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Abstract Mutations in PARK2 are considered a common

cause of Parkinson’s disease (PD). To assess the frequency

of PARK2 mutations in the Korean population, we screened

the PARK2 gene in 83 Korean PD patients: two young

onset (YO, B 49), 32 middle onset (MO, 50–69) and 49

late onset (LO, C 70). Detection of the point mutations

was performed by direct sequencing of the PARK2 exons,

and exonic rearrangements were analyzed using multiplex

ligation-dependent probe amplification. Five known

PARK2 variants were identified in 53 (63.9 %) of the

Korean PD patients: two missense mutations (Y267H and

M458L) and three polymorphisms (S167N, L272I and

V380L). We also found an increased frequency of PARK2

variants in PD patients and a lowered PD age at onset

(AAO) in those having two variants, suggesting that the

genetic variation in PARK2 gene might be a genetic risk

factor of PD in Korean population.
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Introduction

A PARK2 mutation was first described in a Japanese

family with an autosomal recessive juvenile Parkinson’s

disease (PD) (Kitada et al. 1998) and 213 different

mutations have since been identified throughout PARK2,

including large deletions or amplifications, small deletions

or insertions, as well as missense mutations (The

Parkinson Disease Mutation Database, accessed July

2015). Studies have shown PARK2 mutations in about

40-50 % of early onset FPD, and about 1.3–20 % of SPD

patients (Choi et al. 2008; Hedrich et al. 2004; Kann et al.

2002; Mellick et al. 2009; Oczkowska et al. 2013; Sironi

et al. 2008), suggesting that PARK2 dysfunction by

mutations might be involved in the pathogenesis of both

FPD and SPD.

PARK2, an E3 ubiquitin ligase regulates a variety of

processes, including receptor trafficking and mitochondrial

quality control, via mono- or poly-ubiquitinations of

PARK2 substrates (Dawson and Dawson 2014). Several

distinct pathomechanisms by PARK2 mutations have been

reported. Many missense mutations reduce the enzymatic

activity of PARK2, leading to the abnormal accumulation

of toxic proteins and neurodegeneration (Corti et al. 2011;

Dawson and Dawson 2010; Sul et al. 2013). The mutations

in PARK2 gene also change the general physical charac-

teristics of the protein such as stability and/or solubility,

promoting aggregate formation and impairing mitochon-

drial maintenance, collectively resulting in increased cel-

lular toxicity (Gaweda-Walerych and Zekanowski 2013;

Hampe et al. 2006; Oczkowska et al. 2013; Sriram et al.
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2005). These results suggest that PARK2 mutants might

influence the risk of developing PD.

The frequency of PARK2 mutation has been reported in

the 5.5–15.8 % of the Korean population with early onset

PD (EOPD) (Choi et al. 2008; Chu et al. 2014; Kim et al.

2012). However, the frequency of PARK2 mutation has not

been examined in Korean PD patients in other age at onset

(AAO) groups. Therefore, this is the first analysis of fre-

quency of PARK2 variants in Korean PD patients with

AAO C 50 years.

Materials and methods

Subjects

A total of 83 PD patients were included in the study. To

analyze the relationship between AAO and variants, we

divided patients into three groups based on their AAO of

the disease (Mehanna et al. 2014): those younger than

49 years (young onset PD, YOPD), those between 50 and

69 years (middle onset PD, MOPD), and those older than

70 years (late onset PD, LOPD).

Mutation analysis

Genomic DNA was extracted from peripheral blood by

standard protocol. The exons 1–12 of the PARK2 gene

were amplified from genomic DNA using intronic primers

(Table 1). The reaction mixture for PCR contained 50 ng

of genomic DNA and 10 pmol of each primer. The PCR

reactions were denatured at 94 �C for 5 min followed by

30 cycles of 94 �C for 45 s, 50–60 �C for 45 s, and 72 �C
for 45 s with a final extension of 7 min at 72 �C. The PCR

products were purified and sequenced directly using the

ABI 3730XL DNA analyzer (Applied Biosystems).

Gene dosage analysis

Exon rearrangements were analyzed with a multiplex

ligation-dependent probe amplification (MLPA) assay

using commercially available probes (SALSA P051

Parkinson MLPA kits, MRC Holland). Sequence-specific

probes enclosed in this kit are against all exons of PARK2

and PINK1, and specific exons of SNCA (exons1, 3–6);

PARK7 (DJ-1, exons 1, 3, 5, 7); TNFRSF9 (exon 3);

ATP13A2 (exon 2, 9); LPA (6q26) and two-point mutations

(A30P in SNCA and G2019S in LRRK2). Experimental

procedures were conducted for all 83 samples according to

the manufacturer protocol. MLPA peaks analysis, nor-

malization, and calculation of dosage ratio were performed

with the GeneMarker software (SoftGenetics LLC) with

standard parameters of analysis.

Statistical evaluation

The paired t test was used to compare mean AAOs among

PD patients with no variant, with one variant, and with C2

variants. Values were expressed as mean ± SD and

P\ 0.05 was considered statistically significant.

Results

We sequenced all of the 12 exons of the PARK2 gene from

15 patients selected randomly from our PD samples in

order to see a preliminary profile of the PARK2 gene of our

PD patients. Sequence analysis of 15 patients disclosed

Table 1 PCR primers and annealing temperatures

PARK2 exons Forward primer 50 ? 30 Reverse primer 50 ? 30 Amplicon size Annealing

temperature

1 AGGAGGCGTGAGGAGAAACT GGTCTTCATGAGAACGCTCAG 460 51

2 GTTTGCAGGTCACTGACGAA TCCAATCTTTCCTGCTTGCT 591 53

3 GCCCCAGTTCAGTGTTGTTT TAAATATGCACCCGGTGAGG 522 51

4 GGCTGTTGGCAAGAGAGAGA AAGACAAAGGCGCATAAACG 514 53

5 GGAAAACGAACAGGTTTGGA GCACAGGTTGGAATTTTGGT 504 51

6 ACTTTGGCACAAGGTCATCC GCTCGTGTGGCAGAACAATA 399 53

7 CTTAGCAGCTCCGGTCTTTG CAATTCCTTCATTCCCCAGA 452 53

8 CTAAAGAGGTGCGGTTGGAG TATGCAGTGCTTGCTTCCTG 537 53

9 AAGCAAGAAATCCCATGCAC AAGTCTGGCCTAGTGGCTCA 518 53

10 TGAGGGAAGGAAATGTGACC GGAACTCTCCATGACCTCCA 414 53

11 CCATCCGCCTAGTAGCTGTC ACACACCAGGCACCTTCAG 400 52

12 TCTAGGCTAGCGTGCTGGTT TGCAATTTGGCTGTAGTTGG 355 53
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three different missense mutations: S167N (exon 4),

V380L (exon 10), and M458L (exon 12). We did not detect

novel mutations other than the reported variations in exon

4, 10, and 12. Thereafter, we screened sequence variations

in these three exons (exon 4, 10 and 12) of other patient

samples, based on the above data. In addition, we also

screened exon 2 encoding the ubiquitin-like (Ubl) domain,

and exon 6 and 7 encoding RING1 domain, because

mutations in these domains tend to affect the enzymatic

function of PARK2 (Caulfield et al. 2014).

The demographic characteristics of the 83 patients are

presented in Table 2 (YOPD, N = 2; MOPD, N = 32;

LOPD, N = 49). Five variants identified in this study are

S167N (c.500G[A), Y267H (c.799T[C), L272I

(c.814C[A), V380L (c.1138G[C), and M458L

(c.1372A[C) (Table 3). S167N polymorphism in exon 4

was the commonest variant (allele frequency of 40.4 %)

when compared to the other polymorphisms. L272I and

V380L alleles were found relatively infrequently (0.6 and

4.2 % of the allele frequencies in the PD patients,

respectively).

In order to detect exon dosage changes caused by

genomic rearrangements of the known PD genes, we used

the SALSA P051-B1 kit. The kit consists of probes for

specific exons of SNCA, PARK7, TNFRSF9, ATP13A2, and

LPA, as well as point mutations of SNCA A30P and LRRK2

G2019S. Three out of 83 patients had genomic duplications

in the PARK2 and PINK1 loci (Fig. 1; Supplementary

Table 1) and other major PD gene rearrangements were not

detected: two patients had duplication of the PARK2 gene

and one patient had duplication of the PINK1 gene.

When point mutations and exonic rearrangements were

taken together, PARK2 variants were found in 54 (65 %) of

83 PD patients (Table 4): 23 patients carried compound

heterozygous or homozygous variants, and 31 patients

carried a single heterozygous variant. One patient with

PINK1 mutation did not have PARK2 variant.

Discussion

PARK2 is a well-known risk factor for juvenile and early

onset occurrence of PD (Kitada et al. 1998). Moreover, the

importance of PARK2 mutations in sporadic PD have also

been reported (Foroud et al. 2003; Oczkowska et al. 2013).

In the Korean population, PARK2 mutations were reported

in about 5.5–18.5 % of EOPD and FPD (Choi et al. 2008;

Chu et al. 2014; Kim et al. 2011, 2012). However, genetic

study of late onset PD has not yet been reported. Therefore,

this study assessed the frequency of PARK2 mutation in

Korean PD patients, with AAO after 50 years.

We found that S167N polymorphism was the com-

monest with high frequency (40.4 %) in our study. Studies

regarding the allele frequency of S167N vary greatly

among populations with different ethnic origins ((Li et al.

2005; Martinez et al. 2010; Mellick et al. 2001; Sakai et al.

2010; Sinha et al. 2005). In the Asian SPD populations

(Japanese, Chinese, and Taiwanese), the frequency of

S167N polymorphism was 38.6–46.6 % (Supplementary

Table 2) and that of Korean SPD in this study also fits in

this range. On the other hand, S167N allele was found in

only 0.2–2.5 % of a Caucasian population. The frequency

of S167N polymorphism was also higher in the Asian

EOPD population (around 40 %) than in the Caucasian

EOPD population (2.6–12.9 %) (Supplementary Table 3).

Taken together, S167N polymorphism may be a suscepti-

bility factor to PD in Asian populations.

The study by Ghione et al.(Ghione et al. 2007) reported

that the combination of PARK2 polymorphisms including

S167N (14 % of cases, heterozygous) and environmental

Table 2 Demographics of PD patients with one, with C two variants, and without variant

Total patients

(n = 83)

Patients without variant

(n = 28)

Patients with a single

variant (n = 32)

Patients with C 2 variants

(n = 23)

Gender, M/F (male%) 32/51 (38.6) 11/17 (39.3) 10/22 (31.3) 11/12 (47.8)

AAO, n (%)

YOPD B 49 2 (100) 1 (50) – 1 (50)

MOPD 50–69 32 (100) 12 (37.5) 13 (40.6) 7 (21.9)

LOPD C 70 49 (100) 15 (30.6) 19 (38.8) 15 (30.6)

AAO, yr 70.8 ± 10.6 71.4 ± 9.4 71.1 ± 10.7 69.8 ± 12.0

YOPD B 49 40.0 ± 7.1 45 – 35

MOPD 50–69 62.2 ± 6.2 65.5 ± 4.2 60.6 ± 6.9* 59.6 ± 6.1*

LOPD C 70 77.7 ± 5.2 77.9 ± 5.8 78.3 ± 5.5 76.9 ± 4.2

Values are shown as mean ± standard deviation

M male, F female, AAO age at onset, PD, Parkinson’s disease, YOPD young onset PD, MOPD middle onset PD, LOPD late onset PD

* P\ 0.05 compared with no variation group (paired t-test)
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factors including pesticides, organic solvents, and rural

living, strongly affects lowering the AAO of PD. S167N is

located in exon 4 encoding the RING0/unique Parkin

domain (UPD), a PINK1 interacting domain. PINK1 kinase

activates PARK2 via phosphorylation of PARK2 on resi-

due Ser65 (Iguchi et al. 2013; Kondapalli et al. 2012;

Okatsu et al. 2012; Seirafi et al. 2015). It would be inter-

esting to know whether S167N polymorphism interferes

with the binding of PARK2 to PINK1 when an

environmental risk factor is added. It is also probable that

S167N polymorphism may promote aggregation or impair

mitochondrial homeostasis by environmental and/or other

genetic factors. Further functional studies of PARK2

polymorphisms would be useful for diagnostic and prog-

nostic processes related to PD.

In the Korean LOPD patients, we found PARK2 exon

duplication in only two patients: one had exon 5 duplica-

tion and the other had multiple duplications (exon 2, 3,

Table 3 Allele and genotype frequencies of PARK2 variants in PD patients

PARK2 Variant allele/genotype Total PD (n = 83) YOPD (n = 2) MOPD (n = 32) LOPD (n = 49)

N (%) N (%) N (%) N (%)

Ex4 S167N (G[A)

Allele G 99 (59.6) 2 (50) 40 (62.5) 57 (58.2)

Allele A 67 (40.4) 2 (50) 24 (37.5) 41 (41.8)

G/G 32 (38.6) 1 (50) 13 (40.6) 18 (36.7)

G/A 35 (42.2) – 14 (43.8) 21 (42.9)

A/A 16 (19.3) 1 (50) 5 (15.6) 10 (20.4)

G/A?A/A 51 (61.4) 1 (50) 19 (59.4) 31 (63.3)

Ex7 Y267H (T[C)

Allele T 165 (99.4) 4 (100) 64 (100) 97 (99)

Allele C 1 (0.6) – – 1 (1)

T/T 82 (98.8) 2 (100) 32 (100) 48 (98)

T/C 1 (1.2) – – 1 (2)

C/C – – – –

T/C?C/C 1 (1.2) – – 1 (2)

L272I (C[A)

Allele C 165 (99.4) 4 (100) 64 (100) 97 (99)

Allele A 1 (0.6) – – 1 (1)

C/C 82 (98.8) 2 (100) 32 (100) 48 (98)

C/A 1 (1.2) – – 1 (2)

A/A – – – –

C/A?A/A 1 (1.2) – – 1 (2)

Ex10 V380L (G[C)

Allele G 159 (95.8) 4 (100) 61 (95.3) 94 (95.9)

Allele C 7 (4.2) – 3 (4.7) 4 (4.1)

G/G 77 (92.8) 2 (100) 29 (90.6) 46 (93.9)

G/C 5 (6) – 3 (9.4) 2 (4.1)

C/C 1 (1.2) – – 1 (2)

G/C?C/C 6 (7.2) – 3 (9.4) 3 (6.1)

Ex12 M458L (A[C)

Allele A 165 (99.4) 4 (100) 63 (98.4) 98 (100)

Allele C 1 (0.6) – 1 (1.6) –

A/A 82 (98.8) 2 (100) 31 (96.9) 49 (100)

A/C 1 (1.2) – 1 (3.1) –

C/C – – – –

A/C?C/C 1 (1.2) – 1 (3.1) –

Ex exon
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5–11) (Fig. 1 and Supplementary Table 1). On the other

hand, a larger case study showed duplication of PARK2 on

exons 2–7 in 2,091 PD patients (mean AAO

58.3 ± 12.1 years), and duplication of exon 1, 2, and 3 in

1,686 controls (mean age 66.1 ± 13.1 years) (Kay et al.

2010). Interestingly, only duplication of exon 4 was

reported in American, Polish, and French EOPD patients

(Ambroziak et al. 2015; Hedrich et al. 2001; Kay et al.

2010; Periquet et al. 2003). Therefore, it seems worthy to

further investigate the role of exon 4 of PARK2 in the

pathomechanism of EOPD.

To assess the relevance between variants and AAO, we

performed a subgroup analysis (Mehanna et al. 2014):

YOPD, MOPD and LOPD (Table 2). In MOPD, the

average AAO was lower in patients with C2 variants than

in patients with one variant, or without variant of statistical

significance. We also observed lowered average AAO in

LOPD patients with C2 variants; however, this was with-

out statistical significance.

In this study, two variants (Y267H and L272I) in exon 7

encoding the RING1 domain were found in LOPD, while

two variants (V380L and M458L) in exon 10 and 12

encoding c-terminus, were observed in MOPD (Table 3).

RING1 recruits the E2 enzyme, but loss of the RING1

domain does not result in a loss of ligase activity (Chew

et al. 2011; Matsuda et al. 2006; Spratt et al. 2013). This

suggests that PARK2 is an E2-independent ubiquitin

ligase, a RING between RING (RBR) E3 ligase. RING2 in

Fig. 1 MLPA analysis results

of three patients with gene

dosage alteration
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the c-terminus of PARK2 is the true catalytic domain, and

structural study of RING2 has shown that it is required for

E2 recruitment, catalysis, and trans autoubiquitination.

Consistent with this, AAOs of patients with c-terminal

variant (V380L and M458L) were lowered when compared

to those of patients with RING1 variant in our study

(Table 3). Our data also suggest that the c-terminus of

PARK2 might play a more important role than the RING1

region, in PD pathogenesis.

In conclusion, we have for the first time, presented a

genetic analysis of the PARK2 gene in relation to Korean

MOPD and LOPD. A high frequency of PARK2 variants in

PD patients was found, suggesting that PARK2 variants

might be a genetic risk factor for PD in Korean

populations.
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