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Abstract The Dof (DNA binding with One Finger) family

of single zinc finger proteins is a family of plant-specific

transcription factors. These transcription factors have a

variety of important functions in different biological pro-

cesses in plants. In the current study, we identified 26 Dof

family genes in moso bamboo (Phyllostachys heterocycla

var. pubescens). A complete overview of PhDof genes in

moso bamboo is presented, including the gene structures,

phylogeny, protein motifs and expression patterns. Phylo-

genetic analysis of the 26 PhDof proteins identified four

classes constituting seven clusters (A, B1, C1, C2, D1, D2

and D3). In addition, a comparative analysis between the

Dof genes in moso bamboo, Arabidopsis (Arabidopsis

thaliana L.) and rice (Oryza sativa L.) was also performed,

and several putative paralogous and orthologous genes were

identified. The exon numbers in Dof genes ranged from one

to three in many plants; however, the exon number in

PhDofs ranged from one to four. The PhDof genes displayed

differential expression in different parts of the shoot and at

different flower development stages. This study represents

the first step towards a genome-wide analysis of the Dof

genes in moso bamboo. Our study provides a useful refer-

ence for cloning and functional analysis of members of the

Dof gene family in moso bamboo and other species.

Keywords Genome-wide analysis � Dof gene �
Phyllostachys heterocycla var. pubescens � Transcription
factor

Introduction

In plants, the transcriptional and post-transcriptional reg-

ulation of gene expression influences and controls many

important biological processes, such as cellular morpho-

genesis, signal transduction and environmental stress

responses (Riechmann et al. 2000).

Transcription factors (TFs) are important regulating pro-

teins that bind specific DNA sequences in gene promoters to

initiate a program of increased or decreased gene transcrip-

tion (Latchman 1997). Therefore, the identification and

functional characterization of TFs is essential for building

predictive models of transcriptional regulatory networks. In

the plant TF database, PlantTFDB v3.0, 129,288 TFs (*60

families) from 83 species have been identified systemati-

cally, based on bioinformatics analysis, of which 67 species

have genome sequences, covering the main lineages of green

plants (Jin et al. 2014a). Thus, PlantTFDB provides a

resource for functional and evolutionary studies of plant TFs.

The Arabidopsis genome encodes at least 1533 TFs, which

account for about 5.9 % of its estimated total number of

genes (Riechmann et al. 2000). For moso bamboo (Phyl-

lostachys heterocycla var. pubescens), *5.53 % of the

31,987 protein-coding genes (Peng et al. 2013) have been
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identified to encode 1768 putative TFs, which could be

classified into 54 families (Jin et al. 2014a).

The Dof (DNA-binding with one finger) proteins belong

to the zinc finger superfamily, and contain a highly con-

served DNA-binding C2C2-type-zinc-like motif named the

Dof domain, which comprises 52 amino acid residues

(Yanagisawa 1995). Dofs play critical roles as transcrip-

tional regulators in plant growth and development. In 1993,

the first two Dof proteins were identified from maize by

Yanagisawa and Izui. Subsequently, numerous Dof genes

were cloned or predicted from genome databases in plants,

such as single-celled green algae (Chlamydomonas rein-

hardtii), moss (Physcomitrella patens), fern (Selaginella

moellendorffii) and gymnosperms (Pinus taeda) to higher

angiosperms, including 37, 30, 41, 26, 78, 31, 18, 28, 27,

34, 1, 8, 19 and 8, Dof genes in Arabidopsis (Lijavetzky

et al. 2003), rice (Lijavetzky et al. 2003), poplar (Yang

et al. 2006a, b), barley (Moreno-Risueno et al. 2007b),

soybean (Guo and Qiu 2013), bread wheat (Shaw et al.

2009), maize (Jiang et al. 2012), sorghum (Kushwaha et al.

2011), Brachypodium distachyon (Hernando-Amado et al.

2012), tomato (Cai et al. 2013), algae, fern, moss (Shigyo

et al. 2007) and gymnosperms (Moreno-Risueno et al.

2007b), respectively. As the development of genomic

sequencing and bioinformatics technology expands rapidly,

more and more Dof family members will be identified,

emphasizing their critical role in plant development.

Dof protein binding elements have been discovered in

many plant-specific promoter sequences. It has been sug-

gested that the Dof proteins have diverse roles in the reg-

ulation of specific biological processes unique to plant

development, such as carbon–nitrogen metabolism in

maize (Yanagisawa 2000), pea (Pisum sativum) (Tanaka

et al. 2009), wheat (Kumar et al. 2009), P. taeda (Rueda-

Lopez et al. 2008) and P. patens (Park et al. 2003; Imai-

zumi et al. 2005; Ward et al. 2005; Sawa et al. 2007;

Fornara et al. 2009); photoresponse and photoperiodic

control of flowering in Arabidopsis (Rueda-Lopez et al.

2008), rice (Iwamoto et al. 2009; Li et al. 2009) and Jat-

ropha curcas (Yang et al. 2010, 2011); floral organ and

pollen development Arabidopsis (Wei et al. 2010) and

maize (Chen et al. 2012); seed development and germi-

nation in Arabidopsis (Papi et al. 2000; Gualberti et al.

2002; Gabriele et al. 2010; Rizza et al. 2011; Rueda-

Romero et al. 2012), soybean (Wang et al. 2007), maize

(Vicente-Carbajosa et al. 1997, Marzabal et al. 2008),

barley (Mena et al. 1998; Diaz et al. 2002; Mena et al.

2002; Moreno-Risueno et al. 2007b), wheat (Dong et al.

2007), rice (Washio 2003; Kawakatsu and Takaiwa 2010;

Gaur et al. 2011); synthesis of secondary metabolites in

Arabidopsis (Skirycz et al. 2006, 2007); guard cell-specific

gene regulation in Arabidopsis (Cominelli et al. 2011) and

potato (Plesch et al. 2001); vascular development in

Arabidopsis (Konishi and Yanagisawa 2007; Guo et al.

2009; Gardiner et al. 2010); defensive reaction in Ara-

bidopsis (Kang and Singh 2000; Kang et al. 2003), and

auxin-response regulation in Cucurbita moschata (Kisu

et al. 1998; Baumann et al. 1999).

Bamboo is one of the most important non-timber forest

products in the world, with high ecological, economic,

edible and cultural value (Peng et al. 2010, p. 1013). The

moso bamboo, a large woody bamboo, has one of the

highest growth speeds in the world. However, moso bam-

boo has a rather striking life history, characterized by a

prolonged vegetative phase lasting decades before flower-

ing, which has hindered its genetic improvement. A high-

quality draft genome sequence of moso bamboo should be

published soon and represents a comprehensive genome

dataset that will accelerate research into gene functions in

moso bamboo. Despite the crucial roles of Dof proteins in

transcriptional regulation of plant growth and development,

little is known about this family in moso bamboo. In this

study, we identified 26 Dof genes in the moso bamboo

genome, named as PhDof 1–26. We then constructed a

phylogenetic tree to evaluate the evolutionary relationships

of Dof genes in moso bamboo. We also analysed the gene

structures and conserved motifs. To identify the putative

functions and evolution of PhDof genes, we performed

phylogenetic analyses of the moso bamboo, Arabidopsis

and rice Dof gene families and determined their expression

profiles in moso bamboo. Thus systematic analysis pro-

vides a foundation for further functional dissection of

PhDof genes, and could help elucidate Dof gene functions

in other species.

Materials and methods

Identification of Dof genes in moso bamboo

We identified the members of the Dof genes family in

moso bamboo using two approaches. First, the Dof

sequences of Arabidopsis and rice were downloaded from

the Arabidopsis genome TAIR database (http://www.arabi

dopsis.org/) and the rice genome annotation database

(http://rice.plantbiology.msu.edu/). The protein sequences

of the Dof domains were used to search for potential Dof-

domain homolog hits in the whole genome sequence of

moso bamboo, using BLASP searches against the protein

profile, which has been published in the moso bamboo

genome database (http://www.ncgr.ac.cn/bamboo). Addi-

tionally, hidden Markov model (HMM) searches (Finn

et al. 2011) were performed locally in the moso bamboo

database, using the Dof domain family HMM profile

(PF02701). We subjected all the obtained protein sequen-

ces to domain analysis using the InterProScan (http://www.
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ebi.ac.uk/Tools/pfa/iprscan5/) and SMART (http://smart.

embl-heidelberg.de/) tools, with the default parameters, to

reveal the presence of Dof domains. Protein sequences

lacking a Dof domain were rejected.

Multiple alignment and phylogenetic analysis

We performed alignments of Dof protein sequences using

the Clustal X 2.1 program with its default settings (Larkin

et al. 2007). Phylogenetic trees were constructed in the

MEGA5.1 software using the Neighbor-Joining (NJ),

Minimum Evolution (ME) and Maximum Likelihood (ML)

methods (Tamura et al. 2011). We tested the reliability of

the obtained trees using bootstrapping with 1000 replicates.

Genome structure and conserved motifs analysis

The GSDS (Gene Structure Display Server; http://gsds1.

cbi.pku.edu.cn/) program was used to illustrate the exon/

intron organization for individual Dof genes by comparing

the coding sequences with their corresponding genomic

DNA sequences from the moso bamboo genome database.

The deduced amino-acid sequences of the PhDofs were

analyzed using the online version of MEME 4.10.1 (http://

meme-suite.org/tools/meme) for motif analysis. To identify

conserved motifs in these sequences, selection of the

maximum number of motifs was set to 25, with a minimum

width of six and a maximum width of 120 amino acids,

while other factors were set at default values.

mRNA sequencing and analysis

All the bamboo samples were taken from Baizhu Park,

which is located at Yiyang city in Hunan province, China,

on April 4, 2013. Samples from the tip of the shoot (ST),

the middle part of shoot (SM), the base part of shoot (SB),

and shoot sheaths (tip, middle, base of shoot sheaths

mixtures, SS) were obtained from the wild P. heterocycla

var. pubescens. Samples were collected from three plants

whose heights were about 6.0 m. In all cases, samples were

collected, immediately frozen in liquid nitrogen and stored

at -80 �C until RNA extraction.

Total RNA was isolated from the plant tissues using an

Easy-spinTM kit (Aidlab, Beijing, China), following the

manufacturer’s instructions. Purified mRNA was chemi-

cally fragmented to 200–500 bp fragments. Next, we syn-

thesized the fist- and second-strand cDNAs, followed by

end repair and index adapter ligation. Finally, the resulting

libraries were sequenced using an Illumina HiSeqTM 2000

(Illumina, San Diego, CA, USA) to generate paired-end

sequences.

We conducted a gene expression analysis using Illumina

RNA-Seq technology. The sequencing and assembly were

performed at the Shanghai Hanyu Biotech Co. Transcrip-

tome sequencing (RNA-Seq) data were generated using the

Illumina HiSeqTM 2000 platform. Approximately

21957740, 20979560, 21704837 and 21759266 reads were

generated from the four sample libraries (ST, SM, SB and

SS), respectively. The adapters or low-quality reads, where

the number of ‘N’ bases exceeded 5 %, were removed from

the raw data. The reads were then mapped to genes and the

genome of moso bamboo, allowing for a maximum of two

mismatches. The gene expression values were normalized

by the measure of reads per kilobase per million (RPKM).

Finally, heat maps of gene expression from the four tissues

were visualized using HemI 1.0 software (Deng et al.

2014).

Results

Dof gene family in moso bamboo

An HMM search with the Dof domain HMM profile

(PF02701) and BLASTP using Arabidopsis and rice Dof

protein as queries were used to identify moso bamboo Dof

sequences. The obtained sequences were analyzed using

InterProScan and SMART for the presence of the Dof

domain. Twenty-six PhDof family genes were identified

(Table 1), and all of them have a typical binding domain of

52 residues spanning a single C2/C2 zinc finger structure

(DOF domain, Fig. S1). In the PlantTFDB (http://planttfdb.

cbi.pku.edu.cn/), although 31 PhDof genes were identified,

InterProScan and SMART analysis found that Dof domains

were absent from five sequences (PH01000290G0170,

PH01000789G0200, PH01000941G0150, PH01003477

G0030, and PH01155840G0010). There was no standard

annotation assigned to these newly identified genes;

therefore, we named these PhDof genes PhDof-1 to PhDof-

26, according to their location on the genome scaffolds.

The names of the PhDof genes, the locus gene, the length,

molecular weight (MW), isoelectric point (pI), and the

grand average of hydropathicity (GRAVY) are shown in

Table 1. The identified PhDof genes encode peptides

ranging from 197 to 542 amino acids in length, with an

average of 357.5.

To investigate the features of the homologous domain

sequences, and the frequency of the most prevalent amino

acids at each position within the moso bamboo Dof

domain, multiple alignment analysis of the Dof domains

from the 26 PhDofs was performed (Fig. 1). The Dof

domain of moso bamboo was revealed to be a highly

conserved sequence, and 25 out of 52 amino acids were

100 % conserved in all PhDof proteins, including four

absolutely conserved cysteine residues that presumably

coordinate the zinc ion. Other highly conserved residues in
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the moso bamboo Dof domains were Pro-4, Arg-5, Ser-8,

Thr-11, Lys-12, Phe-13, Cys-14, Tyr-15, Asn-17, Asn-18,

Gln-23, Pro-24, Arg-25, Arg-33, Trp-35, Thr-36, Gly-38,

Gly-39, and Arg-42. These highly conserved residues were

also nearly identical to the Dof domain proteins of other

plants, such as soybean (Guo and Qiu 2013), sorghum

Fig. 1 Dof domains are highly conserved across all Dof proteins in

moso bamboo. The sequence logos are based on aligments of all moso

bamboo Dof domains. Multiple alignment analysis of 26 typical moso

bamboo Dof domains was performed with ClustalW. The bit score

indicates the information content for each position in the sequence.

Asterisks indicate the conserved cysteine residues (Cys) in the Dof

domain

Table 1 Dof genes in the P. heterocycla genome

Name Gene ID Length (aa) MW (kDa) pI GRAVY Intron number Postion of Dof domain E value

PeDof-1 PH01000000G4160 351 35,241.8 8.46 -0.440 0 66–117 6e-022

PeDof-2 PH01000004G1130 324 34,749.5 4.95 -0.372 0 34–85 6e-022

PeDof-3 PH01000087G0200 197 20,928.2 6.56 -0.445 1 45–96 7e-021

PeDof-4 PH01000113G0300 432 46,372.8 8.32 -0.675 1 103–154 3e-018

PeDof-5 PH01000188G0230 434 46,086.5 8.29 -0.591 1 105–156 2e-014

PeDof-6 PH01000200G0640 408 41,043.7 8.71 -0.323 2 118–169 7e-021

PeDof-7 PH01000209G1040 490 53,195.3 8.06 -0.514 1 110–161 1e-016

PeDof-8 PH01000211G0640 365 37,197.4 9.03 -0.408 0 74–125 3e-020

PeDof-9 PH01000219G0080 422 45,105.4 7.58 -0.583 1 92–143 4e-018

PeDof-10 PH01000226G1160 239 24,274.0 9.47 -0.454 1 79–130 6e-014

PeDof-11 PH01000266G0140 538 58,714.0 8.85 -0.431 2 172–223 2e-016

PeDof-12 PH01000309G0960 323 34,409.3 4.79 -0.316 0 34–85 3e-024

PeDof-13 PH01000323G0330 246 26,213.1 6.16 -0.635 0 54–105 3e-020

PeDof-14 PH01000664G0640 305 32,952.7 5.54 -0.426 0 35–86 4e-022

PeDof-15 PH01000901G0540 203 21,695.8 6.56 -0.618 1 51–102 3e-021

PeDof-16 PH01000949G0120 198 20,938.5 8.32 -0.538 3 78–129 7e-018

PeDof-17 PH01001038G0580 271 27,978.3 8.90 -0.367 2 104–155 2e-018

PeDof-18 PH01001117G0310 317 33,349.2 8.52 -0.391 2 78–129 8e-023

PeDof-19 PH01001184G0160 443 47,232.8 7.83 -0.580 0 70–121 8e-017

PeDof-20 PH01001264G0440 479 51,417.5 7.49 -0.560 2 149–200 2e-017

PeDof-21 PH01001385G0300 542 59,131.0 5.07 -0.765 1 164–215 3e-017

PeDof-22 PH01001983G0170 282 28,930.4 8.64 -0.221 0 36–87 5e-021

PeDof-23 PH01002384G0100 250 25,770.4 9.98 -0.147 0 67–118 4e-022

PeDof-24 PH01003147G0100 294 30,822.2 8.63 -0.163 2 59–110 8e-021

PeDof-25 PH01003628G0010 245 25,693.0 9.05 -0.280 1 62–113 2e-018

PeDof-26 PH01007575G0040 537 58,470.2 5.37 -0.796 1 163–214 6e-018

MW molecular weight, pI isoeletric point, GRAVY grand average of hydropathicity
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(Kushwaha et al. 2011) and tomato (Cai et al. 2013).

Moreover, eight other amino-acid residues showed varia-

tion in less than three sequences among all PhDofs.

We analysed 16 species that, according to publications,

contained 432 Dof proteins (Table 2). After the compara-

tive genomic analysis, the number of Dof transcription

factors in moso bamboo (26) was equal to that of barley

(26) and exceeded that of Ricinus communis (21), Vitis

vinifera (25), maize (18), P. patens (19), P. taeda (8),

S. moellendorffii (8). It was, however, less than that of

soybean (78), Arabidopsis (37), P. trichocarpa (41),

tomato (34), rice (30), wheat (31), sorghum (28) and

B. distachyon (27). In general, angiosperms have more Dof

genes than gymnosperms, mosses, ferns and green algae.

The genome size of moso bamboo (2.1 Gb) was less than

that of maize (2.3 Gb), barley (5.1 Gb), wheat (17 Gb),

and P. taeda (23.2 Gb), but greater than that of other

species examined. We found that the number and genome

size of the Dof genes showed no pattern among angios-

perms, gymnosperm, moss, fern and green alga, which was

the same for dicotyledons and monocotyledons. Although

the genome size of barley (5.1 Gb) is 2.4 times that of

moso bamboo (2.1 Gb), the two had equal numbers of Dof

genes; however, the genome size of moso bamboo was

8.08 times larger than that of B. distachyon (260 Mb), and

the two had similar numbers of Dof genes.

Phylogenetic, gene structure and conserved motif

analysis of the Dof gene family in moso bamboo,

Arabidopsis and rice

To investigate the molecular evolution and phylogenetic

relationship among the Dof domain proteins in moso

bamboo, Arabidopsis and rice, the 26 predicted PhDof

proteins were subjected to multiple sequence alignment

along with 36 Arabidopsis and 30 rice Dof proteins. Three

unrooted phylogenetic trees were constructed using the NJ,

ME and ML methods, based on the alignment of all the Dof

amino-acid sequences. The tree topologies were similar,

despite using different tree-building methods, except at the

deep nodes (Fig. 2, Fig. S2). The NJ tree showed that all

the Dof family proteins from the three higher plants were

divided into four major clusters of orthologous groups and

nine well-supported clades (A, B1, B2, C1, C2, C3 and D1,

D2, D3; Fig. 2), similar to previous reports in Arabidopsis

(Lijavetzky et al. 2003), soybean (Guo and Qiu 2013) and

tomato (Cai et al. 2013). Among these, group D comprised

the largest clade, containing 13 members and accounting

for 50 % of the total Dof proteins. The other three groups

contained two (Group A), three (Group B), and eight

(Group D) members, respectively. Subgroup C3 comprised

a species-specific group for Arabidopsis (monocotyledon),

and subgroup D3 was specific for moso bamboo and rice

Table 2 Summary of the Dof transcription factors in 16 species

Classifiation Species Number of Dof Genome size References

Angiosperms

Dicotyledons Ricinus communis 21 350 Mb Jin et al. (2014b)

Vitis vinifera 25 490 Mb Li et al. (2013)

Solanum lycopersicum 34 900 Mb Cai et al. (2013)

Arabidopsis thaliana 37 135 Mb Lijavetzky et al. (2003)

Populus trichocarpa 41 480 Mb Yang et al. (2006a)

Glycine max 78 760 Mb Guo and Qiu (2013)

Monocotyledons Zea mays 18 2.3 Gb Jiang et al. (2012)

Hordeum vulgare 26 5.1 Gb Moreno-Risueno et al. (2007b)

Brachypodium distachyon 27 260 Mb Hernando-Amado et al. (2012)

Sorghum bicolor 28 730 Mb Kushwaha et al. (2011)

Oryza sativa 30 466 Mb Lijavetzky et al. (2003)

Triticum aestivum 31 17 Gb Shaw et al. (2009)

Gymnosperm Pinus taeda 8 23.2 Gb Moreno-Risueno et al. (2007b)

Moss Physcomitrella patens 19 480 Mb Shigyo et al. (2007)

Fern Selaginella moellendorffii 8 212 Mb Moreno-Risueno et al. (2007b)

Green alga Chlamydomonas reinhardtii 1 130 Mb Shigyo et al. (2007)

MW molecular weight, pI isoeletric point, GRAVY grand average of hydropathicity
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(dicotyledons), similar to previous reports (Guo and Qiu

2013), indicating that there was a presumed gene loss event

after the dicot–monocot split. Additionally, the B, C and D

groups further clustered, forming a large clade, similar to

previous reports for tomato and soybean, implying that

they might have originated from a common ancestor by

frequent gene duplication. Based on the phylogenetic tree,

several putative paralogous (i.e. PhDof-7/PhDof-11,

PhDof-9/PhDof-20 or PhDof-3/PhDof-15) and orthologous

(i.e. AtDof5.6/PhDof-24/OsDof-7, AtDof2.4/PhDof-17/

OsDof-16, AtDof1.1/PhDof-25/OsDof-15, or PhDof-13/

OsDof-25/OsDof-24, PhDof-1/OsDof-2, AtDof5.2/PhDof-

21) genes were identified.

Gene structural diversity is a possible mechanism for the

evolution of multigene families. To gain further insight

into the structural diversity of Dof genes, we compared the

exon/intron organization in the coding sequences of indi-

vidual PhDof genes. A detailed illustration of the exon/

intron structures is shown in Fig. 3. According to the

predicted structures, most of the Dof genes have one or two

exons in Arabidopsis (Lijavetzky et al. 2003), B. dis-

tachyon (Hernando-Amado et al. 2012), cater bean (Jin

et al. 2014b), rice (Lijavetzky et al. 2003), sorghum

(Kushwaha et al. 2011) and tomato (Cai et al. 2013). By

contrast, PhDofs have one to four exons. Among these

genes, nine have one exon, ten have two exons, six have

three exons and one gene (PhDof-16) contains four exons.

To reveal the diversification of Dof genes in moso bam-

boo, putative motifs were predicted by the program MEME

(Multiple Em for Motif Elicitation), and 25 motifs were

found in the 26 Dof proteins (Fig. 4; Table S2). Motif 1 was

present in all the Dof proteins and represents the conserved

Dof domain. Moreover, a number of common motifs were

found in all moso bamboo Dofs (Table S2). As expected,

most of the closely related members in the phylogenetic tree

had common motif compositions. For example, there were

no conserved motifs outside the Dof domain in subgroup A,

B1 and D3, while motifs 2, 3, 4, 5, 6, 7, 8, 10, 11, 14, 16, 19,

20, 22, 23 and 25 appeared in nearly all the members of

subgroup D1. In other subgroups, motifs 9 and 17 were

specific to subgroup C1; motifs 12, 18, 21 and 24 were

specific to subgroup C2; and motifs 13 were specific to

subgroup D2. Thus, the phylogenetic tree was further sup-

ported by the comparative motif analyses of the deduced

amino acid sequences of the Dof family proteins.

Moreover, because most of the Arabidopsis and other

plants Dof genes with similar functions tended to fall into

one subgroup, moso bamboo Dof genes in the same

Fig. 2 Phylogenetic tree of all

Dof domain-containing proteins

from moso bamboo,

Arabidopsis and rice. The

deduced full-length amino-acid

sequences of 26 moso bamboo,

36 Arabidopsis and 30 rice Dof

genes were aligned by Clustal X

1.83 and the phylogenetic tree

was constructed using MEGA

5.05 by the neighbor-joining

method with 1000 bootstrap

replicates. Each Dof subgroup is

indicated by a specific color

738 Genes Genom (2016) 38:733–745
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subgroup may have similar functions. Therefore, another

unrooted phylogenetic tree was constructed using the NJ

method, based on the Dof amino-acid sequences for which

the functions had been identified in many plants (Fig. S3).

In subgroup A, PhDof-22 and PhDof-25 clustered with

AtDof1.1 (OBP2), which is involved in regulating glu-

cosinolate biosynthesis (Skirycz et al. 2006), laying the

foundation for the study of moso bamboo secondary
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Fig. 3 Exon/intron structure of moso bamboo Dof genes. Exons are represented by green boxes and introns by black lines, and

upstream/downstream by blue boxes. The size of exons, introns and upstream/downstreams can be estimated using the scale below

Fig. 4 Schematic distributions of the conserved motifs among the

defined gene cluster. Motifs in the deduced amino-acid sequences of

the 26 PhDofs were identified using MEME software. The relative

position of each identified motif in all Dof proteins is shown. Each

motif is represented by a colored block with a number. Multilevel

consensus sequences for the MEME-defined motifs are listed in

Table S2
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metabolism. PhDof-22 also is also closely related with

GmDof, which plays important role in regulating the syn-

thesis of lipids in soybean seeds (Wang et al. 2007) and

TaDof-1, whose overexpression could improve the uti-

lization rate of nitrogen in wheat (Kumar et al. 2009;

Fig. S3).

In subgroup B1, three moso bamboo Dof genes (PhDof-

16, PhDof-17 and PhDof-18) clustered with AtDof3.6

(OBP3), which modulates phytochrome and cryptochrome

signaling in Arabidopsis (Ward et al. 2005), and StDof1,

which controls guard cell-specific gene expression in

tomato (Plesch et al. 2001). These data will add to the

design of tailor-made guard cell promoters as a further tool

in molecular engineering of guard cell function and, hence,

the control of stomatal carbon dioxide (CO2) uptake and

water loss in crop plants.

In subgroup C1, four moso bamboo Dof genes (PhDof-2,

PhDof-12, PhDof-14 and PhDof-24) clustered with

AtDof5.6 (HCA2), which is expressed specifically in cells

at an early stage of vascular tissue development (Guo et al.

2009).

In subgroup C2, four moso bamboo Dof genes (PhDof-1,

PhDof-6, PhDof-8 and PhDof-10) clustered with AtDof3.7

(DAG1), AtDof2.5 (DAG2), OsDof-10 (RPBF) and HvSAD,

PsDOF-7, which are indirectly or directly involved in

carbohydrate metabolism (sugar and thiol status, and seed

storage protein accumulation) (Kawakatsu and Takaiwa

2010; de Dios Barajas-López et al. 2012) and seed devel-

opment (Gualberti et al. 2002; Moreno-Risueno et al.

2007a).

In subgroup D1, nine moso bamboo Dof genes (PhDof-

4, PhDof-5, PhDof-7, PhDof-9, PhDof-1, PhDof19, PhDof-

20, PhDof-21 and PhDof-26) clustered with AtDof5.5

(CDF1), AtDof5.2 (CDF2), AtDof3.3 (CDF3), AtDof1.5

(COG1), AtDof1.10 (CDF5), JcDof-1, JcDof-3, and OsDof-

12, which are associated with the light-mediated circadian

clock and regulation of flowering in Arabidopsis (Imaizumi

et al. 2005; Sawa et al. 2007; Fornara et al. 2009; Song

et al. 2012), J. curcas (Yang et al. 2010, 2011) and rice

(Iwamoto et al. 2009; Li et al. 2009).

In subgroup D2, two moso bamboo Dof genes (PhDof-3

and PhDof-15) clustered with AtDof3.4 (OBP1), which

specifically increases the binding of the OBF proteins to

ocs element sequences, raising the possibility that inter-

actions between these proteins are important for the

activity of the 35 s promoter (Zhang et al. 1995), and

AtDof5.8, which is the upstream regulator of ANAC069 and

is responsive to abiotic stress (He et al. 2015). In addition,

the AtDof5.8 promoter activity was specifically detected in

the cells of prospective veins in leaf primordia of seedlings

and cotyledons of developing embryos, and the vascular

tissue of developing flower buds. The AtDof5.8 promoter

showed strong activity in advance of perceptible procam-

bium formation. Thus, AtDof5.8 might function in early,

but different, processes in vascular development (Konishi

and Yanagisawa 2007).

In subgroup D3, two moso bamboo Dof genes (PhDof-

13 and PhDof-23) clustered with ZmDof-1 and ZmDof-2.

Transgenic expression of the maize ZmDof-1 gene in rice

enhanced carbon and nitrogen assimilation under low-ni-

trogen conditions (Kurai et al. 2011). Moreover, ZmDof-1

is involved in light-regulated gene expression and has

distinct activities in greening and the etiolated protoplast.

Both ZmDof-1 and ZmDof-2 specifically interact with the

promoter of the phosphoenolpyruvate carboxylase gene to

enhance or repress its promoter activity, respectively

(Yanagisawa and Sheen 1998; Yanagisawa 2000).

Expression profiles of Dof genes in bamboo shoots

and flowers

The growth of the moso bamboo shoot is rapid and steady,

and in suitable spring conditions, at the peak of its growth,

the shoot can grow by as much as 100 cm within 24 h.

Moreover, bamboo shoots are a traditional vegetable and

natural health food in China (Peng et al. 2010, 2013). The

expression analysis of Dof genes in bamboo shoots has

important implications for moso bamboo genetic studies

during the fast growth of shoots and provides potential

gene candidates for further research.

High-throughput sequencing and gene expression anal-

yses were performed on four moso bamboo shoot tissues,

and the RNA-seq data generated is a useful resource for

studying gene expression profiles. Based on the RPKM

transcriptomic data of Dof genes in four moso bamboo

samples (Table S4), the expression patterns of the 26 moso

bamboo Dof genes were analyzed (Fig. 5). Two genes

(PhDof-5 and PhDof-23) had very low expression in all

four tissues. This might be because these genes have some

other functions during the bamboo development process.

Only four genes, PhDof-6, PhDof-8, PhDof-13 and PhDof-

15, showed high expression levels (RPKM[ 100) among

the four tissues. Half of the PhDof genes showed a certain

degree of tissue specificity, with five genes being abun-

dantly expressed in the shoot tops, seven genes being

abundantly expressed in the bottom shoots and 1 gene

being abundantly expressed in the shoot sheaths. No Dof

genes showed abundant expression levels in the middle

shoots.

Moso bamboo is an arborescent, perennial plant char-

acterized by woody stems and a rather striking life history,

such as flowering synchronously and dying collectively

after flowering (Lin et al. 2010). Gao et al. (2014) char-

acterized the floral transcriptome of moso bamboo at four
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flowering developmental stages (floral bud formation,

inflorescence development, anthesis and flower withered

stages) by transcriptome sequencing and RNA-seq analy-

sis. The significance of differential transcript abundance of

the 26 Dof family genes from Gao et al. (2014) data during

the different flower developmental stages is shown in

Table S5. All 26 PhDofs were significantly differentially

expressed in the early stage of flowering, suggesting that

PhDofs play important roles in the early stage of flower

development. Most of them showed upregulated expres-

sion; nevertheless, four genes (PhDof-4, PhDof-5, PhDof-

20 and PhDof-22) were downregulated, and showed per-

iod-specific expression in the floral bud formation stage.

PhDof-2 and PhDof-25 showed the most differential

expressions (fold-change values of approximately 6.93 and

6.29) followed by PhDof-3 (fold-change value approxi-

mately 5.12). They were all upregulated at the floral bud

formation stage, although PhDof-3 and PhDof-25 had the

opposite expression patterns at the inflorescence develop-

ment stage. PhDof-3, PhDof-15, PhDof-19 and PhDof-25

were differentially expressed in the floral bud formation

and inflorescence development stages, moreover, PhDof-3

and PhDof-15 showed similar expression trends, with

upregulated expression at the floral bud formation stage

and then downregulated expression at the inflorescence

development stage. PhDof-5 and PhDof-12 were differen-

tially expressed in the floral bud formation and the flower

withered stages, and they were both downregulated during

the stage representing the flower withering process. The

only difference was that the expression of PhDof-5

decreased significantly during the floral bud formation

process, while PhDof-12 was increased significantly at this

stage. Only PhDof-10 was increased significantly during

the first three phases (floral bud formation, inflorescence

development and anthesis stage), with significant differ-

ential expression during the last flower withered stage.

Nine PhDof genes (PhDof-6, PhDof-7, PhDof-9, PhDof-

11, PhDof-14, PhDof-17, PhDof-21, PhDof-23 and PhDof-

26) were all dramatically differentially expressed at the

four flowering development stages, but showed different

expression patterns.

Discussion

In this study, 26 PhDof genes were identified in moso

bamboo. This number is similar to the Dof genes present in

barley (26; Moreno-Risueno et al. 2007b), grape (25; Li

et al. 2013), B. distachyon (27; Hernando-Amado et al.

2012), sorghum (28; Kushwaha et al. 2011); but it is much

less than that in soybean (78; Guo and Qiu 2013), which

currently has the largest number of identified Dof genes.

Glycine max is an ancient polyploid (palaeopolyploid),

whose whole genome duplications (WGD) occurred at

approximately 59 and 13 million years ago, resulting in a

highly duplicated genome with nearly 75 % of the genes

present in multiple copies (Schmutz et al. 2010). These

facts suggested that the WGDs of soybean facilitated the

expansion of the Dof gene family.

Among rice, Arabidopsis, tomato, B. distachyon, cater

bean and sorghum Dof genes, the organizations of the

exon/intron structures are conserved: the number of introns

in the Dof genes ranged from 0 to 2 (Lijavetzky et al. 2003;

Kushwaha et al. 2011; Hernando-Amado et al. 2012; Cai

et al. 2013; Jin et al. 2014b). However, in moso bamboo,

the intron number in PhDofs ranged from 0 to 3 (PhDof-16

contained 3 introns. In Arabidopsis (Lijavetzky et al.

2003), rice (Lijavetzky et al. 2003), soybean (Guo and Qiu

2013), tomato (Cai et al. 2013), and many other plants, the

most closely related Dof gene members in the same sub-

group generally show the same exon/intron pattern, with

the position and length of the introns being almost com-

pletely conserved within most subgroups. By contrast, the

gene structure appeared to be more variable for the D2 and

ST SM    SB    SS
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PhDof-25
PhDof-16
PhDof-17
PhDof-18
PhDof-12
PhDof-14
PhDof-2
PhDof-24
PhDof-6
PhDof-8
PhDof-1
PhDof-10
PhDof-11
PhDof-19
PhDof-20
PhDof-21
PhDof-26
PhDof-4
PhDof-5
PhDof-7
PhDof-9
PhDof-15
PhDof-3
PhDof-13
PhDof-23

A
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C2
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D3

Fig. 5 Expression profiles of moso bamboo Dof genes in four

samples. Transcriptome sequencing (next-generation RNA-seq) was

employed to investigate expression patterns of Dof genes. The color

scale is shown on the right, with blue indicating low expression levels

while red indicates high levels. ST shoot tip, SM the middle part of the

shoot, SB the base part of the shoot, and SS shoot sheaths (tip, middle,

base of shoot sheaths mixtures)
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D3 PhDofs subgroups (Fig. 3), suggesting that there might

be larger evolutionary variation among moso bamboo Dofs.

Our results also revealed that certain Dof genes might

have specific functions during moso bamboo shoot devel-

opment and flower development process. For example,

PhDof-5 and PhDof-23 had very low expressions, with an

RPKM\ 1, in the four moso bamboo shoot tissues

(Table S4), suggesting that they might do not participate in

regulating the growth of bamboo shoots. However, they

showed significant differential expression patterns during

the flower development processes (Table S5). PhDof-5

showed downregulated expression at the floral bud for-

mation stage, and might specificity negatively regulate the

plant transition from the vegetative to the reproductive

stage. PhDof-5 was clustered with PhDof-4 and OsDof12.

Previous studies showed that a moso bamboo Dof (a

homolog of OsDof12) might be active in the drought-Dof-

MADS14-flowering pathway during bamboo flowering

process under drought stress in Southern China (Peng et al.

2013); PhDof-4 was also downregulated at the floral bud

formation stage; therefore, PhDof-4 or PhDof-5 might

participate in the drought-Dof-MADS14-flowering pathway

in moso bamboo. PhDof-23 might not participate in regu-

lating the growth of bamboo shoots: it was obviously dif-

ferentially expressed in the whole process of bamboo

flower development, showed upregulated expression at the

floral bud formation and inflorescence development stages,

was specifically downregulated at the anthesis stage, and

was then upregulated expression again at the withered

stage. This expression pattern suggested that it might a key

positive regulator for the early stages of floral development

and withering, and negative regulator for flower opening.

Bamboo shoot shell extracts contain many kinds of

biologically active substances that show significant

antioxidative activity (Gao 2011). The expression of

PhDof-15 was abundant in the shoot sheaths. Phylogenetic

analysis showed that it was closely related to AtOBP1,

which was identified as responsive to abiotic stress. Thus,

PhDof-15 might be involved in producing antioxidants in

shoot sheaths resist abiotic stress. Moreover, PhDof-15 was

dramatically differentially expressed during the floral bud

formation and inflorescence development processes. This

result agreed with those of previous studies, which also

showed that a drought-responsive PeDof gene was highly

expressed in the floral tissues, especially in the early stage

of flowering (Gao et al. 2014; Peng et al. 2013).

In this study, PhDof-1, PhDof-6, and PhDof-8 showed

different site-specific middle–to–high expression levels in

bamboo shoots (Table S4). Moreover, PhDof-6 was dif-

ferentially expressed at four flower development stages,

and PhDof-1 and PhDof-8 were period-specifically differ-

entially expressed at the floral bud formation stage

(Table S5). In addition, they clustered with DAG1, DAG2,

RPBF, HvSAD and PsDOF-7, which are indirectly or

directly involved in carbohydrate metabolism (Kawakatsu

and Takaiwa 2010; de Dios Barajas-López et al. 2012).

PhDof-1, PhDof-6 and PhDof-8 might be site-specifically

or period-specifically involve in carbohydrate metabolism

for rapid bamboo shoots growth and flower development

process, respectively. During the flower development pro-

cess, PhDof-2, PhDof-3 and PhDof-25 showed the largest

differential expressions at the early stage, suggesting that

they all positively regulated floral bud formation. The

phylogenetics analysis results showed that PhDof-25

clustered with AtDof1.1 (OBP2), PhDof-2 clustered with

AtDof5.6 (HCA2), and PhDof-3 clustered with AtDof5.8,

which has been reported to involved in regulating glu-

cosinolate biosynthesis (Skirycz et al. 2006). AtDof5.8 is

expressed specifically in cells at an early stage of vascular

tissue development (Guo et al. 2009; Konishi and Yanag-

isawa 2007), and is responsive to abiotic stress (He et al.

2015), respectively. These results will help build a foun-

dation for the study of moso bamboo secondary metabo-

lism, vascular tissue development and abiotic stress

responses.

Genes in the same group, with similar expression patterns,

might have conserved functions.PhDof-7 and PhDof-11 had

similar expression patterns in bamboo shoots but showed

different patterns in flower development stages. However,

some Dof members in the same subgroups had totally dif-

ferent expression patterns. For example, in the D3 subgroup,

PhDof-13 showed specific expression in the base of the

shoots, while PhDof-23 showed very low expression in all

four shoot samples; even some paralogous genes with highly

identical amino acid sequences had totally opposite expres-

sion patterns. For example, for the PhDof-3/PhDof-15 par-

alogous gene pair,PhDof-3wasmainly expressed in the base

part of the shoots, while PhDof-15 was rarely expressed

there, suggesting that they might participate in the same

process through different ways. This phenomenon was also

observed in an expression analysis of the soybeanDof family

genes (Guo and Qiu 2013). The results revealed that the Dof

family genes show functional and regulative diversity, even

among the paralogous genes, despite having highly similar

amino acid sequences.

Conclusions

In this study, we conducted a detailed analysis of the Dof

gene family in moso bamboo, including genome-wide

identification, phylogeny, gene structure, protein motifs

and expression pattern analyses. These results will form the

basis for future gene-cloning and functional analysis to

unravel the role of Dof genes in the fast growth and floral

development of moso bamboo.
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