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Abstract
Background  Rice (Oryza sativa L.) is an important crop and a staple food for half of the population around the world. The 
recent water and labor shortages are encouraging farmers to shift from traditional transplanting to direct-seeding. However, 
poor germination and slow elongation of the coleoptile constrains large-scale application of direct-seeding.
Objective  Thisstudy was aimed to investigate the genetic basis of the anaerobic germination(AG) potential using a set of 
Oryza nivara (O. nivara) introgressionlines (ILs).
Methods  Inthis study, a total of 131 ILs were developed by introducing O. nivara chromosomesegments into the elite indica 
rice variety 93-11 through advanced backcrossingand repeated selfing. A high-density genetic map has been previouslycon-
structed with 1,070 bin-markers. The seeds of ILs were germinated and usedto measure coleoptile length under normal and 
anaerobic conditions. QTLsassociated with AG potential were determined in rice.
Results  Basedon the high-density genetic map of the IL population, two QTLs, qAGP1 and qAGP3 associated with AG 
tolerance were characterized and locatedon chromosomes 1 and 3, respectively. Each QTL explained 15% of the phenotypic 
variance.Specifically, the O. nivara-derived chromosomesegments of the two QTLs were positively tolerance to anaerobic 
condition byincreasing coleoptile length. In a further analysis of public transcriptomedata, a total of 26 and 36 genes within 
qAGP1 and qAGP3 were transcriptionallyinduced by anaerobic stress, respectively.
Conclusions  Utilizationof O. nivara-derived alleles at qAGP1 and qAGP3 can potentially enhance tolerance to anaerobic 
stress at thegermination stage in rice, thereby accelerating breeding of rice varieties tobe more adaptative for direct-seeding.
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Introduction

Rice is one of the most important crops in the world. Due 
to the shortage of labor, rice planting mode have been pro-
foundly shifted from transplanting to direct-seeding in the 

last decade in China. However, direct-seeding has its disad-
vantages that plants are typically exposed to low tempera-
tures, anaerobic stress, competing weeds and other adverse 
factors (Farooq et al. 2011). Among them, anaerobic stress 
beginning at the germination and early-seedling stages is the 
primary environmental stress associated with direct-seeding 
that limits the germination rate, seedling uniformity, and 
consequently grain yield in rice.

Rice is grown in flooded conditions and thus exhibits 
greater tolerance to submergence than other crops such as 
maize and wheat (Hattori et al. 2011). The tolerance of rice 
seedlings to anaerobic stress at the germination stage is a 
complex quantitative trait controlled by multiple genetic 
loci. In previous studies, numerous QTLs associated with 
tolerance to anaerobic stress at the germination and early-
seedling stages have been identified using linkage and asso-
ciation mapping populations (Jiang et al. 2006; Angaji et al. 
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2010; Septiningsih et al. 2013; Baltazar et al. 2014; Hsu 
et al. 2015; Angaji 2008; Zhang et al. 2017). For exam-
ple, Jiang et al. (2006) reported two putative QTLs associ-
ated with AG potential using an F2 segregation population 
derived from a cross between USSR5 (japonica subspecies) 
and N22 (indica subspecies). Five putative QTLs for flood-
ing tolerance were detected using a BC2F2 population with 
IR64 (japonica) as a recurrent parent and Kho Hlan On 
(japonica) as a donor parent (Angaji et al. 2010). A study 
that examined coleoptile lengths of 432 indica varieties cul-
tivated under normal (un-flooded) and flooded conditions, 
detected 2 and 11 significant SNPs associated with toler-
ance to flooded condition (Zhang et al. 2017). Several QTLs 
were further cloned using map-based cloning method. For 
example, OsTPP7 at the qAG-9-2 region, which is involved 
in trehalose-6-phosphate metabolism, confers AG tolerance 
(Kretzschmar et al. 2015; Ye et al. 2018) found that the 
sequence variations in OsCBL10 promoter between upland 
(Up221, flooding-sensitive) and lowland (Low88, flooding-
tolerant) varieties might contribute to their differentiation 
in flooding tolerance. Results from these studies provide 
important genetic information for the molecular breeding 
of rice varieties with AG potential.

Low oxygen under anaerobic condition alters plant 
metabolism, and consequently affects plant growth. One of 
the common metabolic responses to low oxygen is altera-
tions in the glycolysis pathway, as evidenced by the up-
regulated activities of enzymes (e.g. amylases, phosphof-
ructokinase, fructose-6-phosphate-1-phosphotransferase, 
alcohol dehydrogenase, and pyruvate dehydrogenase) in 
plants grown under hypoxic conditions (Gibbs et al. 2000; 
Kato-Noguchi et al. 2007; Lasanthi-Kudahettige et al. 2007; 
Magneschi et al. 2008; Kretzschmar et al. 2015; Loreti et al. 
2016; Loreti et al. 2018; Fukao et al. 2019). A large number 
of transcriptomic analysis were performed to explore the 
molecular mechanisms involved in regulating the growth of 
rice coleoptile under hypoxic and anoxic conditions (Shin-
gakiwells et al. 2011; Narsai et al. 2015). These studies 
determined a complex mechanism associated with coleoptile 
growth, which includes carbohydrate metabolism, fermenta-
tion, hormone induction, cell division and expansion.

Wild rice is the progenitor of cultivated rice and 
comprises a primary gene pool for the improvement of 
cultivated rice. Due to the continual long-term natural 
selection, wild rice carries favorable alleles resistant to 
many abiotic and biotic stresses. To identify and utilize 
the favorable alleles from wild rice, we investigated a 
morphological trait, coleoptile length, responsible for 
AG potential in rice seedlings. We used 131 ILs derived 
from an advanced backcross between O. nivara (the donor 
parent), and indica rice 93-11 (the recipient parent) (Ma 
et al. 2016). Based on a high-density genetic mapping, two 
QTLs associated with AG potential were detected, one 

located on chromosome 1 and the other on chromosome 
3. Notably, the O. nivara-derived chromosome segments 
at the two QTLs enhanced AG potential at the germination 
stage of seedlings in the background of 93-11. Altogether, 
our findings not only provide new genetic resources from 
wild rice for breeding rice varieties with more AG poten-
tial, they can also be used to help clone genes conferring 
AG potential in rice.

Materials and methods

Plant material

131 ILs used in this study were generated in a previous study 
(Ma et al. 2016). The recipient parent 93-11 (indica rice 
variety) is widely grown in China. The donor parent W2014 
is an annual wild rice accession (O. nivara) originated from 
India (20° 18′ N, 72° 55′ E) and kept at the National Insti-
tute of Genetics, Japan. To develop the IL population, single 
plant was selected from the recipient parent 93-11 and the 
donor parent O. nivara, respectively, for crossing. A total of 
23 F1 plants were obtained. All F1 plants were backcrossed 
three times in succession to 93-11 to generate BC3F1 popula-
tion including 256 individuals. Based on the genotypes of 
BC3F1 generated by 120 polymorphic SSR markers across 
the whole genome, total 150 BC3F1 were selected and self-
pollinated for six generations to generate an IL population 
with 131 lines.

Measuring phenotype

Two independent experiments (in September 2019 and 
November 2019) were done to measure 131 ILs. Each 
experiment was designed as follows. Seeds were dried at 50 
°C for 72 h to break dormancy. Then seeds were sterilized 
with sodium hypochlorite (1.5 %) for 15 min and rinsed eight 
times with sterile distilled water. A normal and an anaero-
bic treatment were established. For the normal condition, 
fifteen sterilized seeds for each line were germinated in five 
un-capped glass tubes (10 ml; three seeds per glass tubes) 
containing sterilized filter paper and 1 ml of water. For the 
anaerobic condition, fifteen sterilized seeds for each line 
were germinated in five capped glass tubes (10 ml; three 
seeds per glass tubes) with 5 ml of water (up to 5 cm in 
the 10-cm tube). All tubes for both treatments were placed 
in a growth chamber at 28 °C for 7 days in the dark. The 
coleoptile length was measured from 1 day to 7 day using an 
ordinary ruler. Statistical analysis was performed with SAS 
(Statistical Analysis System, version 8.01) and Microsoft 
Excel.
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QTL mapping

SNPs were called from whole-genome resequencing data of 
ILs and parents by the software BWA (Li et al. 2009a) and 
SAMtools (Li et al. 2009b), using the default parameters. 
A sliding-window analysis was applied to genotype the ILs 
and a high-quality linkage map of 1070 bins was constructed 
(Ma et al. 2016). The detail method was described in a previ-
ously published paper (Ma et al. 2016).

The averaged value of coleoptile length across 15 seeds 
for each line was used to detect QTLs involved in AG poten-
tial. Missing values of phenotype were excluded from our 
analysis. QTL mapping was conducted using both single 
marker regression and composite interval mapping (CIM) 
method by IciMapping V4.0 software (Li et al. 2007). For 
CIM, the method used was the stepwise cofactor selection, 
in which markers were used as cofactors, and maximum 
number of cofactors was selected automatically. Significant 
threshold values of LOD scores were determined using per-
mutation tests (Churchill et al. 1994) with 1000 replicates. 
The Type I error to detect the LOD threshold was defined at 
P < = 0.05. Finally, the statistical threshold was LOD > = 3.

QTL comparisons

The QTLs detected in this study were compared with pre-
viously published QTLs. The markers were placed on the 
physical map by BLAST software (http://blast​.ncbi.nlm.nhi.
gov/Blast​.cgi) aligned against the reference rice genome. If 
no sequence information were detected, the flanking markers 
around the peak were used to serve as new guide.

Results

Phenotype evaluation of ILs under normal 
and anaerobic conditions at the germination stage

The fast growth rate of rice coleoptile helps seedling escape 
the anoxic environment, which improves the survival rate 
of rice. Therefore, rice coleoptile is a classical organ used 
for assessing AG potential. To identify the favorable alleles 
from wild rice conferring more AG potential, we measured 
the coleoptile length of plants at the germination stage of 
131 ILs and their parents cultivated under normal and anaer-
obic conditions (Table S1).

Under anaerobic condition, 93-11 was germinated faster 
than O. nivara. The coleoptile of 93-11 was observed on the 
first day, while the coleoptile of O. nivara was seen on the 
second day. Although the coleoptile of 93-11 emerged ear-
lier than that of O. nivara, the coleoptile length, coleoptile 
surface area and coleoptile volume of O. nivara were signifi-
cantly greater than that of 93-11 at the end point (7th day). 

At the 3th day, coleoptile length of O. nivara increased faster 
than that of 93-11. In particular, coleoptile growth of 93-11 
mainly occurred from the 2th to the 3th day, while coleoptile 
growth of O. nivara occurred between the 2th and 5th day.

The coleoptile length of ILs under normal condition 
(CLN) ranged from 1.04 to 2.17 cm and that of ILs under 
anaerobic condition (CLA) ranged from 0.10 to 2.40 cm 
(Fig. 1a–d). An anaerobic potential index (API) was cal-
culated by the equation (CLA CLN) / CLN. Values of API 
ranged from − 0.94 to 0.60 among 131 ILs (Fig. 1e, f), where 
low values signify low AG potential and high values signi-
fies high AG potential. A total of 109 ILs produced longer 
coleoptiles than that of the recipient parent 93-11 (0.18 cm) 
and 102 ILs had higher API values than the value of the 
recipient parent 93-11 (− 0.87) (Table S1). These data sug-
gest that the chromosomal segments from wild rice may con-
tain favorable alleles for enhancing AG potential. The aver-
aged coleoptile length of ILs was shorter under the anaerobic 
condition than that under the normal condition (Table S1). 
Additionally, the Pearson correlation coefficient (PCC) of 
coleoptile length under the normal and anaerobic condi-
tions was 0.04 (p > 0.05) (Supplemental Fig. 1), implying 
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Fig. 1   Distribution of coleoptile length under normal and anaerobic 
condition in 131 ILs. Coleoptile length of rice for replicate 1 (a) and 
replicate 2 (b) under normal condition (CLN). Coleoptile length of 
rice for replicate 1 (c) and replicate 2 (d) under anaerobic condition 
(CLA). Anaerobic potential index (API) for replicate 1 (e) and repli-
cate 2 (f). The x-axis represented coleoptile length (centimeter)
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that different genetic loci were associated with coleoptile 
growth under normal and anaerobic conditions.

QTL mapping for AG potential using 131 ILs

Our previous study reported a high-density genetic map 
of a set of O. nivara ILs through high-throughput whole-
genome resequencing. This genetic map contained 1070 
bin-markers, where a bin had an average length of 349 kb. 
To identify QTLs associated with AG potential, QTL analy-
sis was conducted using both the single marker regression 
and CIM. QTLs detected in both methods were robust and 
used for following analysis. Two independent experiments 
were done in September 2019 and November 2019. For each 
experiment, coleoptile length under normal and anaerobic 
conditions were measured, respectively. Under the nor-
mal condition, QTL detected in the two experiments was 
co-located (Fig. 2a). qCLN1 (Coleoptile Length under the 
Normal Condition 1), was located in marker bin150 on the 
long arm of chromosome 1 and explained 43 % and 44 % of 
phenotypic variance for replicate 1 and replicate 2, respec-
tively (Table 1; Fig. 2a). The location of bin150 was located 

between 38,174,447 to 38,387,308 bp on chromosome 1 of 
the reference genome of japonica variety Nipponbare. We 
found that marker bin150 harbored the “green evolution” 
gene semidwarf1 (sd1) located at 38,382,382–38,385,504 bp 
on chromosome 1, encoding gibberellin 20-oxidase, which 
regulates plant height and grain yield in rice (Spielmeyer 
et al. 2002). Therefore, we speculate that the sd1 gene might 
be a strong candidate for the qCLN1, which likely controls 
coleoptile length for plants germinated under the normal 
condition.

Under the anaerobic condition, QTLs detected in the two 
experiments were also co-located (Fig. 2b). Two QTLs, 
qAGP1 (anaerobic germination potential 1) and qAGP3 
(anaerobic germination potential 3), were detected on 
chromosomes 1 and 3, respectively (Table 1; Fig. 2b). The 
QTL qAGP1 was located in bin38 on chromosome 1 and 
explained 15 % and 14 % of phenotypic variance for replicate 
1 and replicate 2, respectively. The QTL qAGP3 was located 
in bin346 on chromosome 3 and explained 15 % and 14 % 
of the phenotypic variance for replicate 1 and replicate 2, 
respectively. Notably, the chromosome segments of qAGP1 
and qAGP3 derived from O. nivara increased coleoptile 
length by 0.66 cm (0.63 cm for replicate 2) and 0.64 cm 
(0.63 cm for replicate 2), respectively, under the anaerobic 
treatment (Table 1). Additionally, two QTLs related to API 
were detected at the same chromosome region and exhibited 
similar genetic effects compared to the QTLs of qAGP1 and 
qAGP3, respectively (Fig. 2c). These results imply that both 
coleoptile length and the API value can be used to evaluate 
AG potential at the germination stage in rice.

Identification of an IL with strong AG potential

To screen for ILs with strong AG potential, we used API 
values to determine lines with high AG potential. The 
API value of introgression line Ra25 was 0.308, indicat-
ing strong AG potential. The coleoptile length of Ra25 
seedlings under the normal and anaerobic condition were 
1.14 cm and 1.50 cm, while the coleoptile length of recipi-
ent parents (93-11) cultivated under normal and anaerobic 
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Fig. 2   QTL mapping. QTL mapping results for CLN (a), CLA (b), 
and API (c). The x-axis represented total 12 chromosome. The y-axis 
represented LOD value. The black and red lines represented QTL 
mapping result of replicate 1 and replicate 2, respectively

Table 1   QTLs identified under 
the normal and anaerobic 
conditions at the germination 
stage using IL population

Chr represents chromosome. PVE indicates percentage of phenotypic variation explained by individual 
QTL. Add indicates the additive effect of each QTL from O. nivara

QTL Chr Peak marker Interval region Physical interval (Mb) LOD PVE (%) Add

Replicate1 
(Sep-
tember 
2019)

qCLN1 1 Bin150 Bin149-Bin152 37.98–38.67 16.9 43  0.16
qAGP1 1 Bin38 Bin37-Bin45 8.29–11.75 4.9 15  0.66
qAGP3 3 Bin346 Bin343-Bin351 6.96–10.40 5 15  0.64

Replicate2 
(Novem-
ber 
2019)

qCLN1 1 Bin150 Bin149-Bin152 37.98–38.67 18.2 44  0.17
qAGP1 1 Bin38 Bin37-Bin45 8.29–11.75 4.2 14  0.63
qAGP3 3 Bin346 Bin343-Bin351 6.96–10.40 4.2 14  0.63
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condition were 1.42 cm and 0.18 cm, respectively (Fig. 3a). 
The result showed that IL Ra25 had a stronger AG potential 
than the recipient parent 93-11. Genotype analysis showed 
that IL Ra25 carried nine chromosomal segments derived 
from O. nivara, comprising six homozygous segments from 
wild rice and three other heterozygous segments. Notably, 
the two homozygous segments from wild rice, one on chro-
mosome 1 and the other on chromosome 3, harbored the 
two QTLs (qAGP1 and qAGP3) for AG potential. (Fig. 3b). 
Taken together, IL Ra25 is likely an ideal genetic material 
for fine mapping of target genes and breeding applications 
in future.

Transcriptome response to anaerobic condition 
for genes within QTL regions

We determined 494 and 558 genes in the respective qAGP1 
and qAGP3 regions. A previous study analyzed differen-
tial expressed genes (DEG) among six rice genotypes with 
different levels of anaerobic tolerance (Sheng-Kai et al. 
2017). In total, 3597 DEGs were identified by comparing 
rice samples cultivated under the anaerobic to the nor-
mal condition. To further associating these DEG and AG 

potential, we screened DEGs in our QTL regions. A total of 
26 and 36 DEGs were detected in the qAGP1 and qAGP3 
regions, respectively (Tables S2, S3). Among them, 10 
up-regulated and 16 down-regulated genes were detected 
within qAGP1 region (Table S2), while 17 up-regulated 
and 19 down-regulated genes were detected within qAGP3 
region (Table S3). For qAGP1, a pyruvate kinase (LOC_
Os01g16960), peroxidase precursor (LOC_Os01g16450), 
and MYB transcription factor (LOC_Os01g16810) might 
be functionally associated with seedling response to anaero-
bic stress. For qAGP3, a mannose-1-phosphate guanyltrans-
ferase (LOC_Os03g16150), cyclase/dehydrase family pro-
tein (LOC_Os03g18600), and AP2-like ethylene-responsive 
transcription factor (LOC_Os03g12950) might be function-
ally associated with anaerobic stress response.

Discussion

O. nivara, an unusual wild rice and a close wild progenitor 
of the Asian cultivated rice, is an important gene pool. There 
is high genetic diversity among different O. nivara acces-
sions (Juneja et al. 2006), which is beneficial to the goal 
of expanding the genetic diversity of cultivated rice. Some 
valuable genes responsible for yield production and grain 
quality have been transferred from O. nivara into cultivated 
rice (Swamy et al. 2012, 2014; Mahmoud et al. 2008). Fur-
thermore, O. nivara also shows resistances to grassy stunt 
virus, bacterial leaf blight, blast fungus, and brown plan-
thopper, as well as drought avoidance (Khush 2000; Brar 
et al. 1997; Pham et al. 2006; Ali et al. 2010). Therefore, it is 
very important to investigate the genetic factors in O. nivara 
controlling AG potential.

To date, two main indicators have been used to identify 
AG potential of rice seeds. One index is the seedling sur-
vival ratio after 21 days of submergence under 10 ~ 20 cm 
water head, which is a standardized method approach devel-
oped by International Rice Research Institute (Angaji et al. 
2010). Using this method, a number of mapping populations 
were screened to evaluate AG potential, and several QTLs 
have been reported (Angaji et al. 2010). However, the sur-
vival ratio of this method is labor- and time-intensive. One 
alternative approach is to measure coleoptile length. The 
QTLs detected with coleoptile elongation are overlapped 
with those detected with the survival rate (Hsu et al. 2015). 
In this study, coleoptile length was measured to map QTL 
conferring AG potential (Fig. 2). Two main QTLs related to 
AG potential were detected in this study.

In this study, we measured coleoptile length under anaer-
obic conditions and used it to represent the ability to ger-
minate anaerobically. The phenotype variance of coleoptile 
length was normally distributed across diverse accessions, 
which suggested the quantitative genetic control for this trait. 

Fig. 3   Phenotype and genotype of Ra25. (a) Coleoptile length under 
norm and anaerobic condition for Ra25 and 93-11 lines. (b) Genotype 
of Ra25. Chromosome segments of 93-11 (Red color), Oryza nivara 
(Blue color), and heterozygosis (Green). The symbol (**) represented 
significant difference (p < 0.01) between coleoptile length of Ra25 
and 93-11 under anaerobic condition (color figure online)
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The coleoptile length of 93-11 was shorter than that of O. 
nivara at the end day (7th day) under anaerobic condition, 
which indicate that the wild rice, O. nivara showed more 
AG potential than 93-11. Therefore, it is feasible to detect 
genetic factor controlling AG potential using large linkage 
population constructing with 93-11 and O. nivara.

Three traits, including CLN, CLA, and API, were used to 
detect QTLs within 131 ILs. QTLs associated with coleop-
tile length under normal and anaerobic conditions were not 
co-located (Fig. 2). Interestingly, QTLs detected in anaero-
bic condition were not co-located with that in normal condi-
tion, which indicate that the effect of qCLN1 was turn off 
by the anaerobic condition. Furthermore, QTLs associated 
with CLA and API were located on the same chromosome 
position (Fig. 2), which might be explained by the high PCC 
value between the phenotype of CLA and API (r = 0.82).

AG tolerance is essential for germination and seedling 
growth under anaerobic condition. Using the marker-assisted 
backcrossing strategy, the QTL containing OsTPP7 gene 
was transferred into Ciherang-Sub1, which improved the 
anaerobic tolerance of the near isogenic lines harboring the 
SUB1 gene (Mariel et al. 2015). In this study, phenotypic 
evaluation showed that ILs with qAGP1 or qAGP3 from wild 
rice increased AG tolerance compared to 93-11 (Table S1). 
Interestingly, ILs with both qAGP1 and qAGP3 from wild 
rice showed more AG tolerance compared to ILs with single 
alleles (qAGP1 or qAGP3) (Table S1). These results sug-
gest that Pyramiding of favorable QTLs can improve AG 
potential in rice.

For qAGP1, 26 candidate genes were identified. Among 
them, LOC_Os01g16960, annotated as pyruvate kinase, 
was up-regulated 4.1-fold in anaerobic condition compared 
to normal condition. Pyruvate kinase is a key enzyme that 
regulates and adjusts the final step of the glycolysis path-
way (Ambasht et al. 2000; Mattevi et al. 1996). Oxygen 
deprivation triggers a switch from mitochondrial respira-
tion through the Krebs cycle to fermentative metabolism. 
Liu et al. (2010) determined a peroxidase precursor (LOC_
Os01g16450, LOC_Os01g16152) that was functionally 
involved in stress response and played major roles in the 
signaling cascade during germination under submergence. 
Another candidate gene, a MYB family transcription factor 
(LOC_Os01g16810) belonging to the family of MYBS1, 
was up-regulated 8-fold (Lu et  al. 2002). A CIPK15-
SnRK1A-MYBS1 phosphorylation cascade activated the 
expression of RAmy3D (Lee et al. 2009; Lu et al. 2002), an 
important enzyme that is highly expressed when the plant is 
stressed from oxygen deficiency.

One gene within qAGP3, OsVTC1-3 (LOC_Os03g16150), 
was up-regulated 3-fold and annotated as mannose-1-phos-
phate guanyltransferase. Overexpression of OsVTC1-3 
restored ascorbic acid (AsA) synthesis in Arabidopsis (Qin 
et al. 2016). In plants, AsA plays multiple important roles 

in oxidative stress protection, photoprotection, and develop-
ment (Qin et al. 2016). Kawano et al. (2002) demonstrated 
that the content of AsA of an anaerobic insensitive line was 
declined after submergence for 8 days, and then rapidly 
recovered after three days of de-submergence. However, 
sensitive varieties showed slow recovery of AsA content, 
resulting in slow plant growth. Another candidate gene, 
OsPYL (LOC_Os03g18600) functioned as a positive regu-
lator of the ABA signal transduction pathway (Kim et al. 
2012). Overexpression of OsPYL led to hypersensitivity to 
ABA during seed germination, and hence a delay in ger-
mination rate (Kim et al. 2012). In our work, OsPYL was 
up-regulated 2.6-fold, which might be responsible for the 
relative lower growth rate of coleoptiles under the anaero-
bic condition than that of the normal condition. Another 
candidate gene, AP2-like ethylene-responsive transcription 
factor (LOC_Os03g12950) was up-regulated 1.7-fold. The 
Submergencel (Subl) locus includes three ethylene-respon-
sive factor (ERF) transcriptional regulators (Xu et al. 2006). 
Transcriptome analysis revealed that a set of AP2 family 
transcriptional regulators were functionally associated with 
the SublA-1-mediated response in plants under submergence 
(Jung et al. 2010).

Large numbers of QTLs have been detected in a variety of 
genetic mapping populations. In a BC2F2 population devel-
oped from a cross between KHAIYAN and IR64, four puta-
tive QTLs on chromosomes 1, 2, 11, and 12 explained 51.4 % 
of the phenotypic variance (Angaji 2008). Similarly, another 
BC2F2 population from a cross between Khao Hlan On, an 
anaerobic germination-tolerant line, and IR64 resulted in 
the discovery of five QTLs on chromosomes 1, 3, 7, and 9 
(Angaji et al. 2010; Septiningsih et al. 2013) reported six 
significant QTLs on chromosomes 2, 5, 6, and 7 from a F2:3 
population derived from crossing IR42 and Ma-Zhan Red. 
Eleven significant SNPs were detected by using an associa-
tion population (Zhang et al. 2017). In this study, two major 
QTLs, qAGP1 and qAGP3, were identified. qAGP1 has been 
reported in previous studies and was located closely to the 
QTLs reported in previous studies (Angaji 2008; Angaji 
et al. 2010). Interestingly, it is the first reporting of qAGP3 
for our study.

Conclusions

131 ILs grown under normal and anaerobic conditions were 
screened by the phenotype of coleoptile length to investigate 
AG potential during rice germination (Table S1). Results of 
QTL mapping showed that two major QTLs were responsi-
ble for AG potential (Fig. 2b, c). We found 26 and 36 can-
didate genes conferring AG potential within qAGP1 and 
qAGP3, respectively. (Tables S2, S3). In summary, the uti-
lization of O. nivara-derived alleles at qAGP1 and qAGP3 
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enhanced anaerobic tolerance during germination in culti-
vated rice.
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