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Abstract
Background lncRNAs–miRNAs–mRNAs networks play an important role in Gastric adenocarcinoma (GA). Identification 
of these networks provide new insight into the role of these RNAs in gastric cancer.
Objectives Biological information databases were screened to characterize and examine the regulatory networks and to 
further investigate the potential prognostic relationship this regulation has in GA.
Methods By mining The Cancer Genome Atlas (TCGA) database, we gathered information on GA-related lncRNAs, miR-
NAs, and mRNAs. We identified differentially expressed (DE) lncRNAs, miRNAs, and mRNAs using R software. The 
lncRNA–miRNA–mRNA interaction network was constructed and subsequent survival examination was performed. Rep-
resentative genes were selected out using The Biological Networks Gene Ontology plug-in tool on Cytoscape. Additional 
analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms were used to screen rep-
resentative genes for functional enrichment. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) were 
used to identify the expression of five candidate differential expressed RNAs.
Results Information of samples from 375 cases of gastric cancer and 32 healthy cases (normal tissues) were downloaded from 
the TCGA database. A total of 1632 DE-mRNAs, 1008 DE-lncRNAs and 104 DE-miRNAs were identified and screened. 
Among them, 65 DE-lncRNAs, 10 DE-miRNAs, and 10 DE-mRNAs form lncRNAs–miRNAs–mRNAs regulatory network. 
Additionally, 10 lncRNAs and 2 mRNAs were associated with the prognosis of GA. Multivariable COX analysis revealed that 
AC018781.1 and VCAN-AS1 were independent risk factors for GA. GO functional enrichment analysis found DE-mRNA 
was significantly enriched TERM (P < 0.05). The KEGG signal regulatory network analysis found 11 significantly enrichment 
networks, the most prevailing was for the AGE-RAGE signaling pathway associated with Diabetic complications. Results 
of RT-qPCR was consistent with the in silico results.
Conclusions The results of the present study represent a view of GA from a analysis of lncRNA, miRNA and mRNA. The 
network of lncRNA–miRNA–mRNA interactions revealed here may potentially further experimental studies and may help 
biomarker development for GA.
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Introduction

Gastric cancer is one of the highest-incidence and highest-
mortality tumors and poses a major challenge to human 
health worldwide (Ferlay et al. 2013; Jemal et al. 2011; 
Torre et al. 2015; Znaor et al. 2013). In China, gastric can-
cer has been revealed as the most common malignant tumor 
of the digestive tract. Data further suggests gastric cancer is 
becoming more prevalent, with males being more suscep-
tible than females, and most cases were detected in adults 
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aged between 55 and 70 (Catalano et al. 2009). Additionally, 
inflammation caused by Helicobacter pylori (HP) is closely 
related to gastric cancer. Inflammatory-related malignant 
transformation is a biological process involving multiple 
cells, genes, and non-coding RNAs (Migita et al. 2018; 
Senol et al. 2014; Wang et al. 2017a, b). Gastric adeno-
carcinoma is a type of gastric cancer that results from the 
deterioration of gastric gland cells, accounting for 95% of all 
gastric cancers (Blank et al. 2014; Dixon et al. 2016). Early 
diagnosis can significantly improve treatment prognosis of 
this cancer type, but the lack of effective early diagnosis 
approaches means most patients are often detected in late 
-stage or already have developed metastasis, reducing the 
effectiveness of treatment. As a result, elucidating the under-
lying mechanisms during the development and progression 
of GA is critical for the advancement of new tumor biomark-
ers and therapeutic targets.

Between 80 and 90% of human RNAs are non-coding 
RNAs. In the last decade, researches have described how 
many non-coding RNAs play important roles in various cel-
lular events (Song et al. 2013). The mature miRNA is com-
posed of approximately 22 nucleotides (nt), which are rec-
ognized by the ribonucleoprotein in the cell and assembled 
into an RNA-induced silencing complex (RISC). RISC can 
result in mRNA degradation or inhibition of mRNA trans-
lation by pairing with the 3′ region of mRNA completely 
or incompletely (Kim et al. 2009), which can significantly 
modulate gene expression. Long non-coding RNAs (lncR-
NAs) are > 200 nt sized transcripts that are not translated. 
The abnormal expression of lncRNAs has been considered 
to be involved in various tumorigenic processes. It has been 
reported that changes in the expression level of lncRNA are 
closely related to the occurrence of gastric cancer (Fang 
et al. 2015). Work has shown that lncRNAs have micro-
RNA responsible elements (MRE), the binding site that can 
sponge miRNAs, so that miRNA-mediated post-transcrip-
tional regulation of target mRNAs can be impaired. In 2011, 
after clarifying the interaction between PTEN and its pseu-
dogene PTENP1, these transcripts were named competitive 
endogenous RNA (ceRNA) (Poliseno et al. 2010). Recently, 
various reports have clarified the presence of ceRNA net-
works in a variety of cancers including gastric cancer (Xia 
et  al. 2014). Identification of gastric cancer-associated 
ceRNA regulatory networks has been suggested to provide 
insight into the role of these RNAs in tumorigenesis and 
treatment outcomes in gastric cancer.

In this study, we constructed a regulatory network 
between lncRNAs–miRNAs–mRNAs. Here 10 lncRNAs and 
2 mRNAs were identified to be associated with the prog-
nosis of GA. Analysis further revealed that AC018781.1 
and VCAN-AS1 are independent risk factors for GA. 
Through Gene Ontology (GO) enrichment analysis of 
DE(differentially expressed)-mRNA, it was found that it was 

significantly enriched in TERM (P < 0.05), and the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) signal regula-
tory network analysis found that DE-mRNA was enriched in 
AGE-RAGE signaling pathway in the diabetic complications 
pathway. The differential expression profile analysis of three 
candidate lncRNAs and two mRNAs were confirmed by RT-
qPCR. Ultimately, a promising ceRNA regulatory network 
related to the progression of GC was successfully identified. 
This novel approach of predicting GA related lncRNA and 
lncRNA–miRNA–mRNA networks could help to understand 
the underlying mechanism of GA.

Materials and methods

Database screening

The GA-associated gene (miRNA, lncRNA, mRNA) expres-
sion data was collected from the TCGA database (https:// 
gdc- portal. nci. nih. gov/). This included 375 GA samples and 
32 samples from normal tissues. Data was merged and gene 
ID conversion was performed by Perl script allow the devel-
opment of Gene expression matrix.

Identifying differentially expressed genes

The expression matrix of lncRNAs, miRNAs and mRNAs 
were analyzed by R language edge R package (version 3.5.1) 
to obtain the expression matrix of differentially expressed 
RNAs (cut-off: false discovery rate (FDR) < 0.01 and |fold 
change|> 2). Correlated pairs of DE-lncRNAs and DE-miR-
NAs, as well as DE-miRNAs and DE-mRNA were evalu-
ated by using Perl scripts. The lncRNAs–miRNAs–mRNAs 
regulation loops were obtained based on lncRNAs-miRNAs 
and miRNAs-mRNAs regulation pairs. The regulatory 
relationship between DE-lncRNAs and DE-miRNAs pairs 
were predicted by miRcode (http:// www. mirco de. org). The 
regulatory relationship between DE-miRNAs and DE-gene 
(DEG) pairs were predicted by miRDB, miRTarBase, Tar-
getScan. Using the R language Venn diagram the regulatory 
pairs of DE-miRNAs and DEGs as well as DE-lncRNAs and 
DE-miRNAs (that have opposite expression trends with each 
other) were selected to construct a Wayne map of regulatory 
networks.

Single factor, multi‑factor COX regression

Univariate analysis was used to assess DE-lncRNA, DE-
mRNA, DE-miRNA in combination with clinical pathologi-
cal data. DE-RNAs with P value less than 0.05 were selected 
for multivariate COX regression analysis. This analysis was 
used to develop a prognostic model of gastric cancer and 
ROC curve was made to verify the model.

https://gdc-portal.nci.nih.gov/
https://gdc-portal.nci.nih.gov/
http://www.mircode.org
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ceRNAs regulation network map construction 
and survival analysis

The integrated co-expression network of DE-lncR-
NAs, DE-miRNAs and DE-mRNAs were visualized by 
Cytoscape software. Further, prognostic DEGs, DE-
lncRNAs, and DE-miRNAs in the ceRNAs network were 
identified, and Kaplan–Meier survival plots of representa-
tive miRNAs, lncRNAs and mRNAs were drawn by the R 
survival package.

Functional enrichment analysis

GO analysis was performed using the BINGO plugin of 
Cytoscape software. KEGG analysis was performed using 
KOBAS (http:// kobas. cbi. pku. edu. cn/).

RNA extraction and reverse transcription 
quantitative polymerase chain reaction (RT‑qPCR) 
assay

Total RNA of GA samples and matched adjacent nor-
mal samples in 6 patients were obtained TRIzol reagent 
(Invitrogen Life Technologies, Carlsbad, CA, USA) and 
then was reversely transcribed into complementary DNA 
(cDNA) (PrimeScript™RT reagent Kit with gDNA Eraser, 
Takara, Otsu, Shiga, Japan). Real Time-PCR was per-
formed usingTaKaRa TB Green™ Premix Ex Taq™ II 
(Takara, Otsu, Shiga, Japan). GAPDH was used as ref-
erence genes to normalized the expression of candidate 
genes. Sequence or primers was showed in Table 1. The 
study was approved by Ethics Committee of Xingtai Peo-
ple’s Hospital of Hebei Medical University and informed 
consents from all patients.

Results

Identification of DE‑lncRNAs, DE‑miRNAs 
and DE‑mRNAs associated with GA

After analysis of RNA-seq and miRNA-seq data from 
TCGA, a total of 1632 mRNAs, 1008 lncRNAs, and 104 
miRNAs were identified and screened for differential 
expression. Targeted predictive analysis using miRDB, 
miRTarBase and TargetScan indicated that mRNA 
expressed in GA contains potential targets for lncRNA 
and miRNA, of which 10 mRNA, 65 lncRNA and 10 
miRNA are differentially expressed RNA (DE-RNA) 
(supplement 1).

Identification of DE‑lncRNAs, DE‑miRNAs 
and DE‑mRNAs that are associated with GA survival

Single-factor COX analysis of DE-RNA (P < 0.001) sug-
gested that 17 DE-RNAs (CADM2, ADAMTS9-AS1, 
ADAMTS9-AS2, C15orf54, VCAN-AS1, AC110491.1, 
FRMD6-AS2, AC011374.1, LINC00326, POU6F2-
AS2, AC018781.1,  AL391152.1,  AL139002.1, 
ERVMER,COL1A1,ATAD2,SERPINE1) are risk factors for 
GA (supplement 2). A heat map was constructed as shown 
in (Fig. 1a). Multivariate Cox regression analysis showed 
that 10 combined DE-RNAs can predict GA prognostic, 
while AC018781.1 and VCAN-AS1 were predicted inde-
pendent prognostic factors of GA (Table 2). Using these 
10 DE-RNAs to construct a prognostic model, the survival 
time of low-risk patients was significantly higher than that 
of high-risk patients (Fig. 1b). In addition, ROC analysis 
indicated good predictability as area under the curve (AUC) 
was reported as 0.704, 95%CI (0.639–0.749) (Fig. 1c).

Kaplan–Meier Survival analysis of DE‑lncRNAs, 
DE‑miRNA, DE‑mRNA for GA

A total of 10 DE-lncRNAs (AC010145.1, AC018781.1, 
ADAMTS9-AS1, ADAMTS9-AS2, AL139002.1, 
AL391152.1, IGF2-AS, LINC00326, POU6F2-AS2, VCAN-
AS1) (Fig. 2a–j) and two DE-mRNAs (ATAD2, SERPINE1) 
(Fig. 2k, l) were found to be associated with survival rates 
of GA (P < 0.05) by Kaplan–Meier analyses. Additionally, 
no DE-miRNAs were found to be related to the prognosis 
of GA.

Table 1  PCR primers used for qRT-PCR

Primer Sequence (5′–3′)

VCAN-AS1 5′-AGA GCA TGT TTT CCT TGG CTTT-3′
5′-TAT GTC AGC TGT GAT GTG GCA-3′

POU6F2-AS2 5′-ACA GCA GTG CCA GAA GGA GTA TTG -3′
5′-GCA GAC CTG AGC TTG TGA GTGAC-3′

IGF2-AS 5′-TCC ACA CCA GAC AGC ACA GACC-3′
5′-TCC GTG GTT GGC TCC AGG TG-3′

ATAD2 5′-GGA ATC CCA AAC CAC TGG ACA-3′
5′-GGT AGC GTC GTC GTA AAG CACA-3′

SERPINE1 5′-TCT CTT TGT GGT TCG GCA CA-3′
5′-TTC GTC CCA AAT GAA GGC GT-3′

GAPGH 5′-GCT CTC TGC TCC TCC TGT TC-3′
5′-ACG ACC AAA TCC GTT GAC TC-3′

http://kobas.cbi.pku.edu.cn/
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Fig. 1  The identification of DE-lncRNAs, DE-miRNAs and DE-mRNAs that are associated with GA. a Construction of a DE-RNA heat map 
that affects the development of GA. b ROC analysis of DE-RNA predictability. c Survival analysis of DE-RNA and prognosis of GA

Table 2  Multivariate Cox regression analysis for significant DE-RNAs

*P < 0.05, the independent influence factors of GC. Cox regression equation for prognosis: y = 0.1240 × AC018781.1 + 0.1242 × ADAMTS9-
AS1 + 0.0749 × AL139002.1 + 0.0917 × AL391152.1 + 0.1247 × C15orf54 + 0.0658 × ERVMER61-1 + 0.0812 × LINC00326 + 0.1456 × 
VCAN-AS1 − 0.1983 × ATAD2 + 0.0989 × SERPINE1

Type Coef Exp(coef) SE(coef) z P

LncRNA
LncRNA
LncRNA
LncRNA
LncRNA
LncRNA
LncRNA
LncRNA
mRNA
mRNA

AC018781.1
ADAMTS9-

AS1
AL139002.1
AL391152.1
C15orf54
ERVMER61-1
LINC00326
VCAN-AS1
ATAD2
SERPINE1

0.1240
0.1242
0.0749
0.0917
0.1247
0.0658
0.0812
0.1456
− 0.1983
0.0989

1.1320
1.1323
1.0778
1.0960
1.1328
1.0681
1.0846
1.1567
0.8201
1.1039

0.0607
0.0785
0.0467
0.0542
0.0677
0.0423
0.0542
0.0736
0.1118
0.0685

2.04
1.58
1.61
1.69
1.84
1.56
1.50
1.98
− 1.77
1.44

0.041*
0.113
0.108
0.091
0.065
0.120
0.134
0.048*
0.076
0.149
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Construction of a ceRNA regulatory network seen 
in GA

DE-lncRNA, DE-miRNA, and DE-mRNA were used to 
construct a ceRNA network to further analyze the regula-
tory relationship. A total of 169 pairs of lncRNA-miRNA 
and 16 pairs of DEmiRNAs-DE mRNAs were involved 
in the construction of ceRNA network map (Fig. 3). The 
lncRNAs–miRNAs–mRNAs regulatory network includes 
85 nodes and 184edges.

Functional analysis of GO and KEGG pathways 
that are regulated in GA

GO analysis of 10 DE-mRNAs revealed that the three 
genes ESRRG, ATAD2, and COL1A1 were enriched in 
the "positive regulation of transcription, DNA-templated" 

function on biologic processes (Table 3). As shown in 
Fig. 4, a total of 108 nodes and 166 edges constitute a 
functional regulatory network. KEGG analysis revealed 
11 signaling pathways (P < 0.05) the most significant 
among them was the AGE-RAGE signaling pathway asso-
ciated with diabetic complications (Fig. 5).

Expression of candidate DE‑RNAs in patients

To further verify our findings, three DE-lncRNAs (VCAN-
AS1, IGF2-AS, IPOU6F2-AS2) and two DE-mRNAs 
(ATAD2, SERPINE1) were further explored by RT-qPCR. 
The expression of VCAN-AS1, IGF2-AS, IPOU6F2-AS2 
and SERPINE1 was higher in GA than that in matched 
adjacent normal samples. The expression of ATAD2 was 
lower in GA than that in matched adjacent normal samples 
(Fig. 6). These results were consistent with bioinformatic 
analysis.

Fig. 2  Kaplan–Meier Survival analysis of DE-lncRNAs (a 
AC10145.1, b AC01818781.1, c ADAMTS9-AS1, d ADAMTS9-
AS2, e AL139002.1, f AL391152.1, g IGF2-AS, h LINC00326, i 

POU6F2-AS2 j VCAN-AS1), DE-mRNA for GA (k ATAD2, l SER-
PINE1). Blue lines represent low expression and red lines represent 
high expression
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Discussion

Epidemiological investigations have suggested the main 
contributing factors to GA development are Helicobacter 
pylori infection, diet, lifestyle, host gene type, and smoking 
(Kato and Asaka 2012; Uemura et al. 2001). The pathologi-
cal process of GA is complex involving multiple genetic and 
phenotypic factors. GA is not just the result of the expres-
sion of specific prognostic genes, but also the complement 
of miRNA and lncRNAs (Chong et al. 2018), several post-
transcriptional events like methylation level (Maeda et al. 

2018) and other translational events. The development of 
GA entails the formation of a complex regulatory network 
involving RNAs. However, many studies are currently lim-
ited to specific genes or specific gene regulatory pathways. 
Few studies have examined the regulation network involving 
lncRNAs–miRNAs–mRNAs in GA. Here we explore the 
ceRNA regulatory network through bioinformatics and inte-
grated analysis, with the aim to identify key genes involved 
in the development of GA and provide data that may be used 
in the development of molecular biomarkers and targeted 
drug screen for GA.

Fig. 3  Construction of a ceRNAs regulatory network for GA. Triangles represent mRNA, squares represent miRNAs, and circles represent 
lncRNA. Red represents high expression and yellow represents low expression

Table 3   Representative DE-mRNAs were selected for gene ontology analysis with DAVID

*P < 0.05

Category Term Count % P value Genes

GOTERM_BP_DIRECT GO:0045893 ~ positive regulation of transcription, DNA-
templated

3 30 0.029296692* ESRRG, ATAD2, COL1A1

GOTERM_BP_DIRECT GO:0045944 ~ positive regulation of transcription from 
RNA polymerase II promoter

3 30 0.093402401 SERPINE1, ESRRG, ATAD2

GOTERM_MF_DIRECT GO:0016887 ~ ATPase activity 2 20 0.093461135 KIF23, ATAD2
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In this study, we investigated the factors affecting 
the development of GA by constructing lncRNAs–miR-
NAs–mRNAs regulatory network based on the ceRNA 

hypothesis. To achieve this goal, we collected the expres-
sion data of GA-related genes (miRNAs, lncRNAs and 
mRNAs) from the TCGA database, and selected 1632 

Fig. 4  Functional analysis of GO in GA. Each node stands for a 
certain process and a larger size indicates a larger number of genes 
involved in the process. The colored nodes indicate statistical differ-

ence (P < 0.05). White-colored nodes were only used to connect the 
biologic processes without statistical difference

Fig. 5  KEGG pathways in GA. The color represents the P value and the length represents the number of enriched genes
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DE-mRNAs, 1008 DE-lncRNAs, and 104 DE-miRNA. 
From this, a ceRNA regulatory network was developed 
from 65 DE-lncRNAs, 10 DE-miRNAs and 10 DE-
mRNAs. At the same time, we identified 10 DE-lncRNAs 
(AC010145.1, AC018781.1, ADAMTS9-AS1, ADAMTS9-
AS2, AL139002.1, AL391152.1, IGF2-AS, LINC00326, 
POU6F2-AS2, VCAN-AS1) and 2 DE-mRNAs (ATAD2, 
SERPINE1) that were associated with survival time of GA. 
Studies have shown that ADAMTS9-AS2 can participate in 
gastric cancer cell proliferation, apoptosis, migration and 
invasion. Furthermore, ADAMTS9-AS2 has been found to 
play a key role in the development of gastric cancer by reg-
ulating PI3K/Akt pathway (Cao et al. 2018). In addition, 
the SERPINE1 gene is involved in tumor gene activation 
(Rivas-Ortiz et al. 2017), and is currently studied in esoph-
ageal cancer (Klimczak-Bitner et al. 2016), rectal cancer 
(Wang et al. 2017a, b), endometrial cancer (Yildirim et al. 
2017), head and neck cancer (Pavon et al. 2016) and other 
cancers, High expression of SERPINE1 is associated with 
poor prognosis in these cancer patients. These research 
results confirm the analysis results of our study, which 
proves confidence in the data generated. Additionally, for 
the COX regression analysis, we included AC018781.1, 
ADAMTS9-AS1, AL139002.1, AL391152.1, C15orf54, 
ERVMER61-1, LINC00326, VCAN-AS1, ATAD2 and 
SERPINE1 genes in the model. This analysis revealed 
that AC018781.1 and VCAN-AS1 are independent risk 
factors for GA. To identify these results, RT-qPCR were 
performed. VCAN-AS1, IGF2-AS, IPOU6F2-AS2 and 

SERPINE1 was higher expressed but ATAD2 was lower 
expressed in GA than that in matched adjacent normal 
samples. These data indicate that VCAN-AS1, IGF2-AS, 
IPOU6F2-AS2 and SERPINE1 may play an oncogene role 
in GA, while ATAD2 may play a role of tumor suppressor 
gene in GA, and further studies are needed to confirm that 
they are potential tumor biomarkers.

The lncRNAs appear to play an important regulatory 
role in the modulation of gene expression. LncRNAs can 
bind endogenous miRNA to play a part in the ceRNA net-
work (Cesana et al. 2011; Kallen et al. 2013; Wang et al. 
2013). Previous studies have constructed a gastric cancer-
related lncRNA-mRNA network showing that lncRNA 
RP11-363E7.4 was a key regulator both in the topol-
ogy and random walk with a restart analysis. This new 
method which predicts gastric cancer-related lncRNA and 
lncRNA–miRNA–mRNA networks helps to understand the 
underlying mechanisms of gastric cancer (Wang et al. 2018).

Another study using bioinformatics conducted on gastric 
cancer in patients from India, predicted 19 lncRNA-regulated 
miRNAs and mRNAs related to gastric cancer (Arun et al. 
2018). This study also conducted a comprehensive network 
analysis of lncRNA, miRNA and mRNA to determine the 
presence of ceRNA networks (Arun et al. 2018). In addition, 
studies on specific lncRNA expression patterns and ceRNA 
networks in gastric cancer have revealed that gastric cancer-
specific lncRNAs are associated with clinical features, and 
these lncRNAs can be used as new candidate biomarkers and 
potential prognostic indicators for clinical diagnosis of gastric 

Fig. 6  Relative expression of 
ATAD2 (a), SERPINE1 (b), 
VCAN-AS1 (c), IGF2-AS (d), 
IPOU6F2-AS2 (e). GA gastric 
adenocarcinoma, Con adjacent 
normal samples
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cancer (Li et al. 2016). In this study, we constructed a GA-
related ceRNA network map to further analyze the regulatory 
relationship between lncRNA, miRNA and mRNA. A total of 
169 pairs of lncRNA-miRNA and 16 pairs of DE-miRNAs-
DE mRNAs were involved in the construction of ceRNA 
network map. The lncRNAs–miRNAs–mRNAs regulatory 
network included 85 nodes and 184 edges, and such networks 
are important for further study of biomarkers and potential 
prognostic indicators of GA.

Further, we performed functional enrichment and path-
way analysis of DE-RNAs. GO analysis of 10 DE-mRNAs 
revealed that three genes ESRRG, ATAD2 and COL1A1 
were enriched on the "positive regulation of transcription, 
DNA-templated" biologic processes. In this case, a total of 
108 nodes, and 166 edges constituted a functional regula-
tion network. Additionally, KEGG analysis revealed 11 
signaling pathways, of which the AGE-RAGE signaling 
pathway associated with diabetic complications was the 
most significant. Interestingly, recent studies have shown 
that the AGE-RAGE axis composed of AGE and its recep-
tor RAGE plays an important role in the development of 
various tumors (Abe and Yamagishi 2008; Taguchi et al. 
2000). RAGE is highly expressed in prostate cancer (All-
men et al. 2008; Ishiguro et al. 2005), liver cancer (Yaser 
et al. 2012), Pancreatic cancer (DiNorcia et al. 2012) and 
associated with tumor growth and progression. These 
results suggest that the prognosis of GA can be improved 
by further evaluation of key regulatory genes.

Conclusions

In summary, we established a ceRNA regulatory network for 
lncRNAs–miRNAs–mRNAs in GA. The current findings pro-
vide new insights into the role of ceRNA networks in GA and 
identify potential diagnostic and prognostic biomarkers. Fur-
thermore, the analysis provides a new reference for a better 
understanding of the pathogenesis of GA. Although our find-
ings have important clinical implications, they still have cer-
tain limitations. First of all, the analysis uses a straightforward 
TCGA database which lacks any diversity as all the participants 
are Caucasian. Whether it is suitable to extrapolate findings 
to other ethnic groups is not clear yet, and further research is 
needed. Secondly, this study only examines microarray data and 
does not carry out any functional tests to verify the analysis. 
It will be important for further studies to verify these results.

Supplementary Information The online version contains supplemen-
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