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Abstract
Accurate positioning plays a crucial role in the navigation of moving objects. This paper introduces a new, fast, and accurate 
GPS positioning algorithm using weighting Kalman Filter (KF) based on the variance estimation method. The proposed 
method is evaluated using three different motion scenarios, including straight movement in the air with a velocity of 90 m/s 
and circular movement with velocities of 100 m/s and 500 m/s. The experimental results demonstrate that using the sug-
gested method, the positioning accuracy for all three scenarios increases up to 30 percent as compared to two predominant 
methods (i.e., recursive least squares and KF).

Keywords  Accurate positioning · GPS · Recursive least squares · Weighted Kalman Filter · Variance Estimation

1  Introduction

Global Positioning System (GPS) as the powerful posi-
tioning system is vastly used in automated systems from 
self-driving cars to delivery systems and airlines. There-
fore, introducing a comprehensive, fast, and precise algo-
rithm would significantly affect the process of positioning 
and facilitates obtaining higher accuracy with a low com-
putational burden in millions of devices. This system uses 
pseudo-range and carrier phase as its rudimentary obser-
vations for navigation. Pseudo-range indicates the distance 
between receiver and satellite. The carrier phase is the phase 
difference between the received signal and the signal gener-
ated by the receiver. The carrier phase is needed for more 
accurate positioning [1, 2].

At present, the way of precise real-time positioning using 
single-frequency GPS receivers is using the differential 
mode that is a relative positioning of two receivers [3]. The 

use of differential GPS is proposed to achieve higher accu-
racy [4]. Some other research efforts have attempted to com-
bine GPS with other navigation systems such as GLONASS 
or INS to attain a higher accuracy [5]. However, these meth-
ods have high implementation cost and time complexity.

There are distinct mathematical methods to solve posi-
tioning equations and find accurate position based on funda-
mental observations. Kalman Filter (KF) and Least Squares 
(LS) methods are two of the most widely deployed methods. 
To obtain a higher level of precision, improved LS tech-
niques such as Recursive Least Squares (RLS) were pre-
sented [6].

Various mathematical optimization solutions were ana-
lyzed to both enhance the accuracy performance of the 
positioning system and attain the real-time advantage of KF 
method. It was found that using a weighting system along-
side KF elementary matrices would surprisingly improve 
accuracy. Therefore, observations with more accuracy get 
more significant effectiveness coefficient. The factors used 
in precision recognition of observations are Carrier–Noise 
power density ratio (C/N0), elevation angle, and combined 
coefficients.

In this paper, a method is proposed for positioning with 
single-frequency GPS receivers using the Weighted Kalman 
Filter (WKF) combined with stochastic models for weigh-
ing the observations based on their qualities. This method 
improves the positioning accuracy up to 30 percent com-
pared to conventional methods.
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The rest of this paper is organized as follows. Section 2 
presents mathematical tools for solving navigation equations 
in GPS receivers. Section 3 reviews the KF method and how 
this filter is employed in positioning. Section 4 introduces 
effective factors in positioning accuracy and elaborates how 
to weight the matrices based on the quality of observations. 
Section 5 discusses results, simulations, and the advantages 
of our approach as compared to other methods. Finally, 
Sect. 6 presents conclusions.

2 � Mathematical tools for solving navigation 
equations

After the signal acquisition in GPS receiver, an algorithm 
is needed for GPS data analysis and positioning. There are 
various mathematical tools for positioning in localization 
systems. In this section, we review some mostly used meth-
ods in positioning.

2.1 � Least squares method

LS is one of the basic and widely used methods in linear 
recursive models. This algorithm changes model coefficients 
and tries to make the recursive model, the most possibly 
identical one to observations. LS method is used to opti-
mize computations and maximize accuracy. The method is 
implemented where the equations are more than unknowns, 
or there is an over-determined system. GPS receivers output 
four parameters, including time and three positioning com-
ponents. Therefore, having four satellites could be enough 
to solve equations and find out these unknown parameters. 
Therefore, when there are more than four satellites within 
line of sight, implementing the LS method, extra satellites’ 
observations are used to obtain a higher degree of accuracy 
[7].

2.2 � Kalman Filter method

KF necessitates independence of initials and noises that 
should be explicitly defined for one-step-ahead prediction. 
One of its prominent characteristics is recursive analysis. 
Hence, storing only the last computation results in this filter 
helps out in storage space issues effectively. In this method, 
the dataset is updated using the previous computation 
results, without attaining all the results [8, 9]. This feature 
is beneficial in the system run time and overall performance.

The first step in reviewing KF recursive relations is defin-
ing state equations:

(1)Xk+1 = �kXk +Wk,

where XK indicates state process vector in tk , �k is the transi-
tion matrix of Xk to Xk+1 , and Wk is the process error vector. 
Measurement equations are defined by Eq. (2):

where Zk indicates measured vector in tk , Hk is the ideal 
transition matrix of Zk to Xk and Vk is the measurement error 
vector.

The prediction and update relations in the KF are as 
follows:

where P−
k
 is a known matrix that indicates corresponding 

error covariance.

3 � Deployment of Kalman Filter 
in positioning

Definition of KF parameters differs by its usage [10–13]. 
When it is implemented for positioning and navigation, 
the state vector will have eight elements, including the 
receiver position, speed, and clock bias changes [14]. The 
state transition matrix for a receiver with constant velocity 
is presented by Eq. (8):

The state vector of error will be estimated in every 
measurement loop. Then, the state vector of estimated 
error, as shown in Eq. (9), will be added to the receiver’s 
estimated location, and its value will be returned to zero 
for the next step.

(2)Zk+1 = HkXk + Vk,

(3)X̂k = X̂−
k
+ Kk

(
Zk − HkX̂

−
k

)
,

(4)X̂−
k+1

= 𝜙kX̂k,

(5)P−
k+1

= �kPk�
T
k
+ Qk,

(6)Pk =
(
I − KkHk

)
P−
k
,

(7)Kk = P−
k
HT

k

(
HkP

−
k
HT

k
+ Rk

)−1
,

(8)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛿xk+1
𝛿yk+1
𝛿zk+1
𝛿ẋk+1
𝛿ẏk+1
𝛿żk+1
𝛿tk+1
𝛿ṫk+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 ΔT 0 0 0 0

0 1 0 0 ΔT 0 0 0

0 0 1 0 0 ΔT 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 ΔT

0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛿xk
𝛿yk
𝛿zk
𝛿ẋk
𝛿ẏk
𝛿żk
𝛿tk
𝛿ṫk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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In the measurement step, the estimation of state vector 
will be used for linearization of observations matrix that is 
shown in the presented equation:

where ax,i , ay,i and az,i are distances between i-th satellite and 
receiver and aẋ,i , aẏ,i and aż,i are distance changes speed for 
i-th satellite and receiver. P is an 8 × 8 diagonal covariance 
matrix. z is the measurement vector that indicates the dif-
ference between pseudo-range observations vector received 
from satellites and estimated pseudo-range based on receiv-
ers clock bias and location as Eq. (11):

Measurement covariance matrix (R) is another diagonal 
matrix. Its non-zero diagonal elements are dependent upon 
every satellite’s pseudo-range measurement variance. The 
matrix is shown by Eq. (12):

Next matrix that is presented in this section is Q. It is 
described as process noise covariance and indicates uncer-
tainty in dynamic models. It was developed to define time 
unknown parameters and is used to not allow the digital filter 
falling asleep.

(9)

⎡
⎢⎢⎢⎢⎢⎣

X̂+
K

Ŷ+
K

Ẑ+
K

t̂+
K
̂̇t+
K

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

X̂−
K
+ 𝛿x+

k

ŷ−
K
+ 𝛿y+

k

Ẑ−
K
+ 𝛿z+

k

t̂−
K
+ 𝛿t+

k
̂̇t−
K
+ 𝛿ṫ+

k

⎤
⎥⎥⎥⎥⎥⎦

(10)H =

⎡
⎢⎢⎢⎣

ax,1 aẋ,1 ay,1 aẏ,1 az,1 aż,1 1 0

ax,2 aẋ,2 ay,2 aẏ,2 az,2 aż,2 1 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

ax,i aẋ,i ay,i aẏ,i az,i aż,i 1 0

⎤
⎥⎥⎥⎦
,

(11)
𝜌̂i =

√(
X̂i − X̂−

K

)2
+

(
Ŷi − Ŷ−

K

)2
+

(
Ẑi − Ẑ−

K

)2
+ ct̂−

K
.

(12)R =

⎡
⎢⎢⎢⎢⎣

�2
�1

0 … 0

0 �2
�2

⋮

⋮ ⋱ 0

0 … 0 �2
�i

⎤
⎥⎥⎥⎥⎦
.

(13)Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Sp
Δt3

3
Sp

Δt2

2
0 0 0 0 0 0

Sp
Δt2

2
SpΔt 0 0 0 0 0 0

0 0 Sp
Δt3

3
Sp

Δt2

2
0 0 0 0

0 0 Sp
Δt2

2
SpΔt 0 0 0 0

0 0 0 0 Sp
Δt3

3
Sp

Δt2

2
0 0

0 0 0 0 Sp
Δt2

2
SpΔt 0 0

0 0 0 0 0 0 SfΔt + Sg
Δt3

3
Sg

Δt2

2

0 0 0 0 0 0 Sg
Δt2

2
SgΔt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where parameters Sp , Sf and Sg are the spectral amplitudes 
associated with the white noise driving functions.

4 � Weight implementation in Kalman Filter

KF can be modified for distinctly different usages. In posi-
tioning, inputs with low precision and loss of quality cause 
a discrepancy in computations. Then, by defining a coef-
ficient, through which observations can be weighed, dis-
tortion effects can be gradually reduced or eliminated. In 
the next part, firstly, we discuss deteriorating factors that 
would distort observations inclusive of elevation angle and 
C/ N0. Finally, we present an efficient variance estimation 
method, which utilizes measured deteriorating factors and 
along with KF, helps in discrepancy reduction.

4.1 � Elevation angle and C/N0 dependency in GPS 
signal quality

There is a vast range of variables that are capable of 
changing the GPS receiving signals quality. Meanwhile, 
two factors are more impactful in positioning precision: 
elevation angle, and C/N0. The accuracy of observables 
alters by the elevation angle change for satellites within 
the line of sight. Due to the observable precision of a 
single channel, quality of observations deteriorates sig-
nificantly as the elevation angle decreases. Furthermore, 
propagation and environmental effects deteriorate trans-
mitted GPS signals. Accordingly, the transmitted signals 
quality diminishes drastically, and it is possible to have a 
loss in power that hinders positioning. The second factor 
is C/N0. It is carrier–noise power density ratio in a 1-Hz 
bandwidth, which can demonstrate effective signal power 
in GPS receiver.

Considering the inverse relationship between the qual-
ity of signals and the variance of observations, variance 
inverse is employed as a weight matrix in KF to achieve 
output that is more accurate. All components of the weight 
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matrix are related to elevation angle or C/N0 at specified 
satellite through presented models. Therefore, matrix A, 
defined as the covariance matrix, makes it feasible for the 
system to make use of noisy observations for positioning 
effectively. This is done by assigning these observations 
low weights and not ignoring them. Variance is defined 
using elevation angle and C/N0. Next section elaborately 
discusses variance determination. The matrix A is as 
Eq. (14):

where �2
xi
 is the variance of i-th observation and �xixj is the 

variance between i th and j th observation. The off-diagonal 
terms are set to zero because observations are independent. 
Accordingly, the covariance matrix and the weight matrix 
are both diagonal.

(14)A =

⎡
⎢⎢⎢⎢⎣

�2
x1

�
x1x2

⋯ �
x1xn

�
x2x1

�2
x2

⋯ �
x2xn

⋮ ⋮ ⋱ ⋮

�
xnx1

�
xnx2

⋯ �2
xn

⎤
⎥⎥⎥⎥⎦
,

(15)A =

⎡
⎢⎢⎢⎢⎣

�2
x1

0 ⋯ 0

0 �2
x2

⋮

⋮ ⋱ 0

0 ⋯ 0 �2
xn

⎤⎥⎥⎥⎥⎦

The weight for i th observation is computed as follows:

where �2
0
 is an arbitrary scale factor used as observation 

variance. Its value can be adjusted, but the default value is 
one here.

Then, the independent observation weight is known and 
the modified R matrix will be as Eq. (18):

where �2
xi
 is the variance of i th observation and ��1 is known 

and optimized. The procedure of Fig. 1 is used in weight 
implementation.

(16)Wi(n) =
�2
0

�2
i
(n)

,

(17)Wi(n) =
1

�2
i
(n)

.

(18)R = �2
�1
×

⎡⎢⎢⎢⎢⎢⎣

1

�2
x1

0 ⋯ 0

0
1

�2
x2

⋮

⋮ ⋱ 0

0 ⋯ 0
1

�2
xn

⎤⎥⎥⎥⎥⎥⎦

,

Fig. 1   Proposed WKF procedure
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4.2 � Variance estimation function models

In this section, we may use stochastic models based on vari-
ance estimation methods to define the best standard devia-
tion of the observables and to fit the weight matrix. The 
satellites with low elevation angle have observations con-
taining high multi-path and atmospheric refraction errors. 
Hence, small weights will be assigned to observations of 
these satellites to reduce ionospheric and tropospheric dete-
riorating effects. As a result, the graph structural strength in 
the satellite’s distribution will be guaranteed. Finally, three 
C/N0-based models are introduced, in which small weights 
would be assigned to the observations with low C/N0.

4.2.1 � Elevation‑based exponential function model

As a weighting scheme, the exponential function is an opti-
mal model [14]. This model is expressed by Eq. (19):

where � is the standard deviation of observables and �i(n) 
is the elevation angle for n th observable at epoch ti . The 
parameters a and b are to be driven using estimated variance 
components. Figure 2 shows the �2

i
 value based on Model 1.

(19)�2
i
(n) = a + b × exp

(
−�i(n)

�0

)
,

4.2.2 � Elevation‑based sinusoidal function model

Sinusoidal function is one of the most widely used models. 
It can be indicated by Eq. (20) [14]:

The Eq. (20) can be modified to Eq. (21) for better per-
formance in low angles.

where a, b and c are all experimental values. Figure 3 shows 
the �2

i
 value based on Model 2.

4.2.3 � Elevation‑based tan function model

Another suitable scheme is the function of Tangent [15]. 
Although avoiding singularity, tan(0), which has an absolute 
result of zero, an appropriate adjustment should be used by 
Eq. (22):

where �0 is a reference elevation angle that is chosen close to 
zero. Figure 4 shows the �2

i
 value based on Model 3.

(20)�2
i
(n) =

a2

sin2
(
�i(n)

) .

(21)�2
i
(n) = a2 +

b2

c2 + sin2
(
�i(n)

) ,

(22)�2
i
(n) = a2 +

b2

c2 + tan2
(
�i(n) − �0

) ,

Fig. 2   �2

i
 value based on Model 1
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4.2.4 � Elevation‑based cosine function model

The final scheme for elevation-based models, which may be 
beneficial to define �2

i
(n) , is the cosine function [16]. The 

model is simple, and its equation is defined by Eq. (23):

Figure 5 shows the �2
i
 value based on Model 4.

(23)�2
i
(n) = a2 + b2 × cos2

(
�i(n)

)
.

Fig. 3   �2

i
 value based on Model 2

Fig. 4   �2

i
 value based on Model 3
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4.2.5 � C/N0‑based sigma ε function model

Hartinger and Brunner introduced this model [17]. The model 
uses C/N0 observable to determine �2

i
 through the model 

parameter Ci . They added an additive term shown as Vi for 
receiver–antenna combinations issue. The finalized model is 
expressed by Eq. (24):

where the model parameters Vi [m2] and Ci [m2Hz] are esti-
mated as CL1 = 0.244 and VL1 = 0 for L1 frequency. Figure 6 
shows the �2

i
 value based on Model 5.

4.2.6 � C/N0‑based sigma ∆ function model

This model takes the difference (∆) between the expected 
value and the measured C/N0 of the received signal. It is 
used to indicate signal distortion [18]. The final equation is 
presented by Eq. (25):

where ∝ is an empirical constant factor. Figure 7 shows the 
�2
i
 value based on Model 6.

(24)�2
i
(n) = Vi + Ci × 10−C∕N0 ,

(25)�2
i
(n) = Vi + Ci × 10

−
C∕N0−∝|Δ|

10 ,

4.2.7 � C/N0‑based function model combined with noise 
bandwidth of the carrier tracking loop

Langley, Braasch, and Dierendonck presented a formula 
which determines �2

i
 based on C/N0 and noise bandwidth. 

This relation is expressed by Eq. (26) [19, 20]:

where B is the noise bandwidth of the carrier tracking loop 
(in Hz) and λ is the wavelength of the carrier (in meter). 
Figure 8 shows the �2

i
 value based on Model 7.

Having this modified R matrix, the positioning will be 
affordable through WKF procedure in Fig. 1.

5 � Simulations and results

Raw GPS data including pseudo-range, Doppler shift, 
and satellite ephemeris are generated by Rhode and 
Schwarz GNSS simulator. The GNSS simulator in the R 
and S®SMBV100A is capable of generating multi-path 
signals and can simulate realistic transmission conditions 
using atmospheric effects modeling. It is used to model 
the effects that impact on GNSS receivers’ overall perfor-
mance, such as atmospheric conditions, multi-path reflec-
tions, and interference signals. Positioning in dynamic 

(26)�2
i
(n) =

√
B

C∕N0

×
�

2�
,

Fig. 5   �2

i
 value based on Model 4
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states based on stochastic weighting empowered KF model 
was analyzed to find out the effects of stochastic weighting 
on precision and speed performance of KF. The results of 
RLS and KF methods were compared with this proposed 

model. Then, the simulations were executed for three dif-
ferent scenarios based on speed and type of movement all 
in Matlab. The first scenario corresponds to moving object 
motion in the air with a velocity of 90 m/s. The second 

Fig. 6   �2

i
 value based on Model 5

Fig. 7   �2

i
 value based on Model 6
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and third scenarios are corresponding to the two objects 
both with circular movements, but with different speeds 
of 100 m/s and 500 m/s. The mentioned motion scenarios 
are indicated in Figs. 9, 10, 11.

The results of navigating and positioning performance 
(precision and CPU time) for RLS, KF, and proposed WKF 

methods are shown in Tables 1 and 2. In addition, the posi-
tioning simulation results compared with the reference 
position for three mentioned types of motion scenarios are 
shown in Figs. 12, 13, 14.    

The results analysis indicates that the precision in posi-
tioning has been improved effectively in all three scenarios 

Fig. 8   �2

i
 value based on Model 7

Fig. 9   Move in air with velocity 
of 90 m/s
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after implementing the WKF methods. As shown in Table 1, 
when WKF is used alongside Model 2 using elevation angle, 
the positioning error is decreased to its lowest level (due to 
the dramatically high-level contrast of weights in Model 2). 
The digital filter itself had far better CPU time compared to 
the RLS method. The significant fact is that implementation 
of the weighting method in the filter did not change CPU 
time considerably, although it has improved accuracy.

6 � Conclusion

GPS is the most vastly deployed positioning system world-
wide. There are myriad of devices, which need instant and 
precise positioning. In this paper, a new method for posi-
tioning with single-frequency GPS receivers using the WKF 
combined with stochastic models was proposed. This method 
improved KF accuracy with low computational burden 

Fig. 10   Circular motion with 
velocity of 100 m/s

Fig. 11   Circular motion with 
velocity of 500 m/s
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and CPU time. The results of simulations indicate that the 
novel stochastic observation-based sigma WKF model has 
the best performance in speed and accuracy generally, as 
compared to RLS and KF. In addition, the results for dif-
ferent motion scenarios with a vast range of velocities from 
90 m/s to 500 m/s highlight that the proposed algorithm has 

functionality in a wide range of general purpose moving 
objects. The new approach, considering its high accuracy 
and fast performance, has usability in medium- to high-
speed moving objects such as airplanes and so on. Com-
pared to RLS, it has more than 80% better CPU time, and 
compared to KF, it has up to 30% better accuracy.

Table 1   Comparison of RMS errors in meters for nine methods

The best values are shown in bold

Scenarios Methods

RLS KF WKF + 
Model 1

WKF + 
Model 2

WKF + 
Model 3

WKF + 
Model 4

WKF + 
Model 5

WKF + 
Model 6

WKF + 
Model 7

Air 90 m/s 14.77 14.22 11.82 9.94 11.79 13.63 12.15 11.51 11.77
Circular 100 m/s 12.30 12.29 10.72 9.65 9.78 11.77 11.68 11.35 11.41
Circular 500 m/s 12.28 9.51 8.80 6.53 6.85 8.80 8.78 8.40 8.48

Table 2   Comparison of CPU times in seconds for nine methods

Scenarios Methods

RLS KF WKF + 
Model 1

WKF+  
Model 2

WKF +  
Model 3

WKF +  
Model 4

WKF +  
Model 5

WKF +  
Model 6

WKF +  
Model 7

Air 90 m/s 0.6597 0.1253 0.1295 0.1260 0.1266 0.1277 0.1372 0.1345 0.1362
Circular 100 m/s 0.6719 0.0734 0.0828 0.0745 0.0746 0.0775 0.0814 0.0763 0.0781
Circular 500 m/s 0.6852 0.0735 0.0831 0.0748 0.0751 0.0787 0.0861 0.0781 0.0823

Fig. 12   WKF + Model 2 positioning result for 90 m/s air motion
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Fig. 13   WKF + Model 2 positioning result for 100 m/s circular motion

Fig. 14   WKF + Model 2 positioning result for 500 m/s circular motion
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