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Abstract
Background Data mining techniques are used to mine unknown knowledge from huge data. Microarray gene expression 
(MGE) data plays a major role in predicting type of cancer. But as MGE data is huge in volume, applying traditional data 
mining approaches is time consuming. Hence parallel programming frameworks like Hadoop, Spark and Mahout are neces-
sary to ease the task of computation.
Objective Not all the gene expressions are necessary in prediction, it is very essential to select important genes for improv-
ing classification accuracy. So feature selection algorithms are parallelized and executed on Spark framework to eliminate 
unnecessary genes and identify only predictive genes in very less time without affecting prediction accuracy.
Methods Parallelized hybrid feature selection (HFS) method is proposed to serve the purpose. This method includes paral-
lelized correlation feature subset selection followed by rank-based feature selection methods. The selected subset of genes 
is evaluated using parallel classification algorithms. The accuracy values obtained are compared with existing rank-weight 
feature selection, parallelized recursive feature selection methods and also with the values obtained by executing parallel-
ized HFS on DistributedWekaSpark.
Results The classification accuracy obtained with the proposed parallelized HFS method is 97% and 79% for gastric cancer 
and childhood leukemia respectively. The proposed parallelized HFS method produced ~ 4% to ~ 15% improvement in clas-
sification accuracy when compared with previous methods.
Conclusion The results reveal the fact that the proposed parallelized feature selection algorithm is scalable to growing medi-
cal data and predicts cancer sub-types in lesser time with higher accuracy.

Keywords Parallelized hybrid feature selection · Correlation feature subset selection · Rank-based methods · Parallel 
classification · Spark · DistributedWekaSpark
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Introduction

Data mining is the procedure of mining knowledge from 
data and deals with the kind of patterns that can be mined. 
It plays a very important role in detection of fraud, provid-
ing better medical treatments at reasonable price, predic-
tion of diseases at early stages, intelligent health-care deci-
sion support systems, etc., Various data mining techniques 
are classification, association, sequencing and clustering. 
These are predominantly used in health-care domain for 
early diagnosis of disease, selecting an appropriate treat-
ment for the identified disease (Gracia Jacob 2015) and 
to design a drug for identified disease (Kang and Hong 
2011). Health-care data mainly contains all the informa-
tion regarding patients such as gene, protein, DNA, RNA 
sequences and about the parties involved in health-care 
industries. Humans have trillions of cells and each cell 
contains a complete copy of genome which is encoded 
into deoxyribonucleic acid (DNA). Gene is a segment of 
DNA that specifies how to make a protein. It is the basic 
physical and functional unit of heredity. They vary in size 
from few hundreds to more than two million bases. Gene 
expression is the process by which information encoded 
in a gene is converted into a protein (Yu et al. 2015). In 
cellular organisms, expression of right genes in right 
order at right time is crucial particularly during embry-
onic development and cell differentiation. Gene sequenc-
ing involves defining the order of bases and nucleotide 
units such as T, G, C, A (thymine, guanine, cytosine and 
adenine). When there is any change or variation in gene 
sequences, it results in inflammation of cell that results 
in cancer (Alshamlan et al. 2013). Cancer is basically a 
disease of ‘genes gone bad’. Many cells control the way 
cells grow, divide and die. When there is an error in this, 
cell division may go out of control. Different kinds of can-
cer are caused by different sets of genes. So for its treat-
ment, it is essential to know which of the genes in a cancer 
cell are behaving abnormally (Heo et al. 2013). The DNA 
microarray is the latest breakthrough in molecular biology, 
which provides researchers with an approach to monitor 
genome-wide expression systematically. Its application in 
cancer study has proved to be successful in elucidating 
the pathological mechanism and ultimately contributing 
to the battle against cancer. However, the current hurdle is 
how to make use of tremendous amount and ever-growing 
microarray experimental data to better predict cancer. 
MGE data has lot of noisy or irrelevant genes and missing 
data which affects prediction accuracy. Microarray data 
is high dimensional (thousands of genes) and low sample 
dataset (Golub et al. 1999). Feature selection which is a 
very important phase in data mining is essential to mine 
significant patterns from microarray data for detecting 

carcinogenic mutations. Selecting important genes from 
high-dimensional MGE data is time consuming for screen-
ing the disease. Gene (feature) selection reduces dimen-
sionality of data and hence computation time also gets 
reduced. So, gene selection plays a major role in select-
ing predictive genes that are prominent in identifying the 
sub-types of cancer. The dimensions of MGE data is in 
thousands, all are not driver genes to identify the cancer 
sub-type. Hence, parallel gene (feature) selection methods 
select the required number of optimal genes from microar-
ray data to improve classification of cancer sub-types in 
very less time.

As MGE data is high-dimensional, it can be run in par-
allel programming frameworks like Hadoop and Spark. 
Hadoop Map Reduce greatly simplified the big data analy-
sis using large clusters of commodity hardware. But as data 
grows bigger, more complex, multi stage algorithms that 
need iterative processing and data sharing between stages are 
not supported by Hadoop (Peralta et al. 2015). So Apache 
Spark is used which is an open source big data processing 
framework that provides memory abstraction and efficiently 
shares data across the different stages of a map-reduce job 
with the help of in-memory data processing (Ryza et al. 
2017). Every Spark application consists of a driver program 
that runs the users main function and executes various par-
allel operations on the worker or processing nodes of the 
cluster. The main memory abstraction that Spark provides is 
a resilient distributed dataset (RDD), which is a collection of 
elements partitioned across the nodes of the cluster that can 
be operated in parallel. Hence, in order to scale for growing 
health-care data, parallel programming frameworks are to be 
explored to parallelize data mining algorithms and extract 
hidden knowledge from huge health-care data.

Related work

Data mining in clinical datasets: Chuang et al. (2011) dis-
cussed on how important it is to select a proper number 
of relevant genes that directly affect classification accuracy 
and proposed a hybrid feature selection (HFS) method in 
microarray data analysis. The proposed method was imple-
mented in two stages: In the first stage, a filter method called 
correlation-based feature subset selection (CFS) was used to 
calculate correlation-feature weight for each feature which 
helps in finding relevant features. In the second stage, a 
wrapper method called Taguchi-genetic algorithm (TGA) 
was applied on the features obtained in first stage to test 
them and thus find optimal feature subsets. These subsets 
were classified using K-nearest neighbor (KNN) method 
with leave-one-out cross validation (LOOCV) based on 
Euclidean distance calculations. Apart from these, genetic 
algorithms were used with randomness for global search 
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over entire search space. Lu et al. (2017) discussed that HFS 
algorithm provides highest classification accuracy when 
compared to conventional feature selection algorithms. They 
proposed MIMAGA-selection method that combines mutual 
information maximization (MIM) and adaptive genetic algo-
rithm (AGA). The hybrid approach usually emphasizes on 
the advantages of the sub-algorithms and therefore is more 
robust when compared to traditional approaches. Li and Liu 
(2017) discussed various challenges of feature selection for 
big data analytics and ways to overcome them. They pre-
sented an open source feature selection repository called 
scikit-repository that assists researchers to achieve more reli-
able evaluation in developing new feature selection algo-
rithms. Bolón-Canedo et al. (2015) suggested distributed 
feature selection on microarray data due to which execution 
time could be reduced unlike existing algorithms that work 
in centralized fashion. It discussed vertical partitioning of 
data (i.e., by features) as there are large number of features 
when compared to samples. Partitioning was done using 
two methods: (1) performing a random partition and (2) 
ranking the original features before generating the subsets. 
The second method was used to improve the performance 
of the first one. Then filter methods like information gain 
(IG) and ReliefF were applied on each of them and each 
returns a subset. Finally a merging procedure was used to 
combine the results. Merging method was used such that it 
eliminates redundant features in the subsets. The proposed 
method can also be executed in parallel as all the tasks are 
independent. This reduced execution time to a greater extent 
and classification accuracy is same or higher when compared 
to the existing algorithms. Hall (2000) proposed correlation-
based feature selection (CFS) for discrete and numeric class 
machine learning. The algorithm is based on the hypothesis 
that good feature subsets contain features highly correlated 
with class and uncorrelated with each other. The author had 
demonstrated how CFS can be applied on both regression 
and classification problems of machine learning. CFS results 
in greater dimensionality reduction when compared to Reli-
efF. CFS can be a practical feature selector for machine 
learning algorithms. Ramani and Jacob (2013) presented 
a novel cancer prediction framework for gene expression 
datasets to improve accuracy. They proposed rank-weight 
feature selection (RWFS) method that identifies the features 
commonly reported by various feature selection algorithms. 
This method generated higher predictive performance with 
minimal set of features. Eiras-Franco et al. (2016) discussed 
multithreaded and Spark parallelization of feature selection 
filters. They explored new implementations of four feature 
selection algorithms i.e., ReliefF, IG, CFS, support vector 
machine recursive feature elimination (SVM-RFE). There 
is a significant improvement in execution time for ReliefF 
algorithm and scaled well in number of nodes for Spark. 
A new distributed CFS implementation in Spark obtained 

considerable improvement than that of existing multi-
threaded versions included in Weka, a new multithreaded 
IG implementation was found to be less cluster relevant 
i.e., it yields better results when implemented on a single 
computer, a new SVM-RFE multithreaded implementation 
processes multiclass datasets four times faster than that of 
sequential processing in Weka. Singh and Sivabalakrishnan 
(2015) reviewed about feature selection of gene expression 
data for cancer classification. Authors discussed that the 
feature selection methods consistently improves the perfor-
mance. It is infeasible to use single algorithm for different 
datasets as each algorithm has different behavior. Feature 
selection plays a major role in accurately classifying large 
datasets like gene and protein expressions. So, proper cancer 
classification can be achieved using feature selection algo-
rithms. Based on the existing literature, it was identified that 
feature selection on microarray gene expression data greatly 
improves classification accuracy and parallelization of algo-
rithms on Spark reduces execution time.

The parallel recursive feature selection (RFS) method 
introduced in previous work Venkataramana et al. (2018) 
that utilized CFS approach to select prominent genes for 
accurate prediction of cancer sub-types. The parallel RFS 
method performed better than rank weight feature selection 
(RWFS) method in literature (Ramani and Jacob 2013) for 
brain cancer, glioblastoma and lung cancer but not for gas-
tric cancer and childhood leukemia. RWFS method yielded 
classification accuracy of 93% and 65%, whereas parallel 
RFS method yielded classification accuracy of 92% and 
64% for gastric cancer and childhood leukemia, respec-
tively. Hence, the MGE data of these two cancer sub-types 
were further investigated to select optimal number of genes 
and improve classification accuracy. So a parallelized HFS 
method was proposed for MGE data which is detailed in the 
following section.

Proposed parallelized hybrid feature 
selection for classification of cancer 
sub‑types

In MGE data, some of the features are irrelevant (i.e., all the 
features may not be necessary to classify or predict cancer 
sub-type) and redundant. A feature is potentially redundant 
when the information contributed by the feature is more or 
less same as one or more other features (Ali and Shahzad 
2012). Among a group of potentially redundant features, 
a small number of features can be selected as a part of the 
final feature subset without causing any negative impact to 
learning model accuracy.

Hybrid approaches combine two or more well-studied 
algorithms to form a new strategy for solving a particular 
problem. The hybrid approach usually capitalizes on the 
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advantages from the sub-algorithms and therefore is more 
robust comparing with traditional approaches. The proposed 
parallelized HFS algorithm includes parallelized CFS and 
rank-based feature selection (RFS) methods.

Figure 1 depicts the proposed computational methods 
for classifying cancer types from MGE data. The input 
file is given for data pre-processing during which the input 

comma separated values (CSV) file is partitioned vertically 
and the obtained dataset is split into chunks of data. The 
proposed parallelized HFS algorithm (parallelized CFS and 
RFS methods) is applied to obtain optimal and relevant fea-
tures. Parallelized tree models namely decision tree (DT) 
and random forest (RF) are constructed on Spark to evaluate 
selected features.

Fig. 1  Parallelized hybrid fea-
ture selection and classification 
on Spark
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K-fold cross validation is applied to build and evaluate 
the constructed classifier. RF and DT are used for parallel-
ized classification as they provide accurate results when com-
pared to the other classification algorithms and tree models 
could be easily parallelized compared to other classification 
algorithms (Ryza et al. 2017; Spark Release 2.2.1 2019). The 
obtained results are compared with previously reported results 
from RWFS method (Ramani and Jacob 2013) as well as with 
results obtained from DistrbutedWekaSpark (DWS) (WEKA 
2019). Parallelized HFS method includes parallelized CFS 
and parallelized RFS methods. The proposed parallelized 
HFS method was considered to be an embedded feature selec-
tion method as it combines filter (CFS) and wrapper (rank-
based) methods. These methods are described in the following 
subsections.

Correlation‑based feature subset selection (CFS)

The core idea of using feature selection is to remove the redun-
dant or irrelevant features present in the data without incurring 
loss of information. Redundant or irrelevant features are two 
distinct notions, since one relevant feature may be redundant 
in the presence of another relevant feature with which it is 
strongly correlated. The CFS hypothesis (Hall 2000) suggested 
that the most predictive features needed to be highly correlated 
to the target class and least relevant to other predictor attrib-
utes. The following equation dictated the merit of a feature 
subset S that consisted of k features:

(1)Merit S
k
=

krcf
√

k + k(k − 1)rff

where, rcf  is the average value of all feature–class corre-
lations, and rff  is the average value of all feature–feature 
correlations.

The CFS criterion defined as follows

where, rcfi and rfifj variables are referred to as correlations. 
The attributes that portrayed a high correlation to the target 
class and least relevance to each other were chosen as the 
best subset of attributes (Yuan et al. 2017).

Normally parallel programming framework divides data 
horizontally. But in our data set, the number of columns 
(features) outnumbers the number of rows (samples). Hence, 
data is split vertically and feature selection is applied to each 
of the split part. Figure 2 details steps involved in parallel-
ized CFS. As the dataset is split along features, the features 
in one chunk may be relevant to features in other chunks. 
Hence, features across chunks have to be analyzed to obtain 
differentially expressed genes. So, the feature selection 
algorithm is iteratively applied on the obtained feature sub-
set from initial chunks of data until only one chunk of opti-
mal features are found. CFS is a fully automatic algorithm. 
It does not require the user to specify any thresholds or the 
number of features to be selected, although both are simple 
to incorporate if desired. Here CFS is a filter, and as such 
does not incur the high computational cost associated with 
repeatedly invoking a learning algorithm.

(2)CFS = MAXS
k

rcf1 + rcf2 +⋯ + rcfk
√

k + 2(rf1f2 + rf2f3 +⋯ + rfkf1)

.

Fig. 2  Parallelized correlation-
based feature subset selection
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Parallelized rank‑based feature selection algorithm

Diverse feature ranking and feature selection techniques 
have been proposed in the machine learning literature. 
The purpose of these techniques is to discard irrelevant or 
redundant features from a given feature vector. Rank-based 
method takes the output of CFS as input and four RFS algo-
rithms are applied on it separately to produce four subsets. 
Four rank-based methods used are IG, gain ratio (GR), sym-
metric uncertainty (SU) (Ali and Shahzad 2012) and ReliefF 
(Wang et al. 2016), that resulted in four feature subsets as 
shown in Fig. 3. The best feature subset was obtained by 

evaluating the features using parallel classification algo-
rithms. The parallel Rank-based method which yielded this 
best subset of features was considered as a best RFS method.

Materials

Microarray gene expression data for gastric cancer with 
three classes and childhood leukemia with four classes are 
extracted from Artificial Intelligence Biolabs (Bioinformat-
ics Laboratory 2019). Table 1 portrays the description of 
dataset used in this research.

Fig. 3  Parallelized rank-based 
feature selection

Table 1  Microarray gene expression data description

Gene dataset No. of genes Total no. of 
samples

No. of Target 
classes

Class wise 
samples

Cancer sub-types

Gastric cancer (3 class) 4522 30 3 8
5
17

1. Normal gastric tissue
2. Diffuse gastric tumor
3. Intestinal gastric tumor

Childhood leukemia (acute lymph-
oblastic leukemia) (4 class)

8280 60 4 13
21
16
10

1. Mercaptopurine alone (MP)
2. High-dose methotrexate 

(HDMTX)
3. Mercaptopurine and low-

dose methotrexate (LDMTX_
MP)

4. Mercaptopurine and 
high-dose methotrexate 
(HDMTX_MP)
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Results

Parallelized CFS was executed on Spark that results in 
a subset of features. The resultant subset of features was 
given as input to rank-based methods (i.e., IG, GR, SU 
and ReliefF) separately. Number of features to be selected 

was specified as input to rank-based methods. This results 
in an optimal feature subset. For example, the number of 
features selected by CFS for childhood leukemia dataset 
is 17 in 44 s as shown in Table 2. The number of fea-
tures given as input to rank-based methods was varied 
from 1 to 17 and the subset that gave highest accuracy 
when classified was taken as best feature subset. Similarly 
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for gastric cancer 25 features are selected as best feature 
subset in 35 s. Forward selection approach was followed 
to select optimal features from the result of parallel CFS 
method. Classification model was evaluated using per-
centage split and K-fold cross validation. In percentage 
split evaluation method, 70% of original data was used for 
training and remaining 30% as test data.

Tables 3 and 4 depict the parallelized classification accu-
racy when DT and RF are constructed using Distributed-
WekaSpark (DWS) and Spark, respectively. As shown in 
Table 3, the parallelized HFS approach with RF on DWS 
yielded classification accuracy of 85.25% and 96.77% for 
childhood leukemia and gastric cancer, respectively. The 
parallelized HFS approach with decision tree on DWS 
yielded classification accuracy of 34% and 54% for child-
hood leukemia and gastric cancer, respectively. The deci-
sion tree results were very poor compared to RF which is 
an ensemble classifier. The highest accuracy obtained from 
four rank-based feature selection methods are indicated with 
bold face in Tables 3 and 4. 

Similarly on Spark framework, parallelized IG method 
was applied on the CFS result of childhood leukemia, it 
yielded maximum accuracy when the output number of 
features was set to 11 with respect to RF classifier. There 
was 79.14% classification accuracy with percentage split 
of 70% training data and 30% testing data when paral-
lel ReliefF was used as feature selection algorithm. Its 
classification accuracy was 65.64% and execution time 

was 22.98 s when the classifier was build on Spark and 
evaluated using five-fold cross validation. Similarly, for 
Gastric cancer, parallelized ReliefF with RF produced 
classification accuracy of 97.22% in 30  s which was 
depicted in Table 4. The constructed RF was evaluated 
with nine-fold cross validation method. The low accuracy 
results for childhood leukemia were due to the fact that the 
distinctive characteristics between the different sub-types 
are very minimal. The sub-types of childhood leukemia 
were classified as only low and high dose mercaptopu-
rine with methotrexate. Parallel decision tree classifier 
yielded low classification accuracy as ~ 49% to ~ 59% for 
childhood leukemia and it was ~ 88% to ~ 91% for gastric 
cancer. Table 5 lists the differentially expressed genes that 
are optimal and relevant obtained from parallelized HFS 
method and resulted in maximum classification accuracy.

Thus, it can be inferred that using parallelized HFS and 
RF method gave 65.64% accuracy for childhood leukemia 
and 97.22% for Gastric cancer with very less execution 
time compared to results from DistributedWekaSpark. 
Even though the class-wise samples are very few which is 
the basic nature of MGE data, the objective is to provide a 
parallelized framework that could work at the dimension-
wise and classify cancer sub-types in very less time with-
out any obstacle on prediction accuracy.

Figure 4a, b represent the receiver operating character-
istics area under curve (ROC AUC) (Bang et al. 2017) for 
RF classifier obtained when applied on gastric cancer and 

Table 2  Parallelized CFS 
results on DWS and Spark

Dataset No. of genes No. of 
instances

Parallelized CFS on DWS Parallelized CFS on Spark

No. of genes 
selected by 
CFS

Execution 
time (in s)

No. of genes 
selected by 
CFS

Execution 
time (in s)

Gastric cancer 4524 30 52 1080 25 35
Childhood leukemia 8281 60 39 2160 17 44

Table 3  Parallelized classification on DWS

Dataset Ranking method Cross-validation

Decision tree Random forest

No. of fea-
tures selected

Accuracy (in 
%)

Execution 
time (in s)

No. of fea-
tures selected

Accuracy (in 
%)

Execution 
time (in s)

Childhood leukemia Information gain 15 34.42 8 15 85.25 9
Gain ratio 10 34.42 8 10 85 9
Symmetric uncertainty 25 34.42 8 25 85.25 5
ReliefF 25 34.42 8 25 85.25 5

Gastric cancer Information gain 45 54.83 3 45 96.77 5
Gain ratio 45 54.83 1 45 96.77 6
Symmetric uncertainty 52 54.83 3 52 96.77 4
ReliefF 52 54.83 3 52 95 5
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childhood leukemia datasets with the threshold values 0.6, 
0.7, 0.8 and 0.9. ROC AUC is the curve obtained by plotting 
false positive rate (FPR) against true positive rate (TPR). 
The highest TPR obtained for gastric cancer and childhood 
leukemia was 0.9 and 0.83, respectively.

Comparison of results 
with that of DistributedWekaSpark (DWS), 
sequential rank‑weight feature selection (RWFS) 
and parallelized recursive feature selection (RFS)

The results obtained by executing parallelized HFS on Spark 
are compared with that obtained by executing parallelized 
HFS (Das et al. 2017; Lee and Leu 2017) on Distributed-
WekaSpark (DWS) and RWFS method (Ramani and Jacob 
2013). In RWFS method, all gene expression datasets con-
tained absolute values. In order to identify the most relevant 
genes for classification, six feature selection algorithms viz, 
fuzzy rough set evaluator with best first search approach and 
attribute evaluators that ranked the features based on the IG, 
SU, Chi-Square co-efficient, ReliefF factor and the GR were 
utilized (Eiras-Franco et al. 2016). The minimal feature sub-
set returned by all the six feature selection algorithms were 
then compared to determine the genes that were commonly 
reported by all the feature selection techniques. The selected 
features were evaluated using ten classifier models.

Figure 5 depicts the results of proposed parallelized HFS 
with RF compared with results from DWS. Figure 6 depicts 
the comparison of proposed method with the results of 
RWFS method (Ramani and Jacob 2013). In HFS, the value 
of K used for K-fold cross validation for childhood leukemia 
dataset was 5 whereas it was 9 for gastric cancer dataset.

The main theme of the proposed work is to apply paral-
lel computational methods and improve classification accu-
racy with high speed up. DisrtibutedWekaSpark (DWS) is 
a distributed computational tool that combines the comple-
mentary properties of Weka (Hall et al. 2009) and Spark 
into one unit. The reason behind comparison of proposed 
parallelized HFS and RF method on Spark with Distribut-
edWekaSpark is due to the fact that the existing methods in 
the DWS tool performed inferior than the proposed parallel-
ized HFS method for gastric cancer. DistributedWekaSpark 
took more execution time compared to proposed parallelized 
HFS method which was evident from results in Fig. 5. DWS 
yielded 95% accuracy in 1 h whereas the proposed paral-
lelized HFS method yielded 97% in 60 s. This justifies the 
necessity of parallelized framework to select optimal number 
of genes and accurately classify the sub-types of cancer in 
very less time without any adverse effect on classification 
accuracy.

Parallelized HFS improved accuracy by 14% when com-
pared to existing rank-weight feature selection method in Ta
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literature (Ramani and Jacob 2013) which was 65% and it 
was low when compared to results from DWS for child-
hood leukemia dataset. While for gastric cancer dataset, the 
parallelized HFS method improved accuracy by 2% with 
very minimal number of features when compared to that of 
DistributedWekaSpark. Parallelized HFS method improved 
accuracy by 4% when compared to RWFS. RWFS is a 
sequential computational method. On the other hand, there 
was drastic decrease in execution time. Parallelized HFS on 
DWS took 2160 s for gastric cancer and 1080 s for child-
hood leukemia, whereas Parallelized HFS on Spark took 
only 60 and 51 s, respectively. Comparing execution time of 
RWFS method, it took 1800 s for gastric cancer and 900 s 

for childhood leukemia which is higher than the execution 
time of parallelized HFS on Spark.

Table 6 displays the performance of proposed parallel-
ized HFS method compared with parallelized RFS method in 
previous work (Venkataramana et al. 2018). The classifica-
tion accuracy improved to ~ 5% and ~ 15% for gastric cancer 
and childhood leukemia respectively with parallelized HFS 
and RF when compared with parallelized RFS and RF. The 
execution time of proposed parallelized HFS was higher 
compared to previous work as it applies both parallelized 
CFS and RFS methods to select optimal number of genes.

Discussions

The parallel computational methods are necessary to speed 
up the computational task and produce results in less time. 
But this greatly affects the accuracy of results (Lokeswari 
et al. 2019). The proposed parallelized HFS method plays 
a vital role in selecting only the optimal number of predic-
tive genes from high dimensional MGE data to accurately 
classify sub-types of cancer in very less time. The number 
of genes in MGE data is in thousands, this huge number 
of genes may mislead the classifier model due to presence 
of redundant and irrelevant genes. Hence, parallelized HFS 
method was proposed in the current research work to select 
differentially expressed genes and accurately classify cancer 
sub-types in less time. The classification accuracy obtained 
was 97% for gastric cancer and 79% for childhood leuke-
mia in 60 and 51 s, respectively. The parallel feature selec-
tion (RFS) method in our previous work (Venkataramana 
et al. 2018) yielded 92% and 64% classification accuracy 
for gastric cancer and childhood leukemia respectively. 
The sequential feature selection (RWFS) method in the 
existing work (Ramani and Jacob 2013) yielded 93% and 
65% classification accuracy. Although the existing parallel 
and sequential feature selection methods in literature pro-
duced better classification accuracy, sequential methods 
took ~ 3 and ~ 5 min for gastric cancer and childhood leuke-
mia respectively which is high compared to time taken by 

Table 5  Optimal and relevant feature set

MGE dataset Parallelized feature selection method No. of 
optimal 
features

Optimal and relevant geneset

Gastric cancer Correlation feature selection and ReliefF 19 AC002077_at, U33286_at, D78134_at, U13737_at, 
Y10032_at, U96915_at, U50360_s_at, X99584_
at,U46767_at, L27706_at, U05681_s_at, D90276_at, 
X76717_at, V00572_at, X83416_s_at, S85655_at, 
U79241_at, D55716_at, D87445_at

Childhood leukemia Correlation feature selection and information gain 11 39867_at, 41168_at, 31506_s_at, 37529_at, 37888_at, 
38555_at, 37553_at, 33670_at, 35727_at, 41159_at, 
37721_at

Fig. 4  ROC AUC for MGE data; a gastric cancer, b childhood leu-
kemia
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parallelized methods. Compared with previous feature selec-
tion methods parallelized HFS performed better in terms of 
accuracy and speed up.

Moreover, genomic data are ever increasing and hence 
scalable parallelized computational methods are essential 
to analyze voluminous data in order to unearth significant 
genes that play a pivotal role in classification of disease.

Fig. 5  Comparison of results of 
HFS on DWS and Spark
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The objective of parallel feature selection methods is to 
choose less number of predictive genes (features) and improve 
classification accuracy. The challenge with microarray data is 
dealing with low-sample and high-dimensional nature of it. 
Several authors in literature have applied feature selection on 
microarray data which was detailed as follows.

The colon cancer dataset with 62 × 2000 dimensions 
yielded 88% classification accuracy with Chi square test and 
decision tree. The classification accuracy obtained was 92% 
with SU and Naïve Bayes (Wang and Gotoh 2010). The num-
ber genes selected was 100.

The lung cancer dataset with 203 × 12,600 dimensions 
yielded 93% accuracy with 700 genes from parallel Chi square 
test and RF classifier (Zhang et al. 2014). The Glioblastoma 
dataset with 50 × 12,625 dimensions yielded 82% accuracy 
with 700 genes from parallel Chi square test and RF classifier. 
It resulted in 96% accuracy with 66 genes from parallel RFS 
and RF classifier (Venkataramana et al. 2018).

Never the less, when parallelized HFS method was applied 
on Lung Cancer and Glioblastoma datasets, the classification 
accuracy was improved by ~ 2% to ~ 3%. Despite, the less num-
ber of samples and dimensions in the considered dataset (30 × 
4522 and 60 × 8280), the proposed method could be applied 
for any growing samples and dimensions of any health-care 
data. So, it is emphasized that the proposed parallelized HFS 
method does not result in over fitting for the given dataset. 
It was identified from the investigations on microarray data 
that accuracy increases with growing number of samples and 
dimensions. It is also inferred that accuracy decreases with 
decrease in number of samples and dimensions. The authors 
in the current research have chosen 30 to 60 samples, which 
is the worst case condition; still the classification accuracy is 
maintained or improved with the proposed parallelized HFS 
method. This proves the robust nature of the proposed method. 
The proposed parallelized HFS method could scale for even 
large sized gene, protein expressions and RNA sequence 
(TCGA) data. Hence, the proposed method is the generalized 
approach for any sized dataset.

Conclusion

Parallelized HFS algorithm was used in order to improve 
classification accuracy of cancer types. HFS as in detail 
involves parallelized CFS that selects optimal features and 
parallelized RFS methods that rank the features and select 
only the important features. Parallelized classifier model was 
build and selected features were evaluated using percent-
age split and k-fold cross validation methods. This improved 
accuracy by a great margin and at the same time greatly 
reduces execution time. For childhood leukemia dataset, 
parallelized HFS gave accuracy of 79% which was ~ 14% 
higher when compared to existing RWFS method which 
produced 65% and it was low when compared to results 
from DWS. While for Gastric cancer dataset, there was ~ 2% 
improvement in accuracy by HFS when compared to that of 
DWS and it also selected very minimal number of features 
as predictive features. Parallelized HFS method improved 
accuracy by ~ 4% when compared to RWFS. Parallelized 
HFS yielded ~ 5% and ~ 15% improvement in classification 
accuracy when compared with parallelized RFS method. 
As part of our future work, deep neural network algorithms 
can be explored on MGE and Next Generation Sequencing 
datasets for cancer prediction.
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Table 6  Comparison of 
parallelized HFS and random 
forest with previous work

MGE dataset Parallelized recursive feature selec-
tion with RF (Venkataramana et al. 
2018)

Parallelized hybrid feature selec-
tion with RF

Accuracy in % Execution time 
(in s)

Accuracy in % Execution 
time (in s)

Gastric cancer (3 class) 92 35 97 60
Childhood leukemia (4 class) 64 44 79 51
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