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Introduction

As the second most important plant families for agricul-
ture, Legumes (Fabaceae) provide excellent materials for 
human food, animal feed, and industry use (Graham and 
Vance 2003). They account for one-third of crop produc-
tion in the whole world, and play essential roles in symbi-
otic nitrogen fixation every year (Benedito et al. 2008). So 
far, many researchers have devoted to the study of breed-
ing and genetic improvements of Legumes, such as Glycine 
max, Lotus japonicas, Medicago truncatula. In the past 
decades, with rapid development of microarray and genome 
sequencing technologies, the genome-wide research has 
become feasible. Currently, the genome sequencing of 
L. japonicas and M. truncatula were finished (Sato et  al. 
2008; Young et  al. 2011). The gene expression atlases of 
both species were also established, respectively (Benedito 
et al. 2008; Verdier et al. 2013).

To better understand the regulation on growth and 
development of Legumes, we mainly aimed at the study 
on transcription factors (TFs), which temporarily and 
spatially control the expression of their target genes 
through binding upstream cis-elements (Jin et  al. 2017). 
MYB is one of most abundant plant transcription factor 
(TF) families, and has been implicated in diverse plant-
specific processes (Cedroni et  al. 2003). The first plant 
MYB gene, isolated in maize, encoded a c-MYB-like TF, 
which was involved in the biosynthesis of anthocyanin 
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(Du et al. 2012). The most common type of plant MYB 
TFs is R2R3-MYB with two repeats (Jin et al. 2017). To 
date, substantial data about MYB transcription factors 
have been shown in both monocotyledonous and dicoty-
ledonous plants (Feller et al. 2011).

MYB transcription factors were defined by the typi-
cal helix-turn-helix motifs (HTH) of their DNA-binding 
domains. Most MYB proteins in animals and plants have 
three (R1, R2, and R3) and two (R2 and R3) imperfect 
repeats, despite the fact that MYB genes containing both 
one and three repeats have been also found in plants 
(Braun and Grotewold 1999; Kranz et  al. 2000). Thus, 
the MYB genes in Arabidopsis thaliana were classified 
into three types: (R1)R2R3_Myb, Myb_related and atypi-
cal_MYB (Yanhui et  al. 2006). Notably, some groups 
also classified into three or four subfamilies according 
to the repeat numbers in the MYB domain (Stracke et al. 
2001; Du et  al. 2013; Li et  al. 2016; Salih et  al. 2016). 
Currently, genome-wide studies on R2R3-type MYB 
have been conducted in various plant species, such as 
A. thaliana (Stracke et  al. 2001), diploid and polyploid 
cotton (Cedroni et al. 2003), Zea mays (Du et al. 2012), 
Beta vulgaris (Stracke et al. 2014), Pyrus bretschneideri 
(Li et  al. 2016), Jatropha curcas (Peng et  al. 2016), the 
tomato family Solanaceae (Gates et al. 2016). In spite of 
the extensive studies on R2R3-type MYB, the evolution-
ary history of MYB-related proteins in plants remains 
largely unknown (Du et al. 2013).

MYB TFs play important roles in plant growth and 
development, abiotic stress tolerance, hormone signal 
transduction and disease resistance (Jin and Martin 1999; 
Roy 2016). For example, expression profiles analysis in 
peanut (Arachis hypogaea L.) identified 30 MYB genes 
responsive to abiotic stress treatment (Chen et al. 2014). 
Overexpression of some MYB genes could lead to alter-
nation of abiotic and biotic stress in tobacco (Li et  al. 
2014). R2R3-type MYB TFs were involved in secondary 
metabolism, such as phenylpropanoid metabolism (Jin 
and Martin 1999). MYB transcription factors, particu-
larly R2R3-type MYB, play important roles in regula-
tion of plant developmental processes, such as defense, 
cell shape, pigmentation, and root formation (Gates et al. 
2016). Thus, MYB transcription factors may be related to 
organ development processes.

Here, we identified and characterized 104 and 166 
MYB genes in L. japonicas and M. truncatula, respec-
tively, most of which were R2R3-type MYB. Phyloge-
netic analysis indicated that MYB genes in M. truncatula 
underwent species-specific expansion. The expression 
analysis showed diverged expression profiles of most 
MYB genes in various organs, suggesting that they might 
be involved in plant organ growth and development.

Materials and methods

Identification of MYB genes

An extensive search was performed to identify MYB 
genes based on all protein sequences in the genomes of 
both L. japonicas (version: Lotus_r3.0) and M. trunca-
tula (version: Mt4.0v1). All the coding sequences and 
protein sequences of both species were downloaded from 
the websites: ftp://ftp.kazusa.or.jp/pub/lotus/lotus_r3.0/ 
and http://www.jcvi.org/medicago/index.php. Based on 
the classification of MYB genes in A. thaliana (Yan-
hui et  al. 2006), we collected 124 transcripts of R2R3-
MYB genes. All the protein sequences were used for 
HMMER prediction of transcriptional factors under an 
E value with 1e-30, among which the classification of 
MYB genes were conducted according to that in A. thali-
ana. All the MYB genes were classified into three types: 
(R1)R2R3_Myb, Myb_related and atypical_MYB (Yan-
hui et  al. 2006). Subsequently, all the coding sequences 
and protein sequences of the predicted MYB genes were 
extracted based on their gene/protein ID numbers.

The genomic locations of these MYB genes in L. 
japonicas and M. truncatula were extracted in the GFF 
files. Then these MYB genes were mapped to each chro-
mosome of both species. We further predicted the MYB 
genes in both L. japonicas and M. truncatula subject to 
tandem duplication by MCScanX (Wang et al. 2012a).

Phylogenetic analysis

To characterize the evolutionary features of MYB 
proteins, we extracted all the predicted MYB pro-
tein sequences in both L. japonicas and M. truncatula. 
The protein sequences of A. thaliana MYB genes were 
obtained from the website TAIR (http://www.arabi-
dopsis.org/). Using MEGA7.0 (Kumar et  al. 2016), we 
constructed the phylogenetic trees of all MYB protein 
sequences in these three species. Both Neighbor-Joining 
(NJ) method and Maximum Likelihood (ML) method 
were employed for tree generation. In each method, boot-
strap analysis with 1000 replicates was used.

Analysis of gene structures and conserved motifs

The GFF files of L. japonicas and M. truncatula were 
downloaded from the websites: ftp://ftp.kazusa.or.jp/pub/
lotus/lotus_r3.0/ and http://www.jcvi.org/medicago/index.
php. We then extracted the information of all the predicted 
MYB genes in both species, and used the Online Gene 
Structure Display Server (GSDS 2.0: http://gsds.cbi.pku.

ftp://ftp.kazusa.or.jp/pub/lotus/lotus_r3.0/
http://www.jcvi.org/medicago/index.php
http://www.arabidopsis.org/
http://www.arabidopsis.org/
ftp://ftp.kazusa.or.jp/pub/lotus/lotus_r3.0/
ftp://ftp.kazusa.or.jp/pub/lotus/lotus_r3.0/
http://www.jcvi.org/medicago/index.php
http://www.jcvi.org/medicago/index.php
http://gsds.cbi.pku.edu.cn/
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edu.cn/) (Hu et  al. 2015) to obtain the gene structures of 
four expanded gene clusters.

To analyze the sequence features of MYB repeats 
in R2R3-MYB proteins, we extracted the amino acid 
sequences of R2 and R3 repeats of all R2R3-MYB pro-
teins in both L. japonicas and M. truncatula, and aligned 
them in each species by ClustalOmega (http://www.ebi.
ac.uk/Tools/msa/clustalo/) using the default parameters. 
Using default settings, we employed the WebLogo (http://
weblogo.berkeley.edu/logo.cgi) (Crooks et al. 2004) to cre-
ate the sequence logos for R2 and R3 repeats from the mul-
tiple alignment files generated by ClustalOmega.

In order to identify conserved protein motifs in MYB 
TFs, we used the MEME software (version 4.11.2) (Bailey 
and Elkan 1994), with the parameter default settings.

Gene expression analysis

The microarray data of L. japonicas and M. truncatula 
were downloaded from the gene expression atlas web-
site: http://ljgea.noble.org/v2/index.php and http://mtgea.
noble.org/v3/index.php. The organ samples were collected 
in previous studies (Benedito et  al. 2008; Verdier et  al. 
2013). In L. japonicas, the examined organs included Leaf, 
Nod21, Pod10d, Pod14d, Pod20, Pt (petiole), Root, Root0h, 
Seed10d, Seed12d, Seed14d, Seed16d, Seed20d, and Stem, 
while the M. truncatula organs included Flower, Leaf, Peti-
ole, Pod, Root, Seed_10dap, Seed_12dap, Seed_16dap, 
Seed_20dap, Seed_24dap, Seed_36dap, Stem, and Veg-
Bud (vegetative bud). All these organs used for microar-
ray experiments were harvested from plants under standard 
growth conditions. The microarray data were normalized as 
described by Benedito et al. (2008). The Z score was calcu-
lated according to previous studies (Benedito et  al. 2008; 
Verdier et  al. 2013). We determined the mean expression 
levels from three biological replicates of each organ. The 
expression data of MYB genes were then extracted in each 
species. The clustering analysis and the heat map generated 
were performed by R package heatmaps (https://cran.r-pro-
ject.org/web/packages/pheatmap/index.html).

Results and discussion

Identification and classification of MYB transcription 
factors

To identify MYB genes in both the genomes of L. japoni-
cas and M. truncatula, the HMMER prediction was per-
formed using 198 MYB proteins in A. thaliana as queries, 
including 126 R2R3-MYB, 5 R1R2R3-MYB, 64 MYB-
related, and 3 atypical MYB genes (Yanhui et al. 2006). 
As a result, 104 and 166 MYB genes were predicted in 

L. japonicas and M. truncatula, respectively. Accord-
ing to previous classification (Yanhui et  al. 2006), there 
are 2 R1R2R3-MYB genes, 101 R2R3-MYB genes and 
1 atypical MYB gene in L. japonicas. 5 R1R2R3-MYB 
genes, 160 R2R3-MYB genes and 1 atypical MYB gene 
were found in M. truncatula. In this study, the 104 and 
166 MYB genes represented the MYB classification in 
L. japonicas and M. truncatula. Consistent with previous 
studies in plants (Li et  al. 2016), the R2R3-MYB fam-
ily is the most abundant MYB TFs in L. japonicas and 
M. truncatula, thus we further analyzed the R2R3-MYB 
family.

To map the MYB genes to chromosomes, the genomic 
locations of them were extracted from GFF files of all 
genes in L. japonicas and M. truncatula. All 104 MYB 
genes were mapped to 7 chromosomes (chromosome 0–7) 
(Fig. 1). 155 of 166 MYB genes (93.4%) were mapped to 8 
chromosomes (chromosome 1–8) (Fig. 2), while 11 MYB 
genes were mapped to 9 unanchored scaffolds, including 
each MYB gene in 8 unanchored scaffolds and 3 MYB 
genes in one unanchored scaffold (Table 1). Each of 7 and 
8 chromosomes contained R2R3-MYB genes, while the 
distributions of them were not even. Both the chromosome 
0 in L. japonicas and chromosome 5 in M. truncatula con-
tained 29 R2R3-MYB genes (Table 1), accounting for the 
most R2R3-MYB genes in one chromosome. Each of the 
5th and 6th chromosomes contained 6 R2R3-MYB genes, 
and the 6th chromosome contained 11 R2R3-MYB genes 
(Table 1), representing the fewest numbers of R2R3-MYB 
genes in one chromosome. The uneven chromosome distri-
bution of MYB genes may be due to uneven rates of gene 
duplication events.

Segmental duplication and tandem duplication were two 
of major mechanisms in origin and evolution of large gene 
families. From the genomic locations of MYB genes in L. 
japonicas and M. truncatula, we could conclude that both 
segmental and tandem duplication played important roles 
in shaping the evolution of MYB genes. Using MCScanX 
(Wang et  al. 2012a), we obtained 9 and 13 MYB genes 
subject to tandem duplication (Supplementary Table  1). 
Interestingly, several gene clusters were subject to species-
specific tandem duplication, because these tandem dupli-
cated gene clusters were restricted to L. japonicas or M. 
truncatula.

MYB TFs have been studied in various plants (Jin et al. 
2017), showing that the MYB gene numbers varied from 3 
in Helicosporidium to 489 in Brassica napus. Even in Leg-
umes, the MYB TFs vary greatly, from 117 in Vigna radi-
ate to 430 in Glycine max (Jin et al. 2017). This indicated 
that expansion of MYB TFs occurred in the evolution of 
Legumes, particularly in G. max. In this study, we identi-
fied 104 and 166 MYB TFs in L. japonicas and M. trunca-
tula, suggesting MYB expansion in M. truncatula.

http://gsds.cbi.pku.edu.cn/
http://www.ebi.ac.uk/Tools/msa/clustalo/
http://www.ebi.ac.uk/Tools/msa/clustalo/
http://weblogo.berkeley.edu/logo.cgi
http://weblogo.berkeley.edu/logo.cgi
http://ljgea.noble.org/v2/index.php
http://mtgea.noble.org/v3/index.php
http://mtgea.noble.org/v3/index.php
https://cran.r-project.org/web/packages/pheatmap/index.html
https://cran.r-project.org/web/packages/pheatmap/index.html
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Expansion of MYB transcription factors in M. 
truncatula

To evaluate the evolutionary significance of the MYB 
genes, we performed phylogenetic analysis of L. japoni-
cas, M. truncatula and A. thaliana MYB proteins using 
Neighbor-Joining (NJ) method and Maximum Likelihood 
(ML) method (Fig.  3 and Supplementary Fig.  1). Gener-
ally, the topology of them was similar. All the MYB genes 

of three species in the NJ tree could be divided to 14 sub-
groups (Fig.  3). Consistent with previous studies (Wang 
et al. 2015; Salih et al. 2016), the bootstrap values for some 
subgroups of the NJ tree were low due to relatively large 
number of gene sequences.

In order to validate the NJ tree, the phylogenetic tree 
of MYB genes was also reconstructed with ML method. 
The results here showed that the trees constructed by both 
methods mentioned above were mainly consistent with 
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each other (Fig.  3 and Supplementary Fig.  1). Thus, the 
phylogenetic trees of MYB genes were reliable.

Subgroup 14 was the oldest MYB subgroup, while the 
subgroup 1 was the youngest one. Particularly, the sub-
group 1, 5, 6, 8, 9 and 13 contained more MYB genes in 
M. truncatula than that in L. japonicas (Fig.  3), support-
ing the species-specific expansion of R2R3-MYB genes in 
M. truncatula. As shown in Supplementary Table  2, four 
gene clusters with 36 MYB genes were expanded in both 
NJ and MP trees, supporting the species-specific expansion 
of R2R3-MYB genes in M. truncatula. No similar expan-
sion events with at least seven genes were observed in L. 
japonicas (Fig. 3 and Supplementary Fig. 1).

Additionally, the MYB genes in subgroup 7 were spe-
cific to L. japonicas and M. truncatula, but absent in 
A. thaliana (Fig.  3 and Supplementary Fig.  1). Further 
sequence analysis showed that the part of MYB proteins 
in the subgroup 7 were homologous to other proteins in G. 
max, A. thaliana, Z. mays and O. sativa. Therefore, these 
MYB TFs may not be specific to Legumes. However, other 
parts of them have no homology in G. max, A. thaliana, Z. 
mays or O. sativa, suggesting that they might only emerge 
in these two species through partial gene duplication. 
Therefore, M. truncatula may evolve novel R2R3-MYB 
genes to regulate gene expression.

Features of gene structures and conserved domains 
in MYB genes

To investigate the gene structure features, we collected the 
exon numbers of all 270 MYB genes in both L. japonicas 
and M. truncatula. Most of the R2R3-MYB genes in L. 
japonicas (95.0%) and M. truncatula (98.1%) contained 
between 1 and 12 introns (Fig. 4). Most R2R3-MYB genes 
in both L. japonicas (67.3%) and M. truncatula (75.6%) 
contained two introns, followed by that containing one 
intron (18.8% in L. japonicas and 13.8% in M. truncatula) 
(Fig. 4 and Supplementary Fig. 2). Only a small portion of 
R2R3-MYB genes were intronless. This result was similar 
to that described in Arabidopsis, Vitis vinifera, Eucalyptus 
grandis and Gossypium hirsutum (Matus et al. 2008; Soler 
et al. 2015; Salih et al. 2016). Notably, all R1R2R3-MYB 
genes and atypical MYB genes in both species contained 
no less than seven exons (Supplementary Table 3).

We further studied the variation within the conserved 
motifs of R2R3-MYB genes in both L. japonicas and M. 
truncatula, using the WebLogo program (Crooks et  al. 
2004). The R2 motifs showed similar amino acid compo-
sitions between L. japonicas and M. truncatula (Fig. 4), 
suggesting similar structures and functions between 
both species. A similar result of R3 motifs was observed 
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Fig. 2  The chromosome location of MYB genes in M. truncatula 



836 Genes Genom (2017) 39:831–842

1 3

(Fig. 4). However, the amino acid compositions between 
R2 and R3 in the same species were different (Fig.  4), 
suggesting functional divergence between them. 
Although the functional divergence of these R2R3-MYB 
genes remained to be identified, they were thought to 
play important roles in regulation of gene expression and 
functional diversification in plants.

Additionally, MEME results showed that most of 
MYB TFs contained at least three motifs, but the motif 
sequences were not the same between subgroups, also 
supporting sequence and even functional divergence of 
these MYB TFs (Supplementary Fig. 2 and Supplemen-
tary Table  4). Several MYB genes lost some motifs in 
both L. japonicas and M. truncatula. Lj2g3v1534080 
(subgroup 2) and Lj4g3v1630970 (subgroup 4) lost the 
3rd motif, Lj6g3v2095710 (subgroup 5), Medtr5g007300 
(subgroup 5), Lj0g3v0195029 (subgroup 6), and 
Lj2g3v0320640 (subgroup 6) lost the 2nd motif. In sub-
group 8, Lj0g3v0334719 and Lj3g3v3054560 lack the 
1st motif. These observations suggested structural diver-
sifications of these MYB TFs in L. japonicas and M. 
truncatula.

Divergent expression of MYB genes

In L. japonicas, 84 of 104 MYB genes (~80.8%), repre-
sented by 120 probe sets, were expressed in at least one 
of all the investigated organs in this study, while 88 of 
166 MYB genes (~53.0%), represented by 99 probe sets, 
were could be detected in the microarrays of M. truncat-
ula organs, suggesting more than 50% of the MYB genes 
could be detected in the microarray system of previous 
studies (Benedito et al. 2008; Verdier et al. 2013). 80.3 and 
86.1% of all genes in L. japonicas and M. truncatula were 
expressed in one or more organs (Benedito et  al. 2008; 
Verdier et al. 2013). Then the average expression values of 
MYB genes and all genes in both species were calculated. 
As shown in Table  2, the expressed MYB genes in both 
species exhibited lower average expression levels than all 
genes (P < 0.05, t test).

Analysis of organ-specific genes may provide insight 
into specialized organ processes, including biochemical, 
physiological, developmental and other processes (Verdier 
et al. 2013). According to this previous study, we calculated 
Z scores for each probe set to identify organ-specific genes. 

Table 1  Chromosome 
distributions of three MYB 
subfamilies in L. japonicas and 
M. truncatula 

Species Chromosome Transcription factor types

R1R2R3 MYB R2R3 MYB Atypical MYB

L. japonicas chr0 1 29 1
chr1 1 17
chr2 16
chr3 17
chr4 10
chr5 6
chr6 6

M. truncatula chr1 1 21
chr2 13
chr3 1 17
chr4 23
chr5 1 29
chr6 11 1
chr7 2 20
chr8 15
scaffold0001 1
scaffold0008 3
scaffold0063 1
scaffold0140 1
scaffold0193 1
scaffold0197 1
scaffold0247 1
scaffold0251 1
scaffold0489 1
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Similarly, a minimum Z-score of 2.85 and a minimum nor-
malized expression value >100 were used as threshold val-
ues. Interestingly, all of MYB genes in L. japonicas and M. 
truncatula have Z-scores less than 2.85 (Fig. 5); therefore, 
they were expressed in at least two organs.

We further analyzed the expression pattern in these 
organs. Some MYB genes within the same subgroup 

exhibit similar expression patterns in these organs of L. 
japonicas and M. truncatula. As shown in Supplemen-
tary Tables  5, 9 and 12 gene clusters within the same 
subgroups were observed to exhibit similar expression 
profiles in L. japonicas and M. truncatula. For example, 
Lj2g3v0320640 and Lj6g3v1201340 in subgroup 6 were 
higher expressed in pod than in other organs (Fig.  6). 
Lj0g3v0214919 and Lj0g3v0115219 in subgroup 11 exhib-
ited similar expression profile (Fig.  6). The expression 
levels of Medtr3g083540 and Medtr8g020490 in sub-
group 6 were higher in seeds than in other organs (Fig. 7). 
Medtr0140s0030 and Medtr0489s0020 in subgroup 4 were 
highly expressed in leaf, Vegetative-Bud and pod (Fig. 7). 
In spite of these observations, most of MYB genes within 
the same subgroups showed different expression patterns 
(Figs.  6, 7), indicating expression divergence and even 
functional divergence. As mentioned above, these MYB 
genes might arise through segmental and tandem dupli-
cation. Previously, many studies have showed expression 
divergence after gene duplication was a general pattern in 
the course of plant evolution (Casneuf et al. 2006; Li et al. 
2009; Wang et al. 2012b). Our data here also support this 
expression pattern.

Fig. 3  The Neighbor-Joining (NJ) phylogenetic tress of all MYB 
genes in A. thaliana, L. japonicas and M. truncatula. filled circle 
denotes MYB genes in L. japonicas and M. truncatula, in which red 

denote MYB genes in M. truncatula, while green denote MYB genes 
in L. japonicas; filled triangle denotes MYB genes in A. thaliana 

Fig. 4  The exon numbers of all MYB genes in L. japonicas and M. 
truncatula 
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Table 2  The expression of all MYB genes and all genes expressed in L. japonicas and M. truncatula 

Species All genes MYB genes

Gene number Probe number Average 
expression 
value

Gene number Probe number Average 
expression 
value

t-test p-value

L. japonicas 24,184 (39,734) 61,459 221.561 84 (104) 120 69.483 2.2e-16
M. truncatula 23,302 (50,894) 61,278 246.017 88 (166) 99 114.377 2.2e-16

Fig. 5  The conserved motifs of the R2R3 MYB genes in L. japonicas and M. truncatula 
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Particularly, only a small portion (25.0%) of the 4 
expanded 36 MYB genes in 4 subgroups (Supplementary 
Table  2) has expression data in M. truncatula, suggest-
ing that most of them may be lowly expressed. These spe-
cies-specific expanded MYB genes might arise through 

recent duplication events. Newly duplication genes were 
usually functional redundant, thus the MYB genes here 
may reduce this redundancy through down-regulating 
expression levels.

LjR
oot_1

LjR
oot_2

LjR
oot_3

LjLeaf_1
LjLeaf_2
LjLeaf_3
LjP

t_1
LjP

t_2
LjP

t_3
LjS

tem
_1

LjS
tem

_2
LjS

tem
_3

LjP
od10_12d_1

LjP
od10_12d_2

LjP
od10_12d_3

LjP
od14_16d_1

LjP
od14_16d_2

LjP
od14_16d_3

LjP
od20_1

LjP
od20_2

LjP
od20_3

LjS
eed10d_1

LjS
eed10d_2

LjS
eed10d_3

LjS
eed12d_1

LjS
eed12d_2

LjS
eed12d_3

LjS
eed14d_1

LjS
eed14d_2

LjS
eed14d_3

LjS
eed16d_1

LjS
eed16d_2

LjS
eed16d_3

LjS
eed20d_1

LjS
eed20d_2

LjS
eed20d_3

subgroup9:Lj0g3v0068589:Ljwgs_014444.1_at
subgroup11:Lj0g3v0214919:Ljwgs_021969.2_at
subgroup11:Lj0g3v0115219:Ljwgs_143984.1_at
subgroup2:Lj3g3v3465520:TM0874.11_at
subgroup1:Lj1g3v4830110:chr1.CM0122.0.1_x_at
subgroup11:Lj1g3v3992560:TM0305.15_at
subgroup2:Lj4g3v2859520:chr4.TM1169.14_at
subgroup13:Lj2g3v0949390:Ljwgs_039113.1_at
subgroup11:Lj2g3v2771150:chr2.CM0002.20_at
subgroup6:Lj0g3v0020039:TM1040.12_at
subgroup1:Lj4g3v1440760:chr4.CM0172.19_at
subgroup1:Lj1g3v4830110:chr1.CM0122.1_at
subgroup1:Lj5g3v1533360:chr5.CM0048.50_s_at
subgroup13:Lj0g3v0085519:Ljwgs_010895.3_at
subgroup5:Lj1g3v0130130:chr1.CM0591.51_at
subgroup4:Lj0g3v0318769:Ljwgs_062048.1_at
subgroup4:Lj1g3v4012910:Ljwgs_065309.1_at
subgroup4:Lj0g3v0318769:Ljwgs_057038.1_at
subgroup6:Lj4g3v1223860:TM1031.44_at
subgroup4:Lj0g3v0318769:Ljwgs_066152.1_at
subgroup5:Lj1g3v2979210:chr1.CM0141.34_at
subgroup6:Lj0g3v0094629:Ljwgs_047649.1_at
subgroup5:Lj2g3v1068470:Ljwgs_020545.1_at
subgroup11:Lj1g3v3992560:chr2.TM0641.16_at
subgroup13:Lj1g3v2050890:TM1664.5.1_at
subgroup13:Lj1g3v2050890:TM1664.3_at
subgroup13:Lj1g3v2050890:TM1664.5_at
subgroup9:Lj0g3v0068589:Ljwgs_093726.1_x_at
subgroup13:Lj0g3v0085519:Ljwgs_147332.1_at
subgroup5:Lj3g3v3639490:Ljwgs_142542.1_at
subgroup6:Lj6g3v1201340:TM1624.28_at
subgroup8:Lj0g3v0334719:Ljwgs_136790.2_at
subgroup11:Lj2g3v1915610:chr2.CM0250.26.1_at
subgroup1:Lj3g3v0948220:TM1535.1_at
subgroup5:Lj3g3v0681710:chr3.CM0590.83_at
subgroup7:Lj3g3v2887030:Ljwgs_014882.1_at
subgroup14:Lj2g3v1326410:Ljwgs_029979.1_at
subgroup5:Lj6g3v2095710:Ljwgs_057552.1_at
subgroup8:Lj0g3v0236339:Ljwgs_044047.1_s_at
subgroup1:Lj5g3v2013880:chr5.CM0148.20_at
subgroup8:Lj0g3v0236339:Ljwgs_033877.1_at
subgroup8:Lj0g3v0236339:Ljwgs_060207.1_at
subgroup8:Lj4g3v2079370:Ljwgs_028088.1_at
subgroup6:Lj3g3v2477670:TC19746_at
subgroup8:Lj3g3v3054560:chr3.CM0070.7_at
subgroup8:Lj2g3v1983980:Ljwgs_069672.1_at
subgroup8:Lj2g3v1983980:chr2.CM0132.17_at
subgroup8:Lj2g3v1983980:chr2.CM0132.17_s_at
subgroup5:Lj6g3v0029920:chr6.BM1714.12_at
subgroup2:Lj1g3v1382070:Ljwgs_007368.1_at
subgroup2:Lj1g3v1382070:Ljwgs_122488.1_s_at
subgroup9:Lj0g3v0068589:Ljwgs_066050.2_x_at
subgroup1:Lj3g3v0323350:chr3.CM0049.29_at
subgroup5:Lj3g3v3639490:chr2.CM0124.9_at
subgroup7:Lj0g3v0160079:Ljwgs_148662.1_at
subgroup3:Lj4g3v2989050:Ljwgs_115006.1_at
subgroup5:Lj0g3v0082879:chr1.CM0600.9.1_at
subgroup1:Lj0g3v0276369:Ljwgs_026563.1_at
subgroup1:Lj5g3v1533360:chr5.CM0048.24_at
subgroup7:Lj0g3v0160079:Ljwgs_092882.1_at
subgroup14:Lj2g3v1326410:Ljwgs_129730.1_at
subgroup5:Lj6g3v0029920:chr5.CM0071.54.1_at
subgroup1:Lj1g3v4809890:chr1.CM0206.155_at
subgroup5:Lj6g3v0029920:chr5.CM0071.53_at
subgroup11:Lj0g3v0115219:Ljwgs_068924.1_at
subgroup9:Lj4g3v0216670:Ljwgs_026914.2_at
subgroup13:Lj0g3v0085519:chr4.CM0073.26_at
subgroup5:Lj3g3v2746150:chr3.CM0711.17_at
subgroup2:Lj4g3v2282940:Ljwgs_102038.1_at
subgroup2:Lj5g3v1601810:chr5.CM0239.8_at
subgroup2:Lj4g3v2282940:CM0385.27_at
subgroup5:Lj6g3v2095710:Ljwgs_072202.1_at
subgroup5:Lj6g3v2095710:Ljwgs_072202.1_x_at
subgroup5:Lj1g3v4483810:chr1.TM1643.3_at
subgroup5:Lj1g3v4483810:chr1.TM1643.4.1_s_at
subgroup6:Lj1g3v2979260:chr1.CM0141.42_at
subgroup9:Lj0g3v0068589:Ljwgs_058801.1_at
subgroup9:Lj3g3v1855350:Ljwgs_073409.1_s_at
subgroup9:Lj6g3v0869180:TM0489.1_at
subgroup9:Lj0g3v0080089:Ljwgs_035803.1_at
subgroup11:Lj0g3v0349359:Ljwgs_068650.1_at
subgroup8:Lj5g3v1562120:TM0840.9_at
subgroup11:Lj4g3v0805590:CM0528.17_at
subgroup9:Lj3g3v1855350:chr3.CM0005.58_at
subgroup11:Lj5g3v0296120:chr5.CM0096.98.1_at
subgroup7:Lj3g3v2886960:Ljwgs_064890.1.1_at
subgroup1:Lj1g3v4830110:chr1.CM0122.0.1_at
subgroup6:Lj3g3v2477670:Ljwgs_023691.1_at
subgroup6:Lj3g3v2477670:chr1.CM0105.6_s_at
subgroup5:Lj2g3v1495100:Ljwgs_022617.1_at
subgroup13:Lj0g3v0085519:Ljwgs_112576.1_at
subgroup6:Lj2g3v2573410:chr2.CM0405.32.2_at
subgroup6:Lj0g3v0300449:Ljwgs_053007.1_at
subgroup4:Lj1g3v0488960:chr1.CM0023.10_at
subgroup6:Lj6g3v1201340:TM1624.23_at
subgroup4:Lj6g3v0412680:Ljwgs_050296.1_at
subgroup11:Lj0g3v0337739:Ljwgs_021661.2_at
subgroup7:Lj3g3v2887030:Ljwgs_031982.1_at
subgroup7:Lj3g3v2887030:TC17271_at
subgroup11:Lj2g3v2688010:chr2.TM0417.20_at
subgroup4:Lj4g3v1317380:chr4.CM0126.58_at
subgroup3:Lj4g3v2989050:chr4.CM0501.35_at
subgroup3:Lj4g3v2989050:chr4.CM0501.35_x_at
subgroup11:Lj2g3v0632800:Ljwgs_013423.1_at
subgroup4:Lj6g3v0412680:Ljwgs_014958.1_at
subgroup1:Lj3g3v0839400:TM0791.14_s_at
subgroup1:Lj3g3v0839400:TM0791.20_at
subgroup1:Lj0g3v0276369:Ljwgs_017183.2_at
subgroup1:Lj3g3v0839400:TM0791.14_at
subgroup6:Lj0g3v0094629:Ljwgs_029658.1_at
subgroup6:Lj2g3v0320640:TM1202.21.1_at
subgroup6:Lj6g3v1201340:TM1624.33_at
subgroup12:Lj3g3v1631870:chr3.TM0022.22_s_at
subgroup12:Lj3g3v1631870:Ljwgs_052207.1_s_at
subgroup12:Lj3g3v1631870:chr3.TM0022.24_s_at
subgroup8:Lj5g3v1562120:Ljwgs_065023.1_s_at
subgroup2:Lj4g3v2282940:CM0385.35_at
subgroup7:Lj0g3v0356659:Ljwgs_056542.2_at
subgroup9:Lj6g3v0869180:Ljwgs_057622.2_s_at
subgroup9:Lj0g3v0068589:Ljwgs_067541.1_at

Group
Leaf
Petiole
Pod
Root
Seed
Stem

−4

−2

0

2

4

Fig. 6  The heatmap of all MYB genes in L. japonicas 
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Roles of MYB TFs in plant development

To characterize the functions of MYB TFs in L. japoni-
cas and M. truncatula, we collected functional assign-
ments of 20 MYB TFs in A. thaliana within 14 sub-
groups, according to previous study (Stracke et al. 2014). 
As shown in Supplementary Table  6, MYB TFs within 
these 11 subgroups were involved in cell cycle, defense, 
development, differentiation and metabolism. We also 
collected putative functions of 22 MYB TFs in A. thal-
iana within 14 subgroups as summarized in a previous 
report about Chinese White Pear (P. bretschneideri) 

(Supplementary Table 7) (Li et al. 2016). The MYB TFs 
within the same subgroups may share similar functions, 
thus we could obtain functional clues of MYB TFs in 
L. japonicas and M. truncatula. For example, the MYB 
TFs within Subgroup 1 was related to development and 
metabolism, such as shoot morphogenesis and leaf pat-
terning, root development, and lignin biosynthesis (Sup-
plementary Tables 6 and 7). Taken the summary together, 
MYB TFs within Subgroup 1, 3, 4, 5, 6, 8, 9, 11, 12 and 
13 were related to development (Supplementary Tables 6 
and 7), covering most of the 14 subgroups. Thus, most of 
the MYB TFs were involved in plant development.
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Fig. 7  The heatmap of all MYB genes in M. truncatula 
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Conclusions

In summary, the present study identified 270 MYB genes 
in L. japonicas and M. truncatula according to the A. thali-
ana genome. The phylogenetic relationships between sub-
families, conserved motifs, expression patterns in different 
organs, were surveyed in detail. Our results provide better 
understanding about the molecular basis of MYB genes on 
the organ growth and development of L. japonicas and M. 
truncatula, which allow us to obtain a better platform for 
interesting MYB gene research in the future.
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