seconds. In the future, this information will be 
used by the helicopter autopilot to ensure a safe hoist opera-
tion. Ship motions are typically characterized by attitudes 
(roll � and pitch � ) and translation speeds at the center of 
gravity (longitudinal Vxb , lateral Vyb and vertical Vzb ). These 
movements are caused by the swell encountered by the ship 
and are explained by sea-keeping theory. In this study, the 
signals characterizing ship movements are provided by an 
inertial measurement unit (IMU) located at the center of 
mass. The roll angle of a ship navigating on a formed sea is 
presented in Fig. 2.

When looking at the time evolution of the roll spectrum in 
Fig. 2, the signal appears to be nonstationary in amplitudes 
and phases. The nonstationarity is due to changes in sea state 
or modification of the track followed by the ship. Clearly, 
the signals are composed of a limited number of frequencies 
with varying amplitudes in the range 0.05Hz < fi < 0.25Hz.

2.2 � Previous work

There are two common approaches to predict boat 
movement. The first is to build a dynamic model capa-
ble of capturing the main characteristics of the system 

Fig. 1   Helicopter hoist opera-
tion during a SAR mission
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{boat + environment} . In this case, the entire system must 
be modeled, including uncertain stochastic processes (swell, 
wind), the dynamic behavior of the ship, and the unknown 
dynamics. Prediction methods using such models are very 
dependent on the reliability of their identification. A com-
plete modeling of boat dynamics requires precise knowledge 
of hydrodynamic parameters, as well as the sea state around 
the boat. In practice, it would be tedious, if not impossible, 
to build a precise model since many parameters (frequency 
of swell, angle of attack of the swell, configuration of the 
ship, etc.) are not available.

Alternatively, the system can be handled as a black box 
and be approximated by a model that implicitly captures its 
characteristics. This model can be represented in the time 
domain by a linear recursive sequence with coefficients that 
are estimated over time. Time prediction of motions is then 
generated using the temporal model without building or 
solving dynamic equations intrinsic to the ship and on the 
basis of only previous measurements of motion.

2.2.1 � Time prediction based on the state model

The dynamics of vessels have been studied in many works 
in past decades. Sea-keeping theory studies the dynamics 
of a ship navigating on the sea and assumes that the ship’s 
movements are oscillating around a point of equilibrium 
[7]. Moreover, this theory suggests that swell height is a 
Gaussian stochastic process with zero mean. However, this 
hypothesis is too strong, which limits the application of sea-
keeping theory for studying ship dynamics. Motion predic-
tion using ship state models has been extensively studied, 
and significant efforts have been made to address various 
practical problems. Triantafyllou et al. [12] used the Kalman 
filtering technique to predict six states of a ship. They used a 
precise state model that requires prior knowledge of hydro-
dynamic data. Substantial computational effort is necessary 
to extract these data. In addition, several transfer functions 
between the ship’s movements and the swell elevation are 
irrational functions with no minimum of phase, making their 
use challenging. Lainiotis et al. [4] developed a method for 
estimating ship movements based on a state model, but the 
method relies entirely on prior knowledge of a large number 
of intrinsic parameters.

2.2.2 � Time prediction based on the temporal model

The use of time series is an alternative way to achieve ship 
motion prediction. Only past records of movement are 
needed to generate the time prediction. The construction of 
a temporal model involves the determination of the orders 
of the model as well as its parameters. For example, Yang 
proposed a variant of an online autoregressive predictor 
that produces accurate prediction results for simulated data 
(error within 10% for 12.5-s prediction) [13]. An interest-
ing autoregressive external input model (ARX) was used 
for real-time motion prediction of a 210-ton ship in 1979 
[14]. The wave height in front of the ship (external input) 
was obtained via a pressure sensor located at the bulbous 
bow. The results showed good prediction of amplitudes for 
2–4 s in advance and good prediction of phases for 8–10 s 
in advance. A prediction algorithm using minimal compo-
nent analysis (MCA) of the signal of movement was intro-
duced by Zhao et al. [15]. The generated prediction requires 
considerable computational resources to update the model 
parameters, which makes it complicated to implement on 
board. A sinusoidal approach to ship motion was developed 
by Ra et al. Roll motion is considered to be a sinusoid whose 
slow-varying frequency is estimated in real time by a recur-
sive least squares algorithm [10]. The amplitude and phase 
of the sinusoid are assumed to remain constant.

3 � Prediction methods

Because of the availability of only previous signal values, 
prediction methods are based on statistical analysis. The 
most commonly used method generates a d-step-ahead 
prediction from an autoregressive moving average model 
(ARMA) that is identified recursively. Another much less 
common method uses a variant of principal component 
analysis (PCA or Karhunen–Loeve transformation) that 
is known as minor component analysis. In both cases, the 
past signal is processed to identify its generator model 
(ARMA) or to extract its principal components (PCA). 
Then, we use this knowledge to generate a prediction 
over a few seconds. The characteristics of the signal are 
assumed to be constant over the prediction period. A third 

Fig. 2   Roll attitude angle meas-
urement �(t) and its spectrum 
evolution with time
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approach considers ship movements as the sum of sinu-
soidal signals. Real-time estimation of the frequencies, 
amplitudes and phases of these sinusoidal components 
leads to the construction of the signal spectrum with time. 
The spectrum parameters are then frozen to generate time 
predictions. The difficulty is to perform real-time spectral 
analysis with time-varying parameters. Adaptive notch fil-
ters provide a method for frequency tracking for narrow 
band signals. Amplitudes and phases can then be estimated 
using a weighted recursive least squares algorithm.

Note that in these three methods, no additional informa-
tion (hydrodynamic parameters, boat speed and track, wave 
spectrum, etc.) are required to generate the prediction.

3.1 � ARMA predictions

Autoregressive moving average model  An autoregres-
sive moving average (ARMA) model of order ( na,nc ) is 
defined as:

where ai and ci are the coefficients of the model and ek is 
white noise.

This model supposes that the signal value at instant k 
is a linear combination of its past values and of the cur-
rent and past values of white noise. According to [6], the 
optimal one-step prediction of such a model is written as 
follows:

where q−1 is the shift operator ( q−1 ∗ yk = yk−1 ), 
A(q−1) = 1 + a1q

−1 +⋯ + anaq
−na  a n d 

C(q−1) = 1 + c1q
−1 +⋯ + cncq

−nc.
Before using Eq. 2 for prediction, the vector of param-

eters � = [a1 … ana c1 … cnc ]
T needs to be identified.

Parameter identification  Parameter identification consists 
of minimizing the prediction error defined as:

In our case, the signal is nonstationary, and the ARMA 
model parameters are time varying. Consequently, the mini-
mization of �k is achieved with a weighting that favors the 
most recent past values. A forgetting factor 𝜆 < 1 is then 
added to the minimization.

The criterion to minimize can be written as:

(1)yk = −

na∑
i=1

aiyk−i +

nc∑
i=1

ciek−i + ek,

(2)ŷk =

(
1 −

A(q−1)

C(q−1)

)
yk,

(3)𝜖k = yk − ŷk =
A(q−1)

C(q−1)
yk.

where N is the number of available signal samples.
Unfortunately neither the one-step prediction ŷk nor the 

prediction error �k is a linear function of the parameters 
ai and ci . Consequently, the criterion JN is not quadratic 
in the parameters and its minimization cannot be reduced 
to a set of linear equations [2]. The minimization process 
needs to be iterative, the Gauss–Newton method leads to 
the following estimate of the parameters vector:

where 𝜃̂i is the estimate of the parameters vector at the i-th 
iteration and 𝜓k = −

d𝜖k

d𝜃̂
 is the gradient vector of the predic-

tion error.
The prediction error �k is computed using Eq. 3 with the 

previous parameters estimates. The error gradient �k is 
obtained by filtering the extended regression vector 
�E
k
= [−yk−1 …− yk−na�k−1 … �k−nc ]

T  with the filter 1

C(q−1)
 . 

The estimation process presented here is called maximum 
likelihood (ML) method as it finds the parameters that 
maximizes the joint probability density function of meas-
urements [2]. This leads to minimize the prediction error 
of the ARMA model.

To estimate the parameters vector � with Eq. 5, the 
matrix 

∑N

k=1
�k�

T
k

 must be computed and inverted at each 
iteration i. For large values of N, this operation can require 
considerable computational effort (O(N3)) . It is judicious 
to use the recursive form of the maximum likelihood algo-
rithm and the previous estimation of 𝜃̂.

Real-time estimation of the parameters vector can be 
performed using the recursive maximum likelihood algo-
rithm (RML) given by [6]:

where Fk is the adaptation gain, starting at a large value 
(typically 100) and fading to zero when the prediction error 
�k becomes small. The filter 1

Ĉk−1

 uses the last available vector 
estimates 𝜃̂k−1 . The forgetting factor � is usually chosen 
between 0.98 and 0.995.

Notice that we can write Eq. 1 as:

(4)JN =
1

N

N∑
k=1

�N−k�2
k
,

(5)𝜃̂i+1 = 𝜃̂i −

(
N∑
k=1

𝜆N−k𝜓k𝜓
T
k

)−1( N∑
k=1

𝜆N−k𝜖k𝜓
T
k

)T

,

(6)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜙E
k
= [−yk−1 …− yk−na𝜖k−1 … 𝜖k−nc ]

T

𝜖k = yk − ŷk = yk − 𝜃̂T
k−1

𝜙E
k

𝜓k =
1

Ĉk−1(q
−1)
𝜙E
k

𝜃̂k = 𝜃̂k−1 +
Fk−1𝜓k

𝜆+𝜓T
k
Fk−1𝜓k

𝜖k

Fk =
1

𝜆

�
Fk−1 −

Fk−1𝜓k𝜓
T
k
Fk−1

𝜆+𝜓T
k
Fk−1𝜓k

�
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w h e r e  �E
k
= [−yk−1 …− yk−naek−1 … ek−nc ]

T  a n d 
� = [a1 … ana c1 … cnc ]

T.
This model looks like a linear regression and we could 

apply the recursive least squares algorithm to estimate the 
parameters vector � . However the variables ei in the regres-
sion vector �E

k
 are not directly measurable. The idea is to 

replace them by their estimates �i computed as follows:

The resulting identification algorithm is known as extended 
least squares (ELS) and is written as:

The only difference with the recursive maximum likelihood 
algorithm is that the vector �E

k
 is replaced by its 1

C(q−1)
 filtered 

version �E
k

 . The ELS is then a simpler method compared to 
RML as the error gradient does not need to be computed by 
filtering. Nevertheless, the convergence of ELS is not guar-
anteed. According to [6], a sufficient condition for the ELS 
estimate to converge to the true parameters vector depends 
on C(q−1) polynomial and is written:

where 1

C(ej�)
 is the frequency response of the filter 1

C(q−1)
 and 

Re is the real part. We compared the one-step prediction 
results of RML and ELS on a signal describing the vertical 
acceleration of a ship. It appears that the sum of squared 
predictions errors are similar for the two algorithms. We also 
notice that the polynomial C(q−1) is close to unity and con-
sequently leads to the convergence of the estimation. In 
Sect. 4, the extended least squares method (ELS) will be 
used for its simplicity.

Model order selection  The selection of the model order is 
crucial: a low order will not capture all system dynamics and 
leads to high prediction error variance, whereas a high order 
implies large computational effort.

Many criteria are available in the literature to help with 
order selection. The Akaike information criterion (AIC) is 
widely used:

(7)yk = �T�E
k
+ ek,

(8)𝜖k = yk − 𝜃̂T
k−1

𝜙E
k
.

(9)

⎧
⎪⎪⎨⎪⎪⎩

𝜙E
k
= [−yk−1 …− yk−na𝜖k−1 … 𝜖k−nc ]

T

𝜖k = yk − 𝜃̂T
k−1

𝜙E
k

𝜃̂k = 𝜃̂k−1 +
Fk−1𝜙

E
k

𝜆+𝜙E
k
Fk−1𝜙

E
k

𝜖k

Fk =
1

𝜆

�
Fk−1 −

Fk−1𝜙
E
k
𝜙ET
k
Fk−1

𝜆+𝜙ET
k
Fk−1𝜙

E
k

�
.

(10)Re

{
1

C
(
ej�

)
}

≥
1

2
∀�,

(11)AIC(na, nc) = log 𝜎̂2 +
2(na + nc)

N
,

where 𝜎̂2 the prediction error covariance estimate defined as:

The first term of Eq. 11 measures the model fit based on the 
error prediction covariance 𝜎̂ . The second term is a penalty 
for model complexity ( na , nc high). The model orders ( na,nc ) 
corresponding to the lowest AIC value are selected.

Unfortunately, AIC cannot be implemented in our prob-
lem; this criterion tends to overestimate the model order and 
the estimate is not consistent for large N (which is our case). 
In fact, the probability of selecting the true model does not 
tend to one as N tends to infinity. According to Kuha [3], this 
probability is upper bounded by 0.84.

Schwarz [11] suggests the Bayesian information criterion 
(BIC), which provides a consistent estimate of ( na,nc ) and 
is defined as:

Time prediction at instant k+d  The prediction of yk , the 
signal at instant k, uses the last identified parameters and the 
last na past values of yk:

Then, for the d-step-ahead prediction ŷk+d , we use the previ-
ous predictions ŷk+d−i and we suppose that the expectation 
of �i is zero when i ≥ k:

We suppose that the parameters are constant over the pre-
diction horizon, meaning that the signal is assumed to be 
stationary over this period.

3.2 � Minor component analysis and prediction

Principal component analysis (PCA) is a statistical method 
that aims to transform observations of correlated variables 
into linearly uncorrelated variables. These new variables are 
called principal components or principal axes. This analysis 
reduces the number of variables used to describe a process 
and makes the information less redundant.

The name “principal axes” is interesting as it refers to the 
vocabulary of mechanics. Indeed, principal axes correspond to 
vectors that maximize the projected inertia of point clouds on 
themselves. It is equivalent to stating that the principal axes are 
vectors that minimize the moment of inertia around themselves 
(the distribution of mass). For example, the principal axis of 
a helicopter is parallel to the longitudinal axis, as the moment 

(12)𝜎̂2 =
1

N − na − nc

N∑
k=na+nc+1

𝜖2
k
.

(13)BIC(na, nc) = log 𝜎̂2 +
(na + nc) logN

N
.

(14)
ŷk = −â1yk−1 − â2yk−2 …− ânayk−na + ĉ1𝜖k−1 + ĉ2𝜖k−2 …+ ĉnc𝜖k−nc .

(15)
ŷk+d = − â1ŷk+d−1 − â2ŷk+d−2 ⋯ − âna ŷk+d−na

+ ĉd+1𝜖k−1 ⋯ + ĉnc𝜖k−nc+d.
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of inertia around this axis is minimum, which explains the 
relatively high roll rate compared to the pitch or yaw axes. 
Minor component analysis focuses on the minor axes, where 
the projected inertia on themselves is minimum.

Notations Let variables Y1 , Y2 , ... , YP represent signal yk 
during time-shifted windows of length N.

We define the variables Yj , with j ∈ [1;P] , as follows:

We suppose that Yj are centered, that is, the expected values 
of these variables have been subtracted.

The point cloud associated with the centered variables 
can be written in matrix form:

Component analysis  The projection of point cloud M on a 
unit vector u ∈ ℝ

P×1 is �u(M) = M.u . The projected inertia 
of the point cloud on vector u is defined as:

where C =
1

N
MTM ∈ ℝ

P×P is the covariance matrix of vari-
ables Yj . We are searching for the vector u that minimizes 
(or maximizes) the projected inertia IM(u).

The correlation function of signal yk is defined in discrete 
time as:

The autocorrelation matrix of the signal is defined as:

According to Eqs. 18, 19 and 20, we note that the autocor-
relation matrix Ry and the covariance matrix of Yj variables 
C are equal. Moreover, Ry is symmetric real; consequently, 
it can be diagonalized in an orthonormal basis composed of 
eigenvectors:

(16)

Y1 = [y1 y2 ⋯ yN]
T

Y2 = [y2 y3 ⋯ yN+1]
T

⋮

YP = [yP yP+1 ⋯ yP+N−1]
T .

(17)M = [Y1 Y2 ⋯ YP] =

⎡⎢⎢⎢⎣

y1 y2 ⋯ yP
y2 y3 ⋯ yP+1
⋮ ⋮ ⋮

yN yN+1 ⋯ yP+N−1

⎤⎥⎥⎥⎦
.

(18)IM(u) =
1

N
�u(M)T�u(M) =

1

N
uTMTMu = uTCu,

(19)Ryy(k) = E
[
YT
j
Yj+k

]
=

1

N

N+j−1∑
i=j

yiyi+k for j ∈ [1;P].

(20)

Ry =

⎛
⎜⎜⎜⎜⎜⎝

Ryy(0) Ryy(1) Ryy(2) ⋯ Ryy(P − 1)

Ryy(1) Ryy(0) Ryy(1) ⋯ Ryy(P − 2)

Ryy(2) Ryy(1) Ryy(0) ⋯ Ryy(P − 3)

⋮ ⋮ ⋮ ⋱ ⋮

Ryy(P − 1) Ryy(P − 2) Ryy(P − 3) ⋯ Rxx(0)

⎞
⎟⎟⎟⎟⎟⎠

.

(21)Ry = V�VT ,

where

–	 V = [V1 V2 … Vd … VP] ∈ ℝ
P×P matrix of eigenvectors;

–	 � = diag(�1, �2,… , �d,… , �p) ∈ ℝ
P×P matrix of eigen-

values.

We suppose that Ry eigenvalues are ordered in the following 
manner:

The projection of inertia on vector u becomes:

where Q is unit vector u in the eigenvector basis 
(V1,V2,… ,Vn):

The projection of inertia on vector u becomes:

The projected inertia IM(u) is upper bounded by �P and is 
reached when u = VP . This is the principal axis, and the 
variance of the projection of the point cloud on VP is �P . The 
second axis corresponds to the VP−1 eigenvector (projection 
variance �P−1 ) and is orthogonal to the principal axis, and 
so on up to V1 , which corresponds to the minor axis with the 
lowest projection variance �1.

The eigenvectors associated with the largest eigenvalues are 
used in principal component analysis (PCA); whereas, those 
with the smallest eigenvalues are used in minor component 
analysis (MCA).

Time prediction using MCA   We choose the smallest 
eigenvalues �1, �2,⋯ , �d and their associated eigenvectors 
V1,V2,⋯ ,Vd.

We call B the matrix of eigenvectors associated with the 
smallest eigenvalues:

The projection of signal Y = [y1 y2 … yP]
T on the eigenvec-

tors basis (V1,V2,… ,Vd) has a very low variance.

Signal Y can be cut into two parts, Ya ∈ ℝ
n1×1 and 

Yb ∈ ℝ
(P−n1)×1 , where:

(22)�1 ≤ �2 ≤ ⋯ ≤ �d ≤ ⋯ ≤ �P.

(23)IM(u) = uTRyu = uTV�VTu = QT�Q,

(24)Q(u) = VTu = [q1 … qP]
T

(25)IM(u) =

P∑
k=1

�iq
2
i
≤ �P

P∑
k=1

q2
i
≤ �P.

(26)B = [V1 V2 … Vd] =

⎡⎢⎢⎢⎣

v11 v12 ⋯ v1d
v21 v22 ⋯ v2d
⋮ ⋮ ⋮

vP1 vP2 ⋯ vPd

⎤⎥⎥⎥⎦
.

(27)BTY ≈ 0.
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Likewise, matrix BT  can be cut into BT
a
∈ ℝ

d×n1 and 
BT
b
∈ ℝ

d×(P−n1) , and we have:

For the ARMA prediction, we suppose that the process is 
stationary over the prediction horizon. The eigenvectors 
describing the signal are not changing, and BT

a
= Bpast and 

BT
b
= Bpred are constant.

We can then generate a prediction of the P − n1 next val-
ues with:

where Ypred = [yk … yk+P−n1−1]
T ∈ ℝ

(P−n1)×1 is the predicted 
signal and Ypast = [yk−n1 … yk−1]

T ∈ ℝ
n1×1 is the past signal.

Finally, we obtain:

Implementation The first step consists of computing the 
autocorrelation matrix Ry of the signal yk using the last 
P + N − 1 available measurements. Only P values of the cor-
relation function must be computed to form Ry as the matrix 
is Toplitz and symmetric. Then, the eigenvectors associated 
with the eigenvalues of Ry have to be extracted. As Ry is 
positive semidefinite, singular value decomposition can be 
used to compute �j and Vj efficiently. The d smallest eigen-
values and their eigenvectors are then selected. Typically, we 
choose the eigenvalues lower than 1.5% of the total energy of 
� (diagonal matrix composed of the autocorrelation matrix’s 
eigenvalues):

The resulting minor eigenvector matrix BT is then split in 
two parts: Bpast (dimension d × n1 ) and Bpred (dimension 
d × (P − n1) ). n1 is typically chosen to be larger than 2

3
N 

according to Zhao [15]. The P − n1 steps prediction is then 
generated using Eq. 31. Note that inversion of BT

pred
Bpred is 

not necessary; QR decomposition of Bpred simplifies the 
computation of Ypred.

The length of Ypred gives us the prediction horizon: P − n1 . 
Given that n1 =

2

3
N , the prediction horizon becomes P −

2

3
N . 

The window length N has to be sufficiently enough to obtain a 
long horizon; however, the window needs to capture the sys-
tem dynamics. Typically, a window corresponding to 3 peri-
ods of the boat main sinusoidal motion is chosen. The use of 
a large P increases the prediction horizon; nevertheless, it is 
synonymous with a higher computational load (autocorrelation 
matrix formation and computation of the Eq. 31 at each step). 

(28)Ya = [y1 y2 … yn1]
T and Yb = [yn1+1 yn1+2 … yP]

T .

(29)BT
a
Ya + BT

b
Yb ≈ 0.

(30)BpastYpast + BpredYpred ≈ 0,

(31)Ypred ≈ −
(
BT
pred

Bpred

)−1

BT
pred

BpastYpast.

(32)d = max(i) such as �i ≤
1.5

100

P∑
k=1

�i.

Moreover, the use of very old past values of the signal (until 
yk−N−P−1 ) prevents following of the time-varying characteris-
tics of ship motion.

3.3 � Adaptive notch filters predictions

Ship motion can be explained by sea-keeping theory, which 
supposes that a ship is oscillating around an equilibrium point. 
The signals describing these movements can be seen as the 
sum of sinusoids with time-varying frequencies fi(k) , ampli-
tudes Ci(k) and phases �i(k).

Time prediction of this signal relies on accurate online esti-
mation of the time-varying noise components. The recently 
introduced adaptive identification technique uses frequency 
estimation of narrow band signals based on an adaptive 
notch filter (ANF) [8]. Online amplitude and phase estima-
tion is performed using the weighted recursive least squares 
algorithm on a Fourier decomposition.

Frequency estimation with cascaded ANF: Adaptive notch 
filters are well known for extracting the frequencies of sig-
nals composed of sinusoidal components.

For example, the following second-order ANF filters the ith 
sinusoidal component (frequency fi ) of a given signal:

where

–	 ai = −2 cos(2�fiTs) is the notch filter parameter and Ts is 
the signal sampling period.

–	 0 < r < 1 is the notch bandwidth

Cascaded ANF 
∏p

i=1
Hi(z

−1) with i ∈ [1;p] and i ≠ j , when 
convergence is achieved, will remove all sinusoidal compo-
nents except that of frequency fj Consequently, the remaining 
signal ỹj

k
 is written as:

Filtering of the remaining signal ỹj
k
 with a final notch filter 

Hj will give us the prediction error of the estimation of fj:

(33)yk =

n∑
i=1

Ci(k) sin(2�fi(k)Tsk + �i(k)).

(34)Hi(z
−1) =

1 + aiz
−1 + z−2

1 + raiz
−1 + r2z−2

,

(35)
ỹ
j

k
=

p∏

i = 1

i ≠ j

1 + aiz
−1 + z−2

1 + raiz
−1 + r2z−2

yk.

(36)�
j

k
= Hj(z

−1 )̃y
j

k
=

1 + ajz
−1 + z−2

1 + rajz
−1 + r2z−2

ỹ
j

k
.
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Minimization of the output prediction error �j
k
 will lead to 

an estimate of the error gradient:

Real-time implementation of frequency estimation leads 
to the use of the following recursive maximum likelihood 
algorithm:

where âj
k
= −2 cos(2𝜋 f̂j(k)Ts) ; F

j

k
 is the adaptation gain; 

0 < 𝜆 < 1 is the forgetting factor.
Notch filter second-order cells are applied in a cascaded 

manner. This implementation is shown in Fig. 3. In a recur-
sive manner, the current cell input is the output prediction 
error of the previous cells. The filter bandwidth rk is time 
varying from r0 to rf  according to the following expression:

0 < rk < 1 defines the position of the filter poles along fre-
quency radials in the z plan. rk ≈ 0 means that poles are 
close to the origin; whereas, rk ≈ 1 means that poles are 
close to the unit circle (narrow bandwidth). Typically, we 
chose rd = 0.99 , r0 = 0.5 and rf = 0.99 . The convergence 
and performance of the frequency estimation using ANF 
are developed in [8].

Amplitude and phase estimation

(37)�
j

k−1
= −

d�
j

k

daj
=

(1 − r)(1 − rz−2)

(1 + rajz
−1 + r2z−2)2

ỹ
j

k−1
.

(38)

⎧
⎪⎨⎪⎩

for j = 1...p do

â
j

k
= â

j

k−1
+ F

j

k−1
𝜓

j

k−1
𝜀
j

k

F
j

k
=

F
j

k−1

(𝜆+𝜓
j

k−1
F
j

k−1
𝜓

j

k−1
)
,

(39)rk = rdrk−1 + (1 − rd)rf .

When the component frequencies fi are known, we can 
use weighted recursive least squares (WRLS) to estimate 
the amplitude and phase of each component. The signal 
defined in 33 can be decomposed in a Fourier basis as 
follows:

where Ci =
√

g2
i
+ h2

i
 is the amplitude of frequency compo-

nent fi and �i is its phase ( tan(�i) = gi∕hi).
The parameter vector 𝜃̂k and regression vector �k are 

defined as follows:

The Fourier parameters gi and hi are estimated using WRLS:

where �0
k
 is the a priori prediction error, Gk is the adapta-

tion gain and �0 is the exponential forgetting factor, typically 
chosen between 0.98 and 0.995.

Time Prediction at instant k+d: The prediction of yk+d 
uses the last available parameters (gi(k), hi(k), fi(k)) identi-
fied at instant k. For the ARMA and MCA methods, during 
the prediction period, we keep the parameters estimated at 
time k.

(40)yk =

p∑
i=1

[gi(k) cos(2�fiTsk) + hi(k) sin(2�fiTsk)] + vk,

(41)

⎧
⎪⎨⎪⎩

𝜃̂k =
�
g1 g2 ... gp h1 h2 ... hp

�T
and 𝛷k = [C, S]Twith

C =
�
cos(2𝜋f1Tsk) … cos(2𝜋fpTsk)

�
S =

�
sin(2𝜋f1Tsk) … sin(2𝜋fpTsk)

�
.

(42)

⎧⎪⎨⎪⎩

𝜀0
k
= yk − 𝜃̂T

k−1
𝛷k

Gk =
1

𝜆0

�
Gk−1 −

Gk−1𝛷
T
k
𝛷kGk−1

𝜆0+𝛷
T
k
Gk−1𝛷k

�

𝜃̂k = 𝜃̂k−1 + Gk𝛷k𝜀
0
k

Fig. 3   Frequency estimation 
stage of the ANF algorithm
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4 � Application and comparative analysis

4.1 � Prediction methods comparison 
on experimental data

To compare the performance of the three prediction meth-
ods, we test the algorithms on a pitch angle measurement 
signal. This attitude signal was recorded using an IMU on a 
large ship navigating in the North Sea.

We present the results of the pitch angle prediction with 
horizon varying from 0 to 1 s (Figs. 4, 5 and 6) and from 0 
to 5 s (Figs. 7, 8 and 9). The predictions are generated on 
windows of 1 s (respectively, 5 s) successively distributed 

(43)
yk+d =

p∑
i=1

[
gi(k) cos[2�fi(k)Ts(k + d)]

+hi(k) sin[2�fi(k)Ts(k + d))
]
.

on time range [500 s, 600 s]. These windows contain predic-
tions with horizons ranging from 0 to 1 s (respectively, 5 s) 
and are sampled at 10 Hz (respectively, 5 Hz). Consequently, 
the predictions on 1 s windows (respectively, 5 s) range from 
0 to 10 steps ahead (respectively, 25 steps). Each prediction 
uses all the past data available until the start of the prediction 
window. For example, with windows of 5 s, the prediction 
signal starts at 500 s, ends at 505 s and uses the pasts data 
from 0 to 500 s. The second prediction signal starts at 505 
s, ends at 510 s and uses the past data from 0 to 505 s past 
data, etc. Note that the overall prediction signal (in red) is 
discontinuous at each window extremity because the last 
point of a window corresponds to 10-steps-ahead prediction 
(respectively, 25 steps from the last data available); whereas, 
the first point of the next window corresponds to 0-steps-
ahead prediction. The predictions are presented this way to 
observe how the predictor predicts the next second (or 5 s). 
We selected the signal time range [500 s, 600 s] because 
the amplitude spectrum in this time range is time varying 
and exhibits some nonsinusoidal parts that we qualify as 

Fig. 4   Prediction with a horizon 
from 0 to 1 s using an ARMA 
model
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Fig. 5   Prediction with a horizon 
from 0 to 1 s using minor com-
ponent analysis

500 510 520 530 540 550 560 570 580 590 600
−4

−2

0

2

4

P
itc

h 
A

ng
le

 θ
 [°

]

Time [s]

True
1s Prediction

MCA 1s

Fig. 6   Prediction with a horizon 
from 0 to 1 s using adaptive 
notch filters
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“accidents” (512 s–516 s and 580 s–585 s). These accidents 
originate from a modification of the local sea state due to 
wind gusts or ocean floor topography. In our study, the acci-
dents enable assessment of the robustness of our prediction 
methods against time variations and nonstationarity.

4.1.1 � Methods settings

ARMA   The orders of the ARMA model ( na and nc ) are 
selected according to the Bayesian information criterion 
(BIC) based on past data. The models usually range between 
10 and 30 parameters ( na, nc ). We choose a data window of 
500 s in length and apply forgetting coefficient � = 0.99 . The 
pitch angle signal is resampled at 10 Hz. Consequently, a 1-s 
prediction horizon corresponds to 10-steps-ahead prediction.

MCA   For the MCA, the signal is also resampled at 10 Hz. 
Past data are cut using a 50-s window ( N = 500 ). Eigenval-
ues of the autocorrelation matrix Ry lower than 2% of the 
total energy of � are selected. n1 and P are chosen according 

to the remarks given in the implementation paragraph of 
Sect. 3.2.

ANF   According to the pitch angle spectrum versus time, 
we distinguish three main frequencies. We choose p = 3 for 
the ANF frequency estimation stage. The parameter esti-
mates âj

0
 are set to zero initially. For the ANF bandwidths, r0 

is typically 0.5, and rf  is chosen such that the poles of Hi are 
as close as possible to the unit circle. The initial value of the 
adaptation gain is set to a large value, typically G0 = 100 . 
The forgetting factor �0 is set to 0.99, and the parameters 
vector 𝜃̂(0) is initially set to 0.

4.1.2 � Prediction results

In Figs. 4, 5 and 6, corresponding to a prediction horizon 
ranging from 0 to 1 s, we observe that the prediction error 
is relatively low and the ANF method has the best perfor-
mance. However, the substantial signal damping (accidents 
at 512 s, 562 s and 581 s) is not anticipated by any of the 

Fig. 7   Prediction with a horizon 
from 0 to 5 s using an ARMA 
model
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Fig. 8   Prediction with a horizon 
from 0 to 5 s using minor com-
ponent analysis
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Fig. 9   Prediction with a horizon 
from 0 to 5 s using adaptive 
notch filters
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methods. For example, at 581 s, the models predict that the 
signal will maintain its sinusoidal form and continue to 
decrease; however, the real (nonstationary) signal begins to 
rise at this moment.

In Figs. 7, 8 and 9, corresponding to a prediction horizon 
ranging from 0 to 5 s, the signal phase is generally respected, 
expect for signal nonstationarities (accidents at 512 s and 
582 s).

4.2 � Comparative analysis

According to the prediction method used, a restrictive 
hypothesis is applied to the signal. The ANF prediction 
method requires the signal to have a narrow band spectrum 
(which is our case). MCA is an offline method that assume 
a stationary signal. By contrast, ARMA has no spectral 
restrictions.

The overall complexity of the prediction algorithm must 
be considered for real-time on-board implementation. The 
recursive form of the ARMA and ANF methods entails a 
substantial advantage compared to the MCA method, which 
must compute the inverse of a (P − n1) × (P − n1) matrix 
in each prediction generation. The complexity is given as 
number of operations (flops) per iteration. The complexity of 
the ARMA method is O((na + nc)

2) , with na and nc between 
30 and 40. The complexity of the MCA method is O(P3) , 
with P ≈ 300 . Lowest complexity O(p2) is reached by ANF 
method with p varying from 3 to 6.

Prediction error is another important criterion that 
should be studied. For comparison, we use the normalized 
root mean squared error (NRMSE) of the 5-s prediction of 
pitch angle measurement presented in Sect. 4.1. The error 
is defined as follows:

The MCA method gives the lowest error of 2.69%.
Tracking of the varying frequencies and amplitudes of 

the signal is crucial for ship motion prediction. A study 
with synthetic signals (not presented here) showed that the 
ARMA and ANF methods are capable of adapting their 
model parameters faster than is the MCA method. This 

(44)NRMSE =
1

ymax − ymin

√√√√ 1

N

N∑
k=1

(
yk − ŷk

)2
.

characteristic is referred as tracking capability. A summary 
of the comparative analysis is presented in Table 1.

The MCA prediction method is not well suited for online 
estimation; further study would be necessary to develop 
a recursive form of the algorithm. Although this method 
shows the lowest error for stationary signals, the conver-
gence of MCA algorithm is relatively slow compared to 
other methods when signal frequencies are varying (low 
tracking capability). The ARMA and ANF methods pro-
vide similar performance in terms of the prediction error 
and tracking capability, with the advantage going to ANF in 
the case of narrow bands. However, the number of param-
eters that must be estimated for ANF ( p ≈ 3 ) is substantially 
lower than that for the ARMA method (between 30 and 40), 
which leads to faster convergence of the prediction error for 
ANF and to low computational requirements. Consequently, 
the ANF method is favored for ship motion prediction. We 
have also used a cascaded ANF and a two-stage structure to 
estimate the amplitudes and phase. In future work, we will 
investigate a simpler implementation.

4.3 � Performance requirements for helicopter hoist 
operation

The amplitude envelope of the ship movements strongly 
depends on its mass and the shape of its hull. Sailboats 
of few tons are more prone to swell perturbations and can 
develop high-amplitude dynamics. Typically in sea state 5, 
the roll angle reaches 40◦ , the pitch angle 25◦ , the vertical 
speed at the front deck 2.5 m/s, the longitudinal speed 1.5 
m/s and the lateral speed 2 m/s.

From ship motion prediction data, the helicopter autopilot 
is required to bring the rescuer on a the deck with acceptable 
touch conditions. According to the experience feedback of 
SAR helicopter pilots, the ship attitude when the rescuer 
touches the deck has to be lower than 5◦ . The vertical speed 
of the touch is required to be lower than 2 m/s, correspond-
ing to a free fall of 40 cm. The variation of longitudinal and 
lateral speed has to be lower than 0.5 m/s to avoid falls at 
touch.

The normalized prediction error on a 5-s horizon for the 
roll and pitch angle is approximately 10% when the ANF 
algorithm is used. This error is 13% for the vertical speed and 
23% for longitudinal and lateral speeds. We can, therefore, 

Table 1   Comparative analysis of prediction methods

Hypothesis Complexity NRMSE Tracking capability Advantages Drawbacks

ARMA None + 9.12% + Software implementation Order selection ( n
a
& n

b
)

MCA Stationary process − 2.69% – Low error High complexity & Offline
ANF Narrow band ++ 9.53% ++ Good for non-

stationary signals
Low complexity Choice of penalties constraints (r, �)
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expect the rescuer to touch the deck under the following 
maximum conditions: a roll angle of 4◦ , a pitch angle of 2.5◦ , 
a vertical speed of 0.32 m/s and a horizontal speed of 0.58 
m/s. All the limitations for a safe touch are respected except 
that of the horizontal speed which is slightly exceeded. How-
ever, we must remain cautious about this result because it 
assumes perfect control of the helicopter, which is generally 
not the case in presence of strong turbulence.

5 � Conclusion

Several prediction methods have been investigated for com-
parison. A new prediction method has been presented for the 
motion of a ship navigating through sea swell and has been 
compared to ARMA and MCA methods. The main interest 
of the ANF method is to efficiently estimate the time-varying 
frequencies, amplitude and phases of sinusoidal signals. The 
ANF algorithm shows good robustness to time-varying per-
turbation of a ship. Real-time implementation of this algo-
rithm on board is feasible and simple because of its recursive 
form and low number of parameters. The ANF and ARMA 
methods give similar results, but ANF shows better track-
ing capability and lower computational load. The prediction 
error on a horizon of up to 5 s may be satisfactory for use in 
helicopter guidance during hoist operation.

Future work will focus on building a complete state 
observer of the ship via image analysis from a camera 
mounted on a helicopter. Indeed, ships that have IMU equip-
ment broadcasting their motion data are not common. Then, 
the development of helicopter control laws for SAR missions 
will be performed. The prediction of wind perturbation using 
ANF will be also considered.
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