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Abstract
Introduction The accurate prediction and annotation of gene structures from the genome sequence of an organism enable 
genome-wide functional analyses to obtain insight into the biological properties of an organism.
Objectives We recently developed a highly accurate filamentous fungal gene prediction pipeline and web platform called 
TaF. TaF is a homology-based gene predictor employing large-scale taxonomic profiling to search for close relatives in 
genome queries.
Methods TaF pipeline consists of four processing steps; (1) taxonomic profiling to search for close relatives to query, (2) 
generation of hints for determining exon–intron boundaries from orthologous protein sequence data of the profiled species, (3) 
gene prediction by combination of ab inito and evidence-based prediction methods, and (4) homology search for gene models.
Results TaF generates extrinsic evidence that suggests possible exon–intron boundaries based on orthologous protein 
sequence data, thus reducing false-positive predictions of gene structure based on distantly related orthologs data. In particu-
lar, the gene prediction method using taxonomic profiling shows very high accuracy, including high sensitivity and specificity 
for gene models, suggesting a new approach for homology-based gene prediction from newly sequenced or uncharacterized 
fungal genomes, with the potential to improve the quality of gene prediction.
Conclusion TaF will be a useful tool for fungal genome-wide analyses, including the identification of targeted genes associ-
ated with a trait, transcriptome profiling, comparative genomics, and evolutionary analysis.

Keywords Ab initio · Exon–intron boundary · Filamentous fungal genome · Homology-based gene prediction · Taxonomic 
profile · Web platform

Introduction

A primary goal of determining the genome sequence of 
an organism is to obtain information about its genes. The 
accurate prediction and annotation of gene structures enable 
genome-wide analyses, including the identification of tar-
get genes associated with a trait, transcriptome profiling, 
comparative genomics, and evolutionary analysis, thus pro-
viding insights into the biological properties of an organ-
ism. As whole-genome sequence data have been rapidly 
accumulating with the advance of sequencing technologies 
(Hayden 2014), the development of methods for complete 
and accurate gene annotation is of paramount importance 
(Yandell and Ence 2012). However, gene prediction in newly 
sequenced genomes has become a bottleneck because of 
assembly errors resulting from short read lengths and dif-
ficulties in the training, optimization and configuration of 
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gene prediction, due to a lack of pre-existing gene models 
and small-scale efforts in bioinformatics (Yandell and Ence 
2012). For example, incorrectly missing gene annotations 
can lead to false interpretations, such as incorrect predictions 
of gene loss, and errors in gene expression profiles that are 
employed to map and quantify RNA-Seq reads using pre-
dicted gene models (Dunne and Kelly 2017).

The development of gene prediction software has been 
advancing, with a number of effective algorithms being gen-
erated over the last fifteen years (Yandell and Ence 2012). 
In general, genes can be predicted ab initio by detecting 
probabilistic species-specific signals in DNA sequences 
using hidden Markov models (HMMs) (Stanke and Waack 
2003), conditional random fields (DeCaprio et al. 2007), 
and support vector machines (Schweikert et al. 2009). The 
signals include codon frequencies, the distribution of intron 
and exon lengths, intron and exon GC contents, and motifs 
associated with the beginning and end of exons (e.g., splice 
sites and start/stop codons). Genes can also be predicted by 
accepting transcriptome-based and protein-based evidence 
identified by aligning expressed sequence tags (ESTs), RNA-
Seq data, and protein sequences to a genome (Yandell and 
Ence 2012). In particular, RNA-Seq can yield detailed infor-
mation on the structure of genome-wide mature transcripts 
in an organism (Marioni et al. 2008). These evidence-driven 
methods can be used to train gene predictors, even in the 
absence of pre-existing reference gene models, thus improv-
ing the accuracy of gene prediction. Therefore, the integra-
tion of all the available ab initio and evidence-driven gene 
predictions provides great potential to improve the quality 
of gene prediction in newly sequenced genomes.

While many of the newly sequenced fungal genomes 
have been recently assembled through next-generation 
sequencing, using single-molecule real-time (SMRT) 
sequencing in particular, which produces long-reads 
(approximately 10 kb read length) and improves assembly 
errors (Choo et al. 2016; Shim et al. 2016), there is a need 
for the development of gene prediction software for fungal 
genomes. Fungal genomes exhibit a number of differences 
from large complex plant and animal genomes, such as 
a compact genome structure, shorter intergenic spaces 
and introns, (Galagan et al. 2005), and diverse genetic 
codons (Nakagawa et al. 2008; Riley et al. 2016). Most 
importantly, the availability of well-characterized genome 
annotations for only a few fungal species limits compara-
tive gene predictions for species in other clades. In addi-
tion, many of the predicted fungal proteins in sequence 
databases lack experimental verification across a variety 
of species. Several fungal gene prediction and annota-
tion tools, such as SnowyOwl (Reid et al. 2014), ABFGP 
(van der Burgt et al. 2014), and OrthoFiller (Dunne and 
Kelly 2017), have been developed recently. SnowyOwl 
is a gene prediction pipeline that uses RNA-Seq data to 

train and provide evidence (or hints) for the generation of 
HMM-based gene predictions (Reid et al. 2014). ABFGP 
is a sequence alignment-based gene prediction tool that 
assesses gene models on a gene-by-gene basis and is suit-
able for the plastic genomes (van der Burgt et al. 2014). 
OrthoFiller is intended to identify missing annotations for 
evolutionarily conserved genes (orthogroups).

We recently developed the homology-based gene pre-
diction pipeline TaF, coupled with an ab initio method, 
for filamentous fungal genomics. Homology-based gene 
prediction can be very useful for predicting efficient gene 
models from a fungal draft genome for which the anno-
tated gene set or transcriptome data (i.e., RNA-Seq) are 
not supported. However, the use of data from distantly 
related orthologs in such a method may cause false-posi-
tive predictions of exon–intron boundaries within a gene, 
or even fusion between/among neighboring gene models 
(i.e., paralogous genes). To improve such false-positive 
predictions, we employed taxonomic profiling in TaF, 
which searches for close relatives showing high homology 
with a query fungal genome, and generated protein-based 
hints for determining exon–intron boundaries based on the 
data of orthologous protein sequences of the profiled spe-
cies. Therefore, TaF suggest a new approach for homol-
ogy-based gene prediction based on newly sequenced or 
uncharacterized fungal genomes.

Methods

Development of the TaF pipeline

The TaF pipeline uses a genome sequence file as input. 
To profile close relatives showing high homology with 
an input genome, the input is searched against the fungal 
genomic sequence database of NCBI (https ://www.ncbi.
nlm.nih.gov/) using BLASTN (Altschul et al. 1990), and 
taxonomic classification is performed using KronaTools 
(Ondov et al. 2011). Protein sequences of the profiled spe-
cies are extracted from the NCBI non-redundant (NR) pro-
tein sequence database. The collected protein sequences 
are aligned to the input using Exonerate (Slater and Birney 
2005), and exon and intron models are then generated in 
GFF format. Repeat sequences, which may tend to con-
fuse ab initio predictions, are masked in the input genomic 
sequence using RepeatMasker and RepeatModeler (http://
www.repea tmask er.org/). Gene structures are predicted 
using Augustus (Stanke et al. 2004), and protein-based 
evidence hints are generated. Finally, the resulting pre-
dicted genes are searched against the UniProt database 
(http://www.unipr ot.org/) using BLASTP (Altschul et al. 
1990) for functional annotation.

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
http://www.repeatmasker.org/
http://www.repeatmasker.org/
http://www.uniprot.org/
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Sensitivity and specificity of TaF

To evaluate the accuracy of TaF, the sensitivity (Sn) and speci-
ficity (Sp) of TaF were calculated based on a filamentous fun-
gal genome of Aspergillus oryzae (RIB40 ASM18445v3 in 
ENSEMBLE release 36), which contains gene models with 
exon–intron structures, and were compared with those of dif-
ferent programs using Augustus, employing a trained dataset 
for A. oryzae and GeneMark-ES (Borodovsky and Lomsadze 
2011) with a fungus self-training option; however, evidence 
hints that were generated based on transcriptome or protein 
sequence data were not used. Sn and Sp included the number 
of true positives (TP), false positives (FP), true negatives (TN), 
and false negatives (FN) according to the sequence annotation 
for the annotated region (Supplementary Fig. 1).

Sn and Sp of TaF were also compared with those obtained 
through evidence-based prediction methods using transcrip-
tome and/or protein sequence data. In addition, the effi-
ciency of taxonomic profiling employing orthologous protein 
sequence data of close relatives was also assessed. For this 
purpose, the draft genome of Lentinula edodes (Shim et al. 
2016) was employed, with the corresponding transcriptome 
data, including Illumina RNA-Seq and PacBio Iso-Seq data. 
To generate transcriptome-based evidence hints, TopHat2 
(Kim et al. 2013) and GMAP (Wu and Watanabe 2005) were 
used for short- and long-read RNA sequence alignments, 
respectively. To generate protein-based evidence hints, fungal 
orthologous protein sequences from target species that were 
searched using KronaTools were collected from the NCBI 
NR protein database, and Exonerate was employed for pro-
tein sequence alignment. Using the generated evidence hints, 
Augustus was employed to perform de novo prediction. The Sn 
and Sp of different evidence-based prediction methods were 
calculated as described above. Additionally, the classification 
of splicing junctions was performed using RSeQC (v2.6.3) 
(Wang et al. 2012).

Implementation

TaF is operated on a Linux server with an Intel (R) Xeon 
(R) CPU E7-8850 and 256 Gb of RAM. The TaF pipeline 
is implemented using Python and bash shell scripts, and the 
web interface is implemented based on APM (Apache, PHP, 
and MySQL). The size of the input sequence is limited to ~ 30 
Mbp, with a *.gz compressed format, and the analytical pro-
cess is checked with an assigned job ID. TaF is freely available 
at http://taf.genom e-repor t.com/.

Results and discussion

Overview of TaF

The workflow of TaF consists of four steps: (1) taxonomic 
profiling to search for close relatives to query; (2) gen-
eration of hints for determining exon–intron boundaries 
from orthologous protein sequence data of the profiled 
species; (3) gene prediction using the resulting hints and 
ab initio information; and (4) homology searches for pre-
dicted gene models (Fig. 1). TaF searches for close rela-
tives of the query genome through large-scale taxonomic 
profiling using KronaTools. Taxonomic profiling reveals 
the abundance of sequence regions conserved between the 
query and relatives (Fig. 1) and selects the top 6 relatives. 
If related species in which the abundance is greater than 
5% for the queried sequence length at the species level 
are selected, we empirically recommend the application 
of TaF. TaF generates hints for determining exon–intron 
boundaries in gene predictions, by aligning orthologous 
protein sequences derived from the selected species to 
the queried genomic sequence (Fig. 1). Thus, TaF can 
improve the false-positive prediction of gene structure 
and suggest new approaches for homology-based gene 
prediction, based on newly sequenced or uncharacterized 
fungal genomes with taxonomic profiling. Gene prediction 
is performed using the resulting protein sequence-based 
hints and ab initio information, and known homologous 
genes are searched against the UniProt database, provid-
ing a resource for orthologous gene cluster analysis. The 
outputs of TaF include the distribution of the quantitative 
abundance of sequence regions conserved between queries 
and relatives through taxonomic profiling; predicted gene 
models in GFF and FASTA formats; and BLASTP search 
results.

Processing time of TaF depends on the length of 
genomic sequence and sequence homology. For example, 
TaF took 2.63 h, 2.63 h, 3.58 h, and 9.93 h to predict 
gene models in the genomes of Saccharomyces cerevi-
siae (12.2 Mb), Schizosaccharomyces pombe (12.6 Mb), 
Aspergillus fumigatus (28.8 Mb), and Aspergillus oryzae 
(37.1 Mb), respectively.

Assessment of the accuracy of gene prediction

The Sn and Sp of TaF were first compared with the Sn and 
Sp obtained through ab initio prediction using Augustus 
and GeneMark-ES, with no evidence hints. For this pur-
pose, the genome of Aspergillus oryzae, which has been 
well annotated, with 12,074 protein-coding genes, was 
employed as a reference. Augustus, GeneMark-ES, and 

http://taf.genome-report.com/
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TaF predicted 11,442, 12,791, and 12,722 gene models, 
respectively. The Sn and Sp for these predicted gene sets 
were calculated based on the reference gene set. Sn and 
Sp were found to be 80.33% and 76.86%, respectively, 
for Augustus; 84.67% and 76.41% for GeneMark-ES; 
and 87.60% and 77.58% for TaF (Fig. 2), suggesting that 

prediction based on the combination of taxonomic profil-
ing and ab initio methods shows an improved accuracy 
over ab initio prediction alone.

To evaluate the performance of taxonomic profiling-
based prediction in TaF, the results of gene prediction 
using the combination of different methods, including the 
ab initio (Abi) strategy, transcriptome-based prediction 
(THint) employing RNA-Seq data as extrinsic evidence, 
homologous protein-based prediction with taxonomic pro-
filing (TP-PHint), and homologous protein-based prediction 
without taxonomic profiling (PHint), were compared: (1) 
Hint (H) 1: Abi + THint, (2) H2: Abi + THint + TP-PHint, 
(3) H3: Abi + THint + PHint, (4) H4: Abi + TP-PHint, (5) 
H5: Abi + PHint, and (6) H6: Abi. For these assessments, 
we used the draft genome of Lentinula edodes, with tran-
scriptome datasets including RNA-Seq and Iso-Seq data and 
1002 representative gene models that were verified based 
on full-length cDNAs from Iso-Seq data and contained 
exon–intron structures. Although prediction methods that 
make use of transcriptome data showed a high gene identifi-
cation ability and accuracy (sensitivity and specificity), with 
relatively small differences (H1, H2, and H3 in Fig. 3a, b), 
the H2 method exhibited the best performance (Fig. 3a, b). 

Query
(Genomic sequences)

Repeat-masking
(*RepeatMasker)

Taxonomic profiling
- Search for relatives (*KronaTools)
- Selection of ~top 6 abundant relatives
- Collection of orthologous protein 

sequence dataset

Generation of extrinsic evidence
- Protein sequence alignment to query

(*Exonerate)
- Generation of extrinsic evidence (hints)

Gene prediction
- Protein evidence-based prediction 

(*Augustus)

Annotation
- Homology-based search (*BLASTP, 

*UniProt DB)

TaF Pipeline 
Outputs

TaF Web Interface 

*.html

*.gff

*.xls

Taxonomic profiling

Gene set

http://taf.genome-report.com/

Fig. 1  Workflow of the TaF pipeline and web interface. The TaF 
pipeline (on the left) is processed in the following order: uploading 
of assembled genomic sequences, repeat masking, taxonomic profil-
ing, generation of extrinsic evidence, gene prediction, and annotation. 

TaF outputs (in the center) include the results of taxonomic profil-
ing (*.html), predicted gene models (GFF and FASTA formats), and 
BLASTP searches. The web interface of TaF (on the right) consists of 
introduction, analysis, and job status pages

Augustus
GeneMark-ES

TaF

70 80 90 100
Sensitivity (%)

75 85 95

100

80

60

70

90

S
pe

ci
fic

ity
 (%

)

Fig. 2  Comparison of the sensitivity and specificity of gene predic-
tions by Augustus, GeneMark-ES, and TaF. For comparison of the 
accuracy of the three tools, the reference genome of Aspergillus ory-
zae including gene introns in was employed, and Augustus and Gene-
Mark-ES without evidence hints were applied for ab initio prediction
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Moreover, the assessment showed that gene prediction (H2) 
employing taxonomic profiling presented better accuracy 
than did (H3), which employs a homology-based prediction 
method that considers all the homologous fungal protein 
sequence data to generate extrinsic hints: H2 > H3 in terms 
of the number of predicted gene models, Sn, and Sp (Fig. 3a, 
b). In the comparison between two homology-based predic-
tions, H4 and H5, which provide no transcriptome data, the 
accuracy of the H4 method was also found to be superior to 
the H5 method. Additionally, known splice junctions were 
identified as more abundant by H4 than by H5 (although 
the difference was small, 3.63%) (Fig. 3c), likely because of 
the more accurate detection of exon–intron boundaries. Our 
results suggest that the taxonomic profiling employed in TaF 
and the use of the resulting orthologous protein sequence 
dataset will improve the accuracy of gene prediction.

Conclusion

The remarkable features of TaF are as follows: it searches for 
close relatives of query genomes based on large-scale taxo-
nomic profiling, and it can generate extrinsic evidence from 
the profiled species-derived orthologous protein sequence 
dataset. This approach can reduce the rate of false-pos-
itive predictions. Thus, TaF provides a new approach for 
homology-based gene prediction based on newly sequenced 
or uncharacterized fungal genomes. Furthermore, we will 
upgrade TaF integrated with transcriptome-based prediction.
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