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Abstract
Background Centromeres are specialized chromosomal domains involved in kinetochore formation and faithful chromosome 
segregation. Despite a high level of functional conservation, centromeres are not identified by DNA sequences, but by epige-
netic means. Universally, centromeres are typically formed on highly repetitive DNA, which were previously considered to 
be silent. However, recent studies have shown that transcription occurs in this region, known as centromeric-derived RNAs 
(cenRNAs). CenRNAs that contribute to fundamental aspects of centromere function have been recently investigated in 
detail. However, the distribution, behavior and contributions of centromeric transcripts are still poorly understood.
Objective The aim of this article is to provide an overview of the roles of cenRNAs in centromere formation and function.
Methods We describe the structure and DNA sequence of centromere from yeast to human. In addition, we briefly introduce 
the roles of cenRNAs in centromere formation and function, kinetochore structure, accurate chromosome segregation, and 
pericentromeric heterochromatin assembly. Centromeric circular RNAs (circRNAs) and R-loops are rising stars in centromere 
function. CircRNAs have been successfully identified in various species with the assistance of high-throughput sequencing 
and novel computational approaches for non-polyadenylated RNA transcripts. Centromeric R-loops can be identified by the 
single-strand DNA ligation-based library preparation technique. But the molecular features and function of these centromeric 
R-loops and circRNAs are still being investigated.
Conclusion In this review, we summarize recent findings on the epigenetic regulation of cenRNAs across species, which 
would provide useful information about cenRNAs and interesting hints for further studies.

Keywords Centromere · cenRNAs · Chromosome segregation · R-loop · circRNAs

Introduction

Centromeres play an essential role in kinetochore assem-
bly and equal chromosome segregation, and are marked 
by a specific histone H3 variant (CENP-A in human and 
fission yeast; CENH3 in plants and Cse4 in budding yeast) 
(Henikoff et  al. 2020; Dhatchinamoorthy et  al. 2018). 
There are three major classes of centromeres, point cen-
tromere, regional centromere and holocentromere. Point 
centromeres are 120–200-bp, and are found in budding 
yeast (Kobayashi et  al. 2015). Regional centromeres 
are most prevalent among human, mice, fission yeast, 
plants and other higher eukaryotes, which may reflect 
the ancestral centromere organization. Holocentromeres 
are found in Caenorhabditis elegans, for example, and 
encompass the length of a chromosome (Henikoff et al. 
2020; Pluta 1995). Most plant and animal centromeres 
favor AT-rich DNA that comprise retrotransposons and 
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tandemly repetitive DNA known as satellites (Fig. 1). Even 
though their functions are evolutionary highly conserved, 
the underlying centromeric DNAs are highly variable 
in sequence and evolve quickly, which are not essential 
for centromere identity (Cleveland et al. 2003; Stimpson 
and Sullivan 2010), suggesting that epigenetic marks are 
involved in establishing the centromeric state, like associ-
ated RNAs, proteins and other epigenetic modifications.

Centromeres are dynamic, rather than being inert. A com-
mon feature of centromeres is that they occur in gene-free 
regions but include genes that are transcribed at a very low 
level (Su et al. 2019; Henikoff and Talbert 2018). Although 
centromeric transcripts are a conserved epigenetic mecha-
nism regulating centromeres across species, they vary dra-
matically in size. CenRNAs are associated with a broad 
range of functions, including participating in the regulation 
of chromosome behavior, gene transcription, and chromatin 
architecture (Arunkumar and Melters. 2020).

Various kinds of RNAs of eukaryotes and prokaryotes are 
attracting a lot of attention from researchers, including small 
RNAs, long noncoding RNAs (lncRNAs), circular RNAs 
(circRNAs), and RNA: DNA hybrids. Given the growing 
number of studies showing the role of cenRNAs, our cur-
rent knowledge is largely derived from work in animals and 
yeasts; their global function are still enigmatic. We refer 
readers to a comprehensive summary that covers the pos-
sible biological roles of cenRNAs.

1. A balanced level of cenRNA is essential for maintain-
ing the proper function of centromeres

  Centromeres comprise two domains: the central core 
and the flanking pericentric heterochromatin, serving 
for assembly of the kinetochore and centromere cohe-
sion separately (Corless et al. 2020). Centromeres are 
the most condensed region of a chromosome. However, 
a low level transcription of the core and the flanking 
pericentric regions is detected in human cells (Wong 
et al. 2007), mouse cells (Ferri et al. 2009), fission yeast 
(Choi et al. 2011) and plants (Lv et al. 2020), suggest-
ing that CENP-A chromatin contains some open chro-
matin. A human neocentromere contains 51 genes, 
of which about one-third are expressed (Saffery et al. 
2003). Centromeric α-satellite transcripts are estimated 
to be about 0.5% that of a housekeeping gene (Chan 
et al. 2012). Genes transcription is also detected in de 
novo centromeric regions of maize (Su et al. 2016). In 
Arabidopsis, more than 47 expressed genes were found 
to be flanked by core centromeric repetitive sequence 
such as cen180 (Arabidopsis Genome 2000; May et al. 
2005). In rice centromere 8, four of the genes present 
have normal transcripts (Nagaki et  al. 2004). It has 
long been known that yeast centromere function can be 
switched off or on by controlling transcription induction 
or repression from the GAL1 promoter producing of a 
conditional centromere (Hill et al. 1987). There is also 

Fig. 1  An optimal level of RNA transcription is required for main-
taining the proper function of the centromere. Both sense and anti-
sense cenRNAs including circRNA transcripted from centromeric 
repeats are detected. A low level of cenRNAs would lead to aberrant 

mitosis, micronuclei and autophosphorylation of Aurora B increase. 
Conversely, a high level of cenRNA would also cause mislocalization 
of centromere-associated proteins, centromere inactivation, and cen-
tromeric epigenetic changes
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evidence that shows direct links between transcription 
and centromere activation from yeast to human. In fis-
sion yeast, centromeric histone H3 with CENP-ACnp1 
tends to associate with a subset of RNA polymerase II 
(RNA PolII) promoters where RNA PolII binding is 
high. Similar findings were also found in S. cerevisiae 
CENP-ACse4 (Choi et al. 2011; Ólafsson et al. 2020). 
In Schizosaccharomyces pombe, Ams2 is a cell cycle-
regulated GATA-like transcription factor, depletion of 
which results in the reduction of CENP-A binding to 
centromeres and thus chromosome missegration. Con-
versely, with the accumulation of Ams2, association of 
CENP-A mutant protein with a centromere is restored 
(Chen et al. 2003), implicating that transcription acts in 
centromere function.

  Transcription of centromeres is largely dependent on 
activation of RNA PolII and varies between develop-
ment at stages and tissues (McNulty et al. 2017; Maison 
et al. 2010). Point centromere activity requires an opti-
mal level of centromeric noncoding RNA. RNA PoII-
mediated centromeric transcriptional level that is exces-
sively high or low leads to centromere inactivation and 
failures in segregation (Ling et al. 2019; Ohkuni et al. 
2011). CenRNA over-expression in cbf1 (centromere-
binding protein 1) and htz1 (histone H2A variant) dele-
tion increases budding yeast minichromosome loss. 
Minichromosome loss was also significantly increased 
when all the cenRNAs were knocked down (Ling et al. 
2019). Nakano et al. (2008) developed a human artifi-
cial chromosome with an operable epigenetic state and 
also found that only moderate levels of transcription are 

compatible with correct centromere function. Functional 
centromere activity was deactivated by strong transcrip-
tion from an artificial promoter, and was restored when 
centromeric transctipts decreased (Collins et al. 2005; 
Ohkuni et al. 2011). Thus, there is an optimal level of 
RNA transcription required for centromere and kine-
tochore assembly (Fig. 1).

  Currently, several transcriptional regulators includ-
ing RNA PolII are essential for keeping cenRNA bal-
ance, which were described in yeast, mouse and human 
cells. A nuclear protein ZFAT binds to centromeres 
to control centromeric non-coding RNA transcription 
through a specific 8-bp DNA sequence in human and 
mouse cells. (Ishikura et al. 2020). In budding yeast, 
centromeric transcription is suppressed to a low level by 
kinetochore protein Cbf1 and histone H2A variant H2A.
ZHtz1 (Ling et al. 2019). In mice, MIWI regulates the 
post-transcription of mRNA, lncRNA and transposons. 
MIWI- and Dicer-mediated cleavage of the centromeric 
satellite RNAs prevents aneuploidy by preventing the 
over-expression of satellite RNAs (Hsieh et al. 2020). 
In human cells, alpha-satellite expression was repressed 
by centromere-nucleolar interactions (Bury et al. 2020). 
Other studies suggest cenRNAs remain at centromeres. 
However, Bury et al. (2020) found that alpha-satellite 
RNA transcripts were broadly distributed within the 
cytoplasm during mitosis, which provides a different 
perspective for cenRNA function. This may be explained 
by MuNulty’s (2017) opinion that each human alpha 
satellite array produces a unique set of non-coding tran-
scripts to perform different functions (Fig. 2).

Fig. 2  Distribution of centromeric specific DNA repeats in plant 
chromosomes. a The distribution of centromeric retrotransposon of 
wheat (red) signals along the wheat chromosome. b The distribution 

of CRM1(green) and CentC(red) signals along the maize chromo-
some. DAPI-stained chromosomes are blue. Bar = 10 μm
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2. CenRNAs are essential for CENP-A loading onto cen-
tromeres.

  Loading of CENP-A at centromeres occurs in a cell 
cycle-specific manner. Synthesis of new CENP-A is 
deposited in metaphase in D. melanogaster S2 cells 
(Mellone et al. 2011), during telophase and G1 in human 
(Jansen et al. 2007), and prior to mitosis in G2 in plants 
such as maize, barley, rye and arabidopsis (Topp et al. 
2004; Lermontova et al. 2007; Schubert et al. 2014; 
Lermontova et al. 2011). Consistently, cenRNAs levels 
are also cell cycle-regulated. In recent years, a direct 
RNA–protein interaction between centromeric RNAs 
and CENP-A has been found in many eukaryotes. In 
humans and Drosophila, centromeres are actively tran-
scribed by RNA polymerase II from late mitosis to early 
G1 (Jansen et al. 2007; Dunleavy et al. 2012). A 1.3-
kb RNA that originates from centromeres was associ-
ated with CENP-A. The long-term loss of centromeric 
transcripts led to the loss of CENP-A recruitment and 
its chaperone HJURP to centromeres, whereas its over-
expression increases CENP-A and HJURP recruitment 
(Quénet et al. 2014). Yet, there is ample evidence from 
human and Xenopus oocytes that knock-down of cen-
tromeric transcripts results in reduced CENP-A levels 
at centromeres (Quénet et al. 2014; Saffery et al. 2003; 
Bergmann et al. 2011; Grenfell et al. 2016). McNulty 
et al. (2017) also found non-coding RNAs transcribed 
from human alpha satellite are complexed with CENP-A 
and CENP-C. Loss of CENP-A does not affect transcript 
abundance, but CENP-A and CENP-C at the targeted 
centromere are reduced when cenRNA is depleted. In 
mouse, minor repeats yield transcripts up to 4-kb long, 
and may impair centromeric architecture and function 
under stress (Bouzinba-Segard et al. 2006). In maize, 
nearly half of the centromeric retrotransposons (CRMs) 
and satellite repeats (CentC) RNA, which is larger than 
40-nt in length were bound to CENH3. and siRNA-sized 
(22–30-nt) molecules were not detected (Topp et al. 
2004).

  There has been great progress in understanding cen-
tromere and kinetochore function over the last few years. 
A key question of how CENP-A recognizes DNA and 
targets the proper chromosomal location still remains. 
Henikoff and researchers have suggested that the 
replacement of histone H3 with CENH3 is often associ-
ated with active transcription, which can disrupt nucleo-
some and open chromatin, similar to the role of human 
Xist RNA in regulating X-inactivation by facilitating 
the replacement of histone H2 with macroH2 (Boeger 
et al. 2003; Plath et al. 2002; Jiang et al. 2003; Sulli-
van et al. 2001; Choo et al. 2001). However, Nechemia-
Arbely (2019) found support for the idea that CENP-A 
was assembled into nucleosomes onto more than ten 

thousand transcriptionally active sites on the chromo-
some arms. DNA replication acts as an error correction 
mechanism to remove non-centromeric CENP-A.

  RNA is also an essential structural and functional 
component of neocentromere chromatin. In humans, 
the L1 retrotransposon (~ 6-kb in size) belongs to the 
only active subfamily of LINEs. A significant enrich-
ment of FL-L1b RNA (one of the elements of L1RNA) 
in the CENP-A bound fractions at the 10q25 neocentro-
meric chromatin was observed by anti-CENP-A RNA 
ChIP-seq, indicating that RNA transcribed from the L1 
retrotransposon of a neocentromere could be incorpo-
rated into the core neocentromere chromatin and serve 
as a critical epigenetic determinant in chromosome 
remodeling, leading to neocentromere formation (Chueh 
et al. 2009). Taken together, ceRNAs appear to assist in 
cenH3 loading.

3. CenRNAs are required for kinetochore structure and 
accurate chromosome segregation.

  The kinetochore is a multiprotein complex that 
adheres to centromeric chromatin through the inner plate 
and binds to microtubules through the outer plate, which 
is essential to accurate chromosome segregation (Rošić 
et al. 2016; Yamagishi et al. 2014). Although RNA was 
first observed in kinetochores in the 1970s (Rieder, 
1979; Braseton 1975), Topp et al. (2004) found that 
cenRNAs played a role in assembly and stabilization of 
kinetochore chromatin structure. Centromeric transcripts 
are bound by several kinetochore proteins that involve 
kinetochore assembly. Both sense and antisense cenRNA 
interact with the inner kinetochore protein CENP-C, as 
found in D. melanogaster (Rošić et al. 2014), plants 
(Du et al. 2010) and human cells (Wong et al. 2007). 
In human, CENP-C binds three different cenRNAs 
(Henikoff et al. 2018). Aurora B kinase interacts with 
ncRNA transcribed from centromeric satellite I, and 
knock down of satellite I RNA displays mitotic chro-
mosomes segregation errors by inducing the defective 
attachment of microtubules to kinetochores (Wong et al. 
2007; Indue et al. 2014). CenRNAs are also required 
for activation of Aurora B kinase in X. laevis eggs and 
mouse cells (Ferri et al. 2009; Blower 2016). CenRNAs 
processing contributes to proper spindle and kinetochore 
assembly in Xenopus egg extracts. Inhibition of tran-
scription initiation or RNA splicing result in spindle 
defects (Grenfell et al. 2016). A-satellite RNA is also 
a key component in the assembly of other kinetochore 
proteins like Sgo1 (Talbert et al. 2018), CENP-A, and 
CENPC1 (Wong et al 2007). The over-accumulation 
of major and minor satellite transcripts alters meiotic 
kinetochore assembly and causes chromosome mis-seg-
regation (Table 1; Fig. 1). Cell cycle-regulated cenRNAs 
may stabilize the binding of CENP-C to DNA, and help 
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Table 1  Summary of known centromeric transcripts in various species

Species Centromeric transcripts Length Cis/Trans Description Authors Year

Satellite I Satellite I RNA associ-
ates with Aurora B and 
INCENP to chromosome 
segregation

Ideue et al. 2014

Human LINE retrotransposon  ≥ 415 nt cis Kinetochore assembly and 
neocentromeric chroma-
tin formation

Chueh et al. 2009

A-satellite 171 nt cis A key component in the 
assembly of nucleopro-
teins including CENPC1 
and INCENP

Wong et al. 2007

Satellite Over-expression of 
satellite RNAs increases 
meiosis I chromosome 
misalignment

Hsieh et al. 2020

Mouse Major satellite 120 nt Major satellite RNAs 
stable stabilize hetero-
chromatin retention of 
Suv39h enzymes

Camacho et al. 2017

Minor satellite 120 nt The accumulation of 
minor satellite tran-
scripts under stress leads 
to mislocalization of 
centromere-associated 
proteins

Bouzinba-Segard et al. 2006

Xenopus laevis, 
Xenopus tropi-
calis

Frog Centromeric Repeat 
1 (fcr1)

170 nt trans CenRNAs promote 
kinetochore and spindle 
assembly by stimulating 
aurora B kinase activity

Blower et al. 2016

cenRNA Grenfell et al.; Jambhekar 
et al.

2016;
2014

Drosophila SATIII 359 nt
1300 nt

SAT III RNA binds to the 
kinetochore component 
CENP-C, which is 
essential for kinetochore 
formation and cell divi-
sion

Rošić et al. 2014

CentC 156 nt Both strands Recruit CENPC to the 
inner kinetochore

Du et al. 2010

Maize CRM1 354, 607,
277–296 nt

Both strands Circular RNAs regulate 
the localization of 
CENH3 and help build 
a suitable chromatin 
environment

Liu et al. 2020

CentC;
CRM

up to 900 nt Both strands Immunoprecipitate with 
CENH3

Topp et al. 2004

Rice CRR;
CentO

4000–15,000 nt
21–25 nt

Centromeric heterochro-
matin formation and

maintenance

Neumann et al.;
Lee et al.

2007;
2006

Arabidopsis
thaliana

cen180 24 nt Both strands siRNA from centromeric 
transcripts depends on

DDM1, DCL3, and RDR2

May et al. 2005



222 Genes & Genomics (2021) 43:217–226

1 3

to recruit CENP-A loading and kinetochore assembly 
to regulate centromere function and facilitate accurate 
chromosome segregation.

4. Cell-cycle-dependent cenRNAs act in pericentro-
meric heterochromatin assembly

  During mitosis, heterochromatin formation is essen-
tial for gene regulation and maintaining centromere 
stability to ensure accurate chromosome segregation. 
As centomeres and pericentromeres are populated with 
enormous amounts of repeat sequence, the centromere 
is the most condensed and constricted region of a chro-
mosome. However, a low level transcription of the core 
and the flanking pericentric regions is detected. Cen-
tromeric transcription mediated chromatin remodeling 
is favorable for transition of CENP-A to incorporate 
nucleosomes at the centromere (Georg et al. 2018). 
Transcription is actually required to inititiate heterochro-
matin formation (Reinhart and Bartel 2002). In mouse, 
major satellite RNAs stabilize pericentromeric hetero-
chromatin retention of H3K9me3 methyltransferases by 
forming a RNA: DNA hybrid (Camacho et al. 2017). 
In Drosophila S2 cells, repeated RNAs are principally 
derived from active retrotransposons, especially gypsy 
elements, acting in both cis and trans on chromatin to 
help maintain pericentromeric hetetochromatin (Hao 
et al. 2020). Antisense transcripts can occur in the pres-
ence of heterochromatin, sense transcripts are repressed 
by Clr6 complexes (Volpe et al. 2002; Nicolas et al. 
2007). Pathways to establish centromeric and pericen-
tromeric heterochromatin have been better described in 
fission yeast and S. pombe. Formation of heterochro-
matin at centromeres relies on the RNA interference 
(RNAi) machinery, which involves processing of cen-
tromeric noncoding RNAs (Verdel et al. 2004; Chen 
et al. 2008). Similar findings also have been identified 
in plants (Lippman et al. 2004; Neumann et al. 2007). 
Transcripts from both strands of centromeric DNA are 
cell cycle regulated. The forward transcripts with pref-
erential accumulation during S phase indicate the acces-
sibility of heterochromatin structures in this phase (Chen 
et al. 2008).

5. CenRNAs are associated with centromeres via RNA: 
DNA hybrids.

  Topological organization of centromeric chroma-
tin has recently gained increasing attention. R-loops 
are three strand nucleic acid structures consisting of 
an RNA: DNA hybrid and a displaced single-stranded 
DNA (Fig. 4). As to their functions, R-loops have been 
reported to be associated with DNA replication initia-
tion (Yu et al. 2003), DNA-damage response (Hamperl 
et al. 2017), gene transcription (Fang et al. 2019), DNA 
repair (Lu et al. 2018), and genome instability (Frederic 
and Craig 2020). The formation of RNA–DNA hybrids 

is also an important mechanism of sequence-specific tar-
geting of RNA to chromatin (Maldonado et al. 2019). 
Non-coding RNAs as a structural chromatin component 
is well documented for telomeric heterochromatin, and 
has been implicated to remain associated with telom-
eric chromatin by forming RNA: DNA hybrids that 
mediate telomere length and heterochromatin forma-
tion (Nakama et al. 2012; Schoeftner et al. 2009; Graf 
et al. 2017; Feretzaki et al. 2020). Centromeric ncRNA 
research falls behind that of telomeres. Apart from bud-
ding yeast, centromeric R-loops have been identified in 
human, rice, Arabidopsis, maize and other eukaryotic 
organisms (Kabeche et al. 2018; Fang et al. 2019; Xu 
et al. 2017) However, research on centromeric R-loops 
remains less explored. Centromeric R-loops are gener-
ated through RNAPII-mediated transcription during 
mitosis (Mishra et al. 2020). In maize, high levels of 
R-loops in centromeric retrotransposons led to a reduced 
localization of CENH3 (Liu et al. 2020). In mouse, 
major satellite RNAs stabilize pericentromeric hetero-
chromatin retention of H3K9me3 methyltransferases by 
forming a RNA: DNA hybrid (Camacho et al. 2017). 
In human, R-loops are detected at centromeres in mito-
sis; and an R-loop-driven signaling pathway promotes 
faithful chromosome segregation and genome stability 
(Kabeche et al. 2018). Interestingly, the opposite effects 
of centromeric R-loops on chromosomal instability 
was also reported. Using hpr1∆ strains that accumulate 
R-loops. Mishra and other researchers find that R-loops 
at centromere chromatin contribute to defects in kine-
tochore integrity and chromosomal instability. They also 
found that R-loops at centromeres were not accumulated 
when centromeric non-coding RNA is increased (Mishra 
et al. 2020; Unoki et al. 2020). These findings indicate 
the negative and positive impact of R-loops on the 
function of kinetochores and centromeres. Importantly, 
R-loops are also observed in neocentromere regions in 
maize (Han et al. unpublished), which suggests a role of 
R-loops in neocentromere formation.

  Circular RNAs (circRNAs) are a novel class of 
noncoding RNAs that are involved in gene expres-
sion regulation, and has been extensively explored in 
worm, metazoans, fruit fly, mouse, monkey, and human 
(Ivanov et al. 2015; Westholm et al. 2014; Fan et al. 
2015; Memczak et al. 2013 and Salzman et al. 2012). 
Genomewide circRNAs also have been were identified 
in plants, including Arabidopsis thaliana, Oryza sativa, 
maize, wheat, barely, tomato, soybean (Ye et al. 2015; 
Chen et al. 2018; Wang et al. 2017a, b; Darbani et al. 
2016; Zhao et al. 2017a, b; Zhou et al. 2016; Wang et al. 
2017a, b; Zeng et al. 2018; Zuo et al. 2016). However, 
due to the limitation of bioinformatics tools identifying 
circRNAs and the repetitive nature of centromeric DNA, 
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centromeric circRNAs can’t be identified easily. Liu et al 
(2020) first reported the role of centromeric circRNAs 
derived from retrotransposons in maize, which act by 
binding to the centromere through R-loops (Figs. 3, 4). 
The molecular features and function of these centro-

meric circRNAs are still being investigated. These clues 
shed new light on the function of centromeric circRNAs 
and R-loops, and it’s an appealing line of research on the 
function and stabilization of centromeres.

Conclusion and perspective

How does CENH3 recognize and target centromeric DNA? 
Which factors are involved in centromere assembly and 
function? These questions remain subjects for further inves-
tigation. Besides, the repetitive nature of centromeric DNA 
and indefinite origin and length of RNA will continue to 
challenge centromere transcription and identity. Studying 
the function of centromeric circRNA and R-loops appears 
to offer a breakthrough. Centromeric DNA transcription 
and RNA localization is independent of CENP-A (McNulty 
2017). Variant centromeric transcripts interact properly with 
different centromere proteins. Dissecting different centro-
meric RNA-binding proteins might bring some new clues 
for determining the mechanisms of centromere formation 
and function, centromere inactivation or other biological 
processes.

Fig. 3  AFM image of the circular CRM1 RNAs in maize. The white 
arrow indicate 354nt circular RNA. The scale bar is 800  nm. AFM 
atomic force microscopy

Fig. 4  Various types of 
cenRNAs play an important 
role in centromere func-
tion. The centromere-specific 
nucleosomes are distributed in 
a specific reigon of chromo-
some. Centromeric transcripts 
are processed, including small 
RNAs, lncRNAs, circRNAs 
and DNA-RNA hybrids, which 
are associated with CENP-A, 
CENP-C, Aurora B, pericentric 
heterochromatin and so on
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