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Abstract
Background  A large proportion of eukaryote nuclear genomes is composed of repetitive DNA. Tracing the dynamics of 
repetitive elements in the genomes of related taxa can reveal important information about their phylogenic relationships as 
well as traits that have become distinct to a lineage.
Objective  Study the genomic abundance and chromosomal location of repetitive DNA in Capsicum annuum L. to understand 
the repeat dynamics.
Method  We quantified repeated DNA content in the C. annuum genome using the RepeatExplorer pipeline.
Results  About 42% of the C. annuum genome dataset comprised repetitive elements. Of these, 0.011, 0.98, 3.09, and 0.024% 
represented high and low confidence satellite repeats, putative long-terminal repeats (LTRs), and rDNA sequences, respec-
tively. One novel high confidence 167-bp satellite repeat with a genomic proportion of 0.011%, Ca167TR, was identified. 
Furthermore, FISH with Ca167TR on metaphase chromosomes of C. annuum revealed signals in the subtelomeric regions 
of the short and long arms of chromosome 3 and 4, respectively.
Conclusion  Further understanding of the origin and associated functions of Ca167TR and other repeats in Capsicum will 
give us insights into the genomic relationships and functions of the genome.
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Introduction

Capsicum annuum belongs to the Solanaceae family. There 
are five domesticated and approximately 25 wild species 
in the economically important genus Capsicum (Cheema 
and Pant 2013). The fruits of Capsicum species are used as 
spices, and C. annuum is among the most consumed veg-
etable crops worldwide (Kwon and Kim 2009). Capsicum 
peppers were introduced to Asia from South America during 
the sixteenth century via trade routes (Castro-Concha et al. 
2014). Currently, the largest producer is China (Paran et al. 
2007). Moreover, there are two distinct groups present in the 
genus: species that have 12 pairs of chromosomes (2n = 24), 
and species that have 13 pairs of chromosomes (2n = 26) 

(Rohami et al. 2010). C. annuum is diploid with a genome 
size of 3.26 Gb (Qin et al. 2014).

Recent advances in genomics have shown that large pro-
portion of eukaryotic genomes are repetitive elements (REs). 
These sequences could be up to 90% of the genome size 
(Mehrotra and Goyal 2014; Pertea 2012). The REs can be 
classified into two broad classes: satellite sequences, which 
include micro-satellites and mini-satellites, and dispersed 
repeats like transposable elements (TEs) (Wang et al. 2012). 
REs play very important roles in species evolution because 
they are involved in several processes, such as the move-
ment, pairing, recombination, and arrangement of chromo-
somes, regulation of genes expressions, and genic responses 
to environmental stimuli (Mehrotra and Goyal 2014). The 
TEs play key roles in adaptation, diversification, and specia-
tion (Kalendar et al. 2000; Schrader et al. 2014). One TE, 
the long terminal repeat (LTR) retrotransposon represents 
one of the largest portions of DNA component (Liu et al. 
2018), such as the proportions of LTR are greater than 75%, 
41.35%, and 68.68% in maize (Schnable et al. 2009), wheat 
(Jia et al. 2013), and coix (Cai et al. 2014), respectively. 
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In general, LTR retrotransposons are distributed along the 
chromosomes and found in the centromere region (Li et al. 
2017), playing significant roles in gene regulation and evolu-
tion (Galindo-González et al. 2017).

The latest genome assembly of C. annuum showed that 
80.9% comprised repeats. Among those REs, the major-
ity was the long terminal repeat (LTR) which represents 
approximately 70.3% of the genome, and the most of the 
LTR were Gypsy elements (Kim et al. 2014; Qin et al. 2014). 
In a previous study, an unknown type of repeat CaLUR with 
a long unit length (18–24 kb) was identified and randomly 
distributed in C. annuum pachytene chromosomes. However 
its functional role was unclear (Park et al. 2012).

Ribosomal DNAs are essential genetic elements involved 
in ribosome function (Richard et al. 2008). They include 
two major subfamilies: the 5S and 45S (18S–5.8S–25S) 
rDNAs (Galian et al. 2012). It has been observed that the 
copy number and chromosome distribution of rDNAs could 
be changed rapidly (Muratović et al. 2010). Because of this 
property, rDNAs have been used as molecular markers for 
genome mapping (Witsenboer et al. 1997) and cytogenetic 
research (Gupta and Varshney 2000) in different plants.

Characterizing the types of repeats in a genome and 
understanding their chromosomal distribution and potential 
function will allow the improvement of crop breeding pro-
grams. A rapid and efficient approach to identifying major 
genomic REs is through the RepeatExplorer pipeline (Novák 
et al. 2013), using low-coverage whole-genome sequencing 
(WGS) datasets obtained either through de novo sequencing 
or from public repositories. Here, we performed a genome-
wide analysis of major repeats in C. annuum using Repeat-
Explorer and performed FISH on one novel satellite DNA.

Materials and methods

Plant samples

Seeds of C. annuum L. (IT032384) were collected from the 
National Agrobiodiversity Center, Republic of Korea. The 
seeds were germinated in a plastic cup filled with horticul-
ture-grade soil. Root tips were harvested when the seedlings 
were about 5 cm tall. The root tips were pre-treated with 
2 mM 8-hydroxyquinoline solution for 5 h at 18 °C. The 
samples were then fixed in Carnoy’s fixative (3:1 v/v abso-
lute ethanol: glacial acetic) overnight. Finally, the samples 
were stored in 70% alcohol at 4 °C for later use.

Genomic DNA extraction

Two grams of young seedling leaves of C. annuum were col-
lected for DNA extraction. The genomic DNA was extracted 
using a modified cetyltrimethylammonium bromide (CTAB) 

protocol described by Allen et al. (2006). The concentration 
of the obtained genomic DNA was measured using Colibri 
Microvolume Spectrometer (Titertek Berthold, Pforzheim, 
Germany).

Identification of satellite DNA

The C. annuum WGS reads (SRR653476) were downloaded 
from the National Center for Biotechnology Information 
(https​://www.ncbi.nlm.nih.gov/Trace​s/study​/?acc=BGI_
Zunla​_1). Read quality trimming, sampling of 0.05 × of the 
C. annuum genome, and read cluster were carried out using 
the Tandem repeat analyzer (TAREAN) (Novák et al. 2013) 
workflow in RepeatExplorer (Novák et al. 2017).

Probe preparation

The pre-labeled oligo nucleotide probes (PLOPs) for 5S and 
45S rDNAs and Arabidopsis-type telomeric repeats were 
designed by Waminal et al. (2018) and provided by the 
Bioneer Corporation (South Korea). The probe for Ca167TR 
was prepared by PCR amplification using primers (Table 1) 
designed using Primer3Plus (http://www.prime​r3plu​s.com/
cgi-bin/dev/prime​r3plu​s.cgi). A TaKaRa Ex Taq® DNA Pol-
ymerase kit (TaKaRa RR001B, Kusatsu, Japan) was used 
for PCR amplification of Ca167TR. The PCR mixture con-
tained 150 ng of template DNA, 2 μM each of forward and 
reverse primers, 0.2 mM dNTP mixture (TaKaRa), 2.5 units 
of Ex Taq polymerase (TaKaRa), 5  μl of 10 × Ex Taq 
buffer (TaKaRa), and nuclease-free water (Sigma-Aldrich 
RNBG3073, Darmstadt, Germany) up to a final volume of 
50 μl. The PCR amplification was carried out as follows: 
initial denaturation at 95 °C for 5 min; followed by 35 cycles 
of denaturation at 95 °C for 30 s, annealing at 55 °C for 
20 s, and extension at 72 °C for 15 s; and a final extension 
for 5 min at 72 °C. The PCR amplicons were labeled with 
biotin-16-dUTP according to the manufacturer’s protocol 
(Biotin-Nick Translation Mix, Roche).

Slide preparation

Chromosome preparation was carried out according to a pre-
viously descibed method (Waminal et al. 2011) with some 
modifications. Briefly, 2 mm long root tips were dissected 

Table 1   Primers used in this study

Primer name Primer sequence Length Mark

CL240_C.a_F AAT​CCG​TAC​AGT​TCG​ATC​
ACAGT​

23 PCR

CL240_C.a_R ATT​CGT​GCT​ACG​CAT​TGA​
TCTAG​

23

https://www.ncbi.nlm.nih.gov/Traces/study/%3facc%3dBGI_Zunla_1
https://www.ncbi.nlm.nih.gov/Traces/study/%3facc%3dBGI_Zunla_1
http://www.primer3plus.com/cgi-bin/dev/primer3plus.cgi
http://www.primer3plus.com/cgi-bin/dev/primer3plus.cgi
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and digested in 1:2 (%) ratio of pectolyase and cellulase for 
90 min at 37 °C. The root tips were then washed with dis-
tilled water. The meristematic tissue was pipetted into the 
Carnoy’s solution (3:1 v/v absolute ethanol:glacial acetic 
acid), squashed, and simultaneously vortexed for 15 s. The 
suspension was then centrifuged at 5000 rpm for 5 min, and 
the supernatant was decanted carefully. The protoplast was 
re-suspended in acetic acid:ethanol (9:1 v/v) solution. The 
final suspensions were mounted on a 70 °C pre-warmed 
glass slide in a humidity chamber and air dried at room tem-
perature (23–25 °C).

Fluorescence in situ hybridization

Fluorescence in situ hybridization (FISH) with PLOPs was 
based on the method described by Waminal et al. (2018). 
Briefly, a total 40-µl FISH mixture of 25 ng each of 5S and 
45S rDNA and telomeric repeat PLOP probes, 50% for-
mamide, 10% dextran sulfate, and 2 × SSC was prepared 
for each slide. The FISH mixture was placed on a chromo-
somal DNA slide and denatured at 80 °C on the slide heater 
for 5 min. Then, the hybridization was proceeded at room 
temperature in a humid chamber for 30 min in the dark. 
The steps of stringent washes were: 2 × SSC at room tem-
perature for 10 min, 0.1 × SSC at 42 °C for 25 min, and 2 × 
SSC at room temperature for 5 min. Then, the slides were 
dehydrated through an ethanol series (70%, 90%, and 100%) 
at room temperature for 3 min each and dried in the dark. 
Finally, the slide was counterstained with 4′,6-diamidino-
2-phenylindole (DAPI) (Roche 70217321, Hoffmann-La 
Roche Ltd., Basel, Switzerland) at a ratio of 1:100 DAPI 
(100 µg/ml stock) to Vectashield (Vector H1000, Vector 
Laboratories, Burlingame, CA, USA). Slides were observed 
under an Olympus BX53 fluorescence microscope (Olympus 
Co., Tokyo, Japan) with a built-in CCD camera (CoolSNAP, 
Photometrics, Tucson, AZ, USA), using an oil lens (100 × 
magnification).

Chromosomes were washed and reprobed with Ca167TR 
following the method described by Lim et al. (2005). In 
order to remove the oil and coverslip, the slides were washed 
in 70% ethanol and 2 × SSC for 5 min and 10 min, respec-
tively. Then, the slides were immersed in 4 × SSC containing 
0.2% Tween-20 for 1 h, incubated in 2 × SSC containing 
70% formamide for 5 min at 80 °C, and dried in the air for 
re-probing. The biotin-labeled Ca167TR probe was detected 
with streptavidin-Cy3 conjugate (Zymed Lab., USA).

Results and discussion

The RepeatExplorer analysis generated eight major repeats, 
which included one high confidence satellite repeat, three 
low confidence satellites repeats, three LTRs, and one rDNA 

(Table 2). We identified one read cluster (CL240) represent-
ing a novel high confidence 167-bp satellite repeat with a 
genomic proportion of 0.011%, which we named Ca167TR 
(Table 3). We developed a FISH probe of this tandem repeat 
to test its potential as a cytogenetic marker for pepper.

Cytogenetic studies of C. annuum, including the publi-
cations of chromosome number, karyotype by fluorescence 
staining (CMA/DA/DAPI), and FISH with rDNA and telo-
meric probes have been previously conducted (Hwang et al. 
2010; Lippert et al. 1966; Moscone et al. 2007; Pickersgill 
1991). Here, we observed a 2n = 24 chromosome number in 
C. annuum, like other previous studies (Cheema and Pant 
2013; Dixit 1931; Huskins and La-Cour 1930). Our FISH 
analysis on sporophytic metaphase chromosomes showed 
one and three signals of 5S and 45S rDNA, respectively 
(Fig. 1), in accordance with results reported by Hwang et al. 
(2010). One of the 5S rDNA signals hybridized in the sub-
telomeric region of the short arm of chromosome 9, while 
one pair of major and two pairs of minor signals of 45S 
rDNA were detected in the subtelomeric region of the short 
arm of chromosomes 12 and 4, and the long arm of chromo-
some 10, respectively. Two pairs of Ca167TR repeat signals 
were detected in the subtelomeric region of the short arm of 
chromosome 3 and the long arm of chromosome 4. Telom-
eric repeat signals could be detected in the telomere region 
of almost both end of all chromosomes (Fig. 2; Table 4).  

Hwang et al. (2010) and Romero-da Cruz et al. (2017) 
performed FISH-based karyotype analyses of C. annuum 
with rDNAs signals that could reliably distinguish two chro-
mosomes (5S and 45S major signals). With the newly found 
tandem repeat Ca167TR, aside from chromosome 9 (5S sig-
nal) and 12 (45S major signal), we could reliably distinguish 
three more chromosomes, chromosome 3 (Ca167TR), 4 
(45S minor and Ca167TR signals), and 10 (45S minor sig-
nal). Thus, Ca167TR is confirmed to be a good cytogenetic 
marker for C. annuum.

The genomes of higher plants comprise a mass of repeti-
tive elements (REs). These REs have a well-defined impact 

Table 2   List of annotations and genome proportions of major repeat 
clusters

No. Cluster Size of 
consensus 
(bp)

Genome 
proportion 
(%)

Annotation Name given

1 CL240 167 0.011 Satellite Ca167TR
2 CL14 3338 0.700 Satellite –
3 CL64 44 0.180 Satellite –
4 CL94 112 0.100 Satellite –
5 CL2 5696 2.000 LTR –
6 CL11 5484 0.810 LTR –
7 CL40 4884 0.280 LTR –
8 CL169 294 0.024 rDNA –
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Table 3   General information of a novel high confidence satellite repeat Ca167RT of C. annuum L. (obtained from RepeatExplorer (ELIXIR, 
Czech Republic))

Name Genome proportion (%) Consensus length (bp) Consensus

Ca167RT 0.011 167 GAA​TCC​GTA​CAG​TTC​GAT​CAC​AGT​AGT​TAA​TGT​GAC​TAA​AAT​TTC​AGA​
AAT​GTT​ATT​TGA​ATT​ACT​TGA​TTT​TTG​TTG​CTT​GAT​TTA​TAA​TTC​CTT​
TGT​AAC​ATT​GAT​TGT​TAA​TTA​TGA​ATA​CAA​AAT​GCT​AGC​TAG​ATC​AAT​
GCG​TAG​CAC​GAA​TTT​CTA​ATTCA​

Fig. 1   FISH metaphase chromosomes of C. annuum L. a 5S rDNA 
(green), b 45S rDNA (red), c Ca167TR repeat (magenta), d telomere 
(yellow) signals, and e merged. The red and magenta arrows in b, 

c and e indicate the weak 45S rDNA and Ca167TR repeat signals, 
respectively. Scale bar = 10 µm (color figure online)

Fig. 2   FISH karyogram of 
C. annuum L. showing the 
merged signals (E) of 5S rDNA 
(green, A), 45S rDNA (red, 
B), Ca167TR (magenta, C), 
and Arabidopsis-type telomere 
(yellow, D). The red and 
magenta arrows in B, C, and E 
indicate the weak 45S rDNA 
and Ca167TR repeat signals, 
respectively. Scale bar = 10 µm 
(color figure online)



1005Genes & Genomics (2019) 41:1001–1006	

1 3

on chromosome composition, which is the main reason for 
genome size variation (Garrido-Ramos 2015; Piegu et al. 
2006). The genome size of C. annuum was approximately 
four times larger than that of tomato (760 Mb) (Consortium 
TG 2012) and potato (727 Mb) (Xu et al. 2011) genomes, 
mainly due to the large proportion of REs in both hetero-
chromatic and euchromatic regions (Kim et al. 2014). The 
genome of C. annuum contained 80.9% of repeats (Qin 
et al. 2014). Usually REs like tandem repeat could be richly 
detected in telomere and centromere regions (Rao et al. 
2010). Similarly, the newly found Ca167TR repeat of C. 
annuum was detected in the subtelomeric regions (Fig. 2).

Here, we have confirmed the usefulness of Ca167TR as 
a cytogenetic marker for C. annuum. Further FISH experi-
ments are needed in order to localize other major repeats 
identified in this study. Additionally, whether these repeats 
affect the spiciness and stress response of C. annuum by 
interfering with the capsaicin biosynthetic pathway and 
the biotic and abiotic stress signalling pathways remains 
unknown and therefore, are interesting topics for future 
research.
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