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Abstract A disease can be characterized by various at-

tributes such as genomic, epigenetic, and transcriptomic

features beyond physiological symptoms. The accumula-

tion of vast datasets allows us to investigate the relative

effectiveness of each omics data and their combinations

for in silico analysis of diseases. Here, we employed a

classification method with the well-established measure of

information gain for the computational analysis of the

effect of the aggregation of omics data, especially for the

task of in silico classification of tumor-normal samples for

bladder urothelial carcinoma and kidney renal papillary

cell carcinoma. We observed that the combination of

multi-omics data such as copy number variation, DNA

methylation, RNA-Seq, and somatic mutations have

beneficial effects. The quantitative analysis using infor-

mation gain and various measures for classification-per-

formance showed that the combination of multiple omics

data improved the performance in general. The qualitative

analysis referring previous researches also confirmed the

relevance of genes with higher information gain to target

diseases. Our results report that the combination of mul-

tiple omics data is beneficial and the information gain

which focuses on the distribution of attributes across

target domains could be useful as an indicator of the

effect of each omics data on tumor-normal sample

classification.

Keywords Multiomics data � Copy number variation �
DNA methylation � RNA-Seq � Somatic mutations � The
cancer genome atlas (TCGA)

Introduction

Most molecular studies on diseases have focused on just

one or two data types as an attempt to show more distinct

differences among target samples. However, recent efforts

to produce massive data such as the TCGA (The Cancer

Genome Atlas) project (Cancer Genome Atlas Research

Network 2008) allowed researchers to analyze compre-

hensive molecular landscapes of diseases. Now various

windows such as copy number variation (CNV), DNA

methylation, RNA-Seq or somatic mutations are available

to understand the molecular landscape of a target disease.

CNVs are structurally variant regions where copy

number differences have been observed between two or

more genomes (Feuk et al. 2006). CNV has received

considerable interests because it is one of the important

sources of genetic variation causing phenotype diversity

(Henrichsen et al. 2009). It is believed that CNVs can be a

predominant mechanism driving gene and genome evolu-

tion (Zhang et al. 2009). Due to its prevalence, CNVs could
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drive significant intraspecific genetic variation (Henrichsen

et al. 2009; She et al. 2008; Shlien and Malkin 2009). For

example, consistent increase in the frequency of rare CNVs

was reported among breast cancer cases (Pylkas et al.

2012). It was found that CNVs are specific to cancer types

and reproducible from cell to cell (Ni et al. 2013). Because

human populations show extensive polymorphism (both

insertions and deletions) in the number of copies of chro-

mosomal segments (Hastings et al. 2009), CNVs have the

potential for understanding underlying factors in human

diseases.

DNA methylation provides stability and diversity to the

cellular phenotype through chromatin marks affecting local

transcriptional potential. Methylation of DNA cytosine

residues at the carbon 5 position in CpG dinucleotides is a

common epigenetic mark in many eukaryotes (Laird 2010).

In particular, aberrant promoter hypermethylation associ-

ated with inappropriate gene silencing affects virtually

every step in tumor progression (Jones and Baylin 2002).

Especially, CpG island methylation plays an important role

in transcriptional regulation. Between 5 and 10 % of nor-

mally unmethylated CpG promoter islands become abnor-

mally methylated in various cancer genomes (Dawson and

Kouzarides 2012). In breast cancer transcriptionally re-

pressed genes become aberrantly methylated, and the af-

fected genes can be used to distinguish breast tumors of

epithelial and mesenchymal lineage (Sproul et al. 2011).

Four DNA methylation-based subgroups of colorectal

cancer were identified using cluster analyses (Hinoue et al.

2012). Significant promoter hypermethylation in at least

50 % of CpG sites in two genes, ABHD9 and HOXD3, was

found in tumors from recurring patients compared with

those without recurrence (Stott-Miller et al. 2014). Chan-

ges in DNA methylation patterns play a critical role in

development, differentiation and diseases such as multiple

sclerosis, diabetes, schizophrenia, aging, and multiple

forms of cancer (Bibikova et al. 2011).

RNA-Seq is an approach for transcriptome profiling

based on deep-sequencing technologies. RNA-Seq pro-

duces a genome-scale transcription map consisting of both

the transcriptional structure and/or level of expression for

each gene (Wang et al. 2009). Several RNA-Seq-based

technologies, such as improvements in transcription start

site mapping strand-specific measurements and small RNA

characterization, have allowed more complete observation

of RNA transcripts (Ozsolak and Milos 2011). The splic-

ing signatures of the subtypes of breast cancer were re-

vealed using RNA-Seq (Eswaran et al. 2013). RNA-Seq

was also utilized to define the subsets of pancreatic cir-

culating tumor cells (Ting et al. 2014). From the com-

prehensive landscape of the transcriptome profiles of

prostate cancer in the Chinese population, it was reported

that there exists wide diversity in gene fusions, long

noncoding RNAs, alternative splicing and somatic muta-

tions (Ren et al. 2012).

Although genetic mutations causing human disease can

be inherited from one’s parents, most mutations that cause

cancer as well as other diseases arise somatically (Poduri

et al. 2013; Stratton 2011). In addition to diseases, the

somatic mutation theory of aging posits that the accumu-

lation of mutations in the genetic material of somatic cells

as a function of time results in a decrease in cellular

function (Kennedy et al. 2012). With the widespread use of

next-generation sequencing technologies, high-throughput

mutation profiling identifies frequent somatic mutations in

cancers. It was observed that 14.4 % of gastric cancer

patients harboring mutations (Lee et al. 2012). The inte-

grated analysis based on 27 cancer types illustrated that the

variation in mutation frequency can be partly explained by

cancer types, and the mutation spectra also vary across

cancer types (Watson et al. 2013). The fact that examining

the patterns of somatic mutations is not enough to decipher

individual mutational signatures that are operative in each

sample (Alexandrov and Stratton 2014) indicates the need

for multiplatform-based approach for cancer analysis.

The TCGA project (Cancer Genome Atlas Research

Network 2008) offers various types of data for a number of

cancers. Currently, the analyzed data of 23 types of cancers

are available without limitation and nine types of cancers are

available under publication limitations. For each cancer

type, a user can download clinical data, imagesmicrosatellite

instability, DNA sequencing, miRNA sequencing, protein

expression, mRNA sequencing, total RNA sequencing ar-

ray-based expression, DNA methylation and copy number

data. The publication of the TCGA data enabled multiplat-

form-based analysis of various cancers.

There have been active researches to understand a dis-

ease from various dimensions. The Cancer Genome Atlas

Research Network produced a catalogue of molecular

aberrations causing ovarian cancer (Cancer Genome Atlas

Research Network 2011). The landscape of somatic ge-

nomic alterations of chromophobe renal cell carcinomas

was produced based on multidimensional and comprehen-

sive characterization of the molecular basis of a target

disease (Davis et al. 2014). Hoadley and colleagues iden-

tified 11 ‘‘integrated subtypes’’ from 12 tumor types, which

were consistent with the histological classification. Among

the cases, approximately 10 % were reclassified based on

the multiple assay platforms with significantly increased

accuracy in the prediction of clinical outcomes by the

newly defined integrated subtypes (Hoadley et al. 2014).

However, these researches did not consider the effective-

ness of each molecular assay platform and their combina-

tions for explaining the difference between tumor and

normal tissues. In this paper, we analyzed bladder urothe-

lial carcinoma (BLCA) and kidney renal papillary cell
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carcinoma (KIRP) from the viewpoint of the effectiveness

of aberrations in CNV, DNA methylation, RNASeq version

2 (RNASeqV2) which is similar to RNA-Seq in terms of

the employment of sequencing data but uses a different set

of algorithms for determining expression levels, and so-

matic mutations (SNPs, insertions, and deletions of DNA

bases) for in silico classification. We measured the effec-

tiveness in terms of quantitative and qualitative perfor-

mance by using information gain (Mitchell 1997), and

observed the difference in classification performance by

CNV, DNA methylation, RNASeqV2, somatic mutations,

and their combinations.

Materials and methods

Data preparation

In this study, we used samples generated by The Cancer

Genome Atlas (http://cancergenome.nih.gov/). Among the

various types of data, we selected CNV (SNP array), DNA

methylation, RNASeqV2, and somatic mutations. These

four data types represent characteristics of the selected

cancer types in terms of genomics, epigenomics, and

transcriptomics. Especially for this study, we selected

BLCA, and KIRP as target diseases, and downloaded 28

cases of the BLCA data (14 tissue samples for each tumor

and normal case) and 42 cases of the KIRP data (21 tissue

samples for each tumor and normal case). All of the 70

cases of samples were composed of observations on all of

CNV, DNA methylation, RNASeqV2, and somatic muta-

tions (Table 1). Our analyses were based on relevant genes

with the above data types, which were identified by using

the following pre-processing steps. Here we followed ap-

proaches available in literature.

The TCGA consortium performed CNV calling and

provided segment mean values for all detected CNVs.

Especially the segment mean value is computed as

log2ðobserved intensity=reference intensityÞ and repre-

sents the extent of copy number change. We regarded

CNVs with segment mean value of greater than 0.2 as

amplifications and less than -0.2 as deletions, which was

decided based on a previous study (Laddha et al. 2014).

To increase the likelihood of identifying differentially

methylated genes, we only considered genes that met the

following criteria. We first extracted a set of differentially

methylated CpG sites (DMC) in a promoter region (size of

1.5 Kbp) of each gene, and then searched for differentially

methylated genes based on the state of their DMCs. The

degree of methylation of each probe (target CpG site) is

represented using a b value. The b value is a continuous

variable between 0 and 1, with b values approaching 1 (or

0) indicating complete methylation (or non-methylation)

(Kim et al. 2012). This b value is used to determine a

hypermethylated or hypomethylated DMC. In the case of

normal tissues, the b values of C0.7 and B0.3 were used as

a threshold for hyper and hypomethylation respectively. In

the case of tumor tissue, high methylation values were

rarely observed due to heterogeneous mix of cell types in

each sample. Thus b value of 0.3 was used as a threshold

for distinguishing hyper or hypomethylated states (Sproul

et al. 2011). Finally, at least three quarters of multiple

DMCs in the same promoter region should have the same

direction of methylation and at least one DMC have at least

0.35 mean methylation difference between tumor and

normal phenotypes to determine aberrant DNA methyla-

tion of a gene.

In order to find differentially expressed (DE) genes us-

ing RNASeqV2 data, we employed the R package EBSeq

(Leng et al. 2013), which can compute the fold change

(FC) value. We classified genes as DE genes when

|FC|[ 2. The DE genes were further partitioned into up- or

down-regulated genes based on the FC values (FC[ 2: up-

regulated, FC\-2: down-regulated) (Guo et al. 2013).

From the somatic mutation data, we collected genes that

contain single nucleotide polymorphisms (SNPs), inser-

tions, and/or deletions.

The above data is summarized in Table 1. There exist

distinct difference between normal samples and tumor

samples from both of the BLCA and KIPP data sets. In

terms of the CNV data, tumor samples from the BLCA data

set have more than 17.73 times and 4.58 times amplifica-

tions and deletions compared to normal samples. In con-

trast, the KIRP data set shows smaller differences (7.69 and

2.21 times, respectively). On average, 76.71 genes are

hypermethylated in the case of tumor samples in the BLCA

data set. Although more genes in normal samples from the

BLCA data set is hypermethylated than genes in tumor

samples of the KIRP data set, 13 times as many genes were

hypermethyalted in tumor samples compared to normal

samples in the case of the KIRP data set. In the RNASeqV2

data, tumor samples show fewer up-regulated genes and

more down-regulated genes in both of the BLCA and KIRP

data sets. The difference is less distinct in the somatic

mutation data. However it is clear that tumor samples show

more SNPs, insertions, and deletions per samples in both of

the BLCA and KIRP data sets.

Information gain and decision tree

A gene with a specific state of CNV, DNA methylation,

RNASeqV2, or somatic mutations could be regarded as an

attribute capable of explaining associated tumor or normal

tissue samples. A proper quantitative measure of the

worth of an attribute is information gain (Mitchell 1997),

which can be used as an indicator for the quantitative
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importance of the gene for the tumor or normal tissue

samples. Information gain is defined based on the Shan-

non’s entropy formula if the target domain can take on c

different classes,

EntropyðSÞ �
Xc

i¼1

�pi log2 pi ð1Þ

where S is the set of samples (the BLCA or KIRP data sets

in our case), pi is the proportion of S belonging to class i

(normal or tumor in our case). Entropy characterizes the

purity of a collection of samples. Entropy is interpreted as

the minimum number of bits of information needed to

encode the classification of an arbitrary member of S. Thus,

one can quantify the effectiveness of an attribute based on

the expected reduction in entropy and information gain is a

measure for the expected reduction in entropy. Information

gain, Gain(S, A) of attribute A relative to a set of samples S

is defined as,

Gain S;Að Þ � Entropy Sð Þ �
X

v2ValuesðAÞ

Svj j
S

EntorpyðSvÞ

ð2Þ

where ValuesðAÞ is the set of all possible values for at-

tribute A, and Sv is the subset of S for which attribute A has

value v. In our case, A denotes genes and ValuesðAÞ can

have different values based on which omic data type is in

consideration. By using the pre-processing steps described

in the previous section, we defined the following values for

each different omics data type:

• CNV: amplification, deletion, and non-variant

• DNA methylation: hypermethylated, hypomethylated,

and non-methylated

• RNASeqV2: up-regulated, down-regulated, and normal

• Somatic mutations: SNPs, insertions, deletions, and no

mutation

For example, if we are testing the effect of CNV, the

values of A can be ‘‘amplification’’, ‘‘deletion’’, and ‘‘non-

variant.’’ If we are interested in the joint effect of CNV and

RNASeqV2, nine different values are possible from the

three values of each CNV and RNASeqV2.

Because information gain is the measure of the expected

entropy-reduction of an attribute A, information gain is

utilized to build a decision tree (Mitchell 1997; Quinlan

1993). The decision tree is composed of nodes specifying a

test of an attribute, and an instance is classified by sorting

down the decision tree from the root to some leaf nodes.

Information gain is used to select the best attribute for

current decision node. In this paper, we utilized the im-

plementation of a decision tree in WEKA (Hall et al. 2009),

a public data mining software, for measuring the contri-

bution of CNV, DNA methylation, RNASeqV2, somatic

mutations, and their combinations for distinguishing tu-

mor-normal tissue samples.

Performance measure

To evaluate the effect of omic data and their combinations

on tumor and normal tissue classification, we used two

widely used measures, precision and recall, in the field of

Table 1 Data summary BLCAa KIRPb

Normal Tumor Normal Tumor

Number of samples 14 14 21 21

Total size of data (MB) 657.67 658.84 987.81 984.39

CNV

Averaged number of amplifications per sample 3.57 63.29 1.95 15.00

Averaged number of deletions per sample 14.57 66.79 17.14 37.86

DNA methylation

Averaged number of hypermethylated genes per sample 16.50 76.71 0.67 9.05

Averaged number of hypomethylated genes per sample 40.71 9.93 4.81 1.00

RNASeqV2

Averaged number of up-expressed genes per sample 670.71 431.36 790.57 421.24

Averaged number of down-expressed genes per sample 428.64 667.71 411.43 782.43

Somatic mutations

Averaged number of SNPs per sample 265.93 474.29 67.38 75.52

Averaged number of insertions per sample 2.86 5.36 2.90 3.14

Averaged number of deletions per sample 6.50 11.86 7.90 8.86

a Bladder urothelial carcinoma
b Kidney renal papillary cell carcinoma
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data mining. In terms of true positive (TP), false negative

(FN), and false positive (FP), precision and recall are de-

fined as:

Precision ¼ TP

TPþ FP
ð3Þ

Recall ¼ TP

TPþ FN
ð4Þ

Results and discussion

Information gain and classification performance

Information theory-based approach was already introduced

for transcriptomes, where gene diversity, the specialization

of transcriptomes and gene specificity were defined using

Shannon’s entropy (Martinez and Reyes-Valdes 2008). In

this paper, we adopted similar approach to analyze the

effectiveness of CNV, DNA methylation, RNASeqV2,

somatic mutations and their combinations for explaining

tumor-normal tissues. Specifically, for two target diseases,

BLCA, and KIRP, we collected total 70 samples containing

CNV, DNA methylation, RNASeqV2, and somatic muta-

tion data with information whether each sample is normal

or tumor (‘‘Materials and methods’’). We created total ten

different evaluation cases based on the number and type of

used omics data: CNV only (C), DNA methylation only

(M), RNASeqV2 only (R), somatic mutations only (S),

CNV and DNA methylation (CM), CNV and RNASeqV2

(CR), CNV and somatic mutations (CS), DNA methylation

and RNASeqV2 (MR), DNA methylation and somatic

mutations (MS), and RNASeqV2 and somatic mutations

(RS). For each different evaluation case, we computed the

information gain of each gene and re-classified the samples

based on a decision tree by only using the assigned omic

data, and the classification accuracy was measured by using

precision and recall (‘‘Materials and methods’’). Here the

combinations with more than two omics data types could

not be used because we could not find genes that contain

more than two omic data signatures due to our stringent

rules (‘‘Materials and methods’’). We used the average of

the information gain across all genes as the information

gain of each evaluation case.

Table 2 summarizes the important findings in this study.

In general the aggregation of omics data clearly increased

information gain compared with results from single omics

data. For example, in the case of the BLCA data set, the

information gain of the combinations of two omics data

types, except for MS, was higher than or equal to each one

of single omics data. A similar pattern was also observed in

the KIRP data set. In addition, the aggregation of multiple

omics data is beneficial especially for omics data with

lower discriminating performance. In the BLCA data set,

the precision and recall of CR, CS, MR, MS, and RS are

better than those values of R and S only cases. The KIRP

data set also showed a similar pattern. For every measure,

the aggregation of multiple omics data resulted in better

performances in Table 2, which confirms the benefits of the

aggregation of multiple omics data. Figure 1 reports cor-

relation between precision/recall and the average infor-

mation gain of each evaluation cases (‘‘Materials and

methods’’). In general, the precision/recall and the infor-

mation gain have positive correlations in both of the BLCA

and KIRP data sets. For instance, the Pearson correlation

coefficients between precision and information gain were

0.62 and 0.71 for BLCA and KIRP respectively, and 0.65

and 0.74 for BLCA and KIRP respectively in the com-

parison of recall and information gain. Overall these results

confirmed the suitability of the considered platforms or

their combinations for in silico classification of tumor and

normal tissue samples.

Effect of multi-omics data combinations

The information gain-based multi-omics data analysis

produced mixed results. As described in the previous sec-

tion, the aggregation of two omics data resulted in higher

information gain in almost all the cases for both of the

BLCA and KIRP data sets. However, the improvement in

precision/recall was less clear although all average per-

formance of multi-omics data sets outperformed the per-

formance of single-omics datasets. In terms of precision/

recall, the combinations of multiple-omics datasets pro-

duced improvement for the omics data with lower infor-

mation gain. The most striking example was somatic

mutations. The precision/recall performance of somatic

mutations were 0.14/0.14 and 0.18/0.19 for the BLCA and

KIRP datasets, respectively. These low precision/recall

were improved to 0.91/0.89 and 0.93/0.93 for BLCA and

KIRP respectively through the combination with DNA

methylation. The low information gain due to the lack of

discriminating process to identify significantly mutated

genes was overcome with the combination of other omics-

data. For somatic mutations, the improvement in precision/

recall were also observed in the cases of CS and RS in both

of BLCA and KIRP. For the remaining cases, the combi-

nation of multiple omics data tends to be beneficial for the

omics data with lower information gain and not very useful

for the omics data with higher information gain in general.

The example cases are CM, MR, and MS for BLCA, and

CM, CS, MR, MS and RS for KIRP. There were cases

where the combination of multiple omics data produced

better precision/recall than each single-omics data set. In
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BLCA, the combinations of CS and RS were beneficial for

each one of single omics data. In KIRP, CR combinations

produced better precision/recall than single omics data sets.

Basically, the information gain represents the imbalance in

the distribution of attributes across samples. Therefore, the

pairing with an attribute with higher information gain is

beneficial only for an attribute with lower information gain.

This is because the pairing induces more skewed distri-

bution of attributes. For the same reason, the pairing is not

beneficial for an attribute with higher information gain.

An important benefit of the multi-omics data-based ap-

proach is that it can prevent a ‘‘large’’ platform (with a

large number of features) from dominating a solution

(Hoadley et al. 2014). Information gain-based approach

produced similar effect. An omics-category with lower

information gain suffered from the too balanced distribu-

tion of attributes among tumor-normal tissue samples. The

aggregation with the imbalanced attribute such as DNA

methylation induced in more skewed distributions and re-

sulted the improvements in the in silico classification-

performance.

Role of genes with higher information gain

For the qualitative analysis of the genes with higher in-

formation gain, we investigated the role of genes with

higher information gain in the development of target

diseases or tumorigenesis in general. For BLCA, we se-

lected 44 genes from the ten omics data-combinations. We

investigated 36 genes for KIRP from eight omics data-

combinations. Those selected genes were first checked

using the CaGe (Park et al. 2012) and GeneCards (http://

www.genecards.org) database (Rebhan et al. 1997). A gene

covered by one of two databases is regarded as target

diseases or tumorigenesis-related genes, and its role was

summarized. Genes not covered by two databases were

also checked through literature searches. The list of rele-

vant genes is shown in Table 3. We also investigated

pathways related with the higher information gain genes by

using the NCI-Nature Pathway Interaction Database

(Schaefer et al. 2009). The results are listed in supple-

mentary Table 1.

In the case of BLCA, 32 genes were relevant to tu-

morigenesis in general. Among the relevant genes, SLC6A6

was associated with higher information gain in terms of

CNV. It was found that SLC6A6 is important for the

maintenance of side population cells and their cancer stem

cell properties. It was suggested that SLC6A6 signaling is a

significant player in the survival and maintenance of cancer

stem cell population and its capacity for tumor initiation,

starvation tolerance and multidrug resistance (Yasunaga

and Matsumura 2014). ZNF154 was another informative

gene in terms of DNA methylation. ZNF154 encodes a

protein belonging to the zinc finger Kruppel family of

Table 2 Information gain and

classification accuracy
BLCAa KIRPb

IG-mean (IG-SD) Precision Recall IG-mean (IG-SD) Precision Recall

C 0.20 (0.09) 0.79 0.75 0.16 (0.08) 0.87 0.86

M 0.52 (0.29) 1.00 1.00 0.60 (0.22) 1.00 1.00

R 0.43 (0.26) 0.71 0.68 0.14 (0.12) 0.65 0.64

S 0.00 (0.01) 0.14 0.14 0.00 (0.00) 0.18 0.19

CM 0.63 (0.25) 0.79 0.79 0.67 (0.18) 0.91 0.91

CR 0.54 (0.22) 0.73 0.71 0.28 (0.12) 0.89 0.88

CS 0.20 (0.09) 0.81 0.79 0.17 (0.09) 0.86 0.81

MR 0.82 (0.20) 0.82 0.82 0.80 (0.13) 0.96 0.95

MS 0.51 (0.25) 0.91 0.89 0.60 (0.11) 0.93 0.93

RS 0.44 (0.26) 0.82 0.82 0.16 (0.13) 0.60 0.60

Average performance

One-platform 0.19 (0.09) 0.75 0.71 0.16 (0.08) 0.84 0.83

Multi-omics 0.34 (0.15) 0.79 0.76 0.25 (0.11) 0.87 0.85

In the first column ‘‘C’’, ‘‘M’’, ‘‘R’’, ‘‘S’’, ‘‘CM’’, ‘‘CR’’, ‘‘CS’’, ‘‘MR’’, ‘‘MS’’, and ‘‘RS’’ mean ‘‘CNV

only’’, ‘‘DNA methylation only’’, ‘‘RNASeqV2 only’’, ‘‘somatic mutations only’’, ‘‘CNV and DNA

methylation’’, ‘‘CNV and RNASeqV2’’, ‘‘CNV and somatic mutations’’, ‘‘DNA methylation and RNA-

SeqV2’’, ‘‘DNA methylation and somatic mutations’’, and ‘‘RNASeqV2 and somatic mutations’’,

respectively

In the second row, ‘‘IG-mean’’ and ‘‘IG-SD’’ denote ‘‘Information gain-mean’’ and ‘‘Information gain-

standard deviation’’, respectively
a Bladder urothelial carcinoma
b Kidney renal papillary cell carcinoma
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transcriptional regulators, whose members are deemed to

function in normal/abnormal cell growth and differen-

tiation. The methylation of ZNF154 was validated as a

tumor marker gene (Reinert et al. 2011) and it was shown

that it is possible to detect a concomitant tumor recurrence

with a single marker ZNF154 (Reinert et al. 2012). RBP7

was highly informative in terms of DNA methylation.

RBP7 (also named CRBP-IV) is the member of the cellular

retinal-binding protein family and it was shown that tran-

scription silencing of this gene by aberrant methylation is

involved in the tumorigenesis of human cancers (Kwong

et al. 2005). The possibility was raised that the mutation of

RBP7 impaired retinoid’s function in breast cancer cells

where tamoxifen-induced ZR-75-1 cell death requires in-

tact retinoid signaling (Zarubin et al. 2005). PI16 was as-

sociated with higher information gain in the case of

RNASeqV2 and the combination of RNASeqV2 and so-

matic mutations. It was suggested that PI16 would be a

tumor suppressor and a metastasis enhancer because the

cell lines ectopically expressing PI16 display a net increase

in the rate of secondary lesion (Crawford et al. 2008).

MTUS1 was selected considering the combination of CNV

Fig. 1 Correlation between information gain and classification accuracy
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and somatic mutations. A hypothesis was suggested that

MTUS1 is involved in the regulation of tumor progression

in various malignant diseases including human colon car-

cinoma. MTUS1 is down-regulated in undifferentiated tu-

mor cell lines and inhibits tumor cell proliferation after

recombinant over-expression (Zuern et al. 2010).

In the case of KIRP, 22 genes were regarded as relevant

ones. For example, JDP2 reported higher information gain

in DNA methylation. The role of JDP2 is prominent in the

regulation of the differentiation and proliferation of cells.

The overexpression of JDP2 inhibits the retinoic acid-de-

pendent differentiation of embryonic carcinoma F9 cells

(Jin et al. 2002). In mice, the overexpression of JDP2 in-

duces arrest of the cell cycle. The absence of JDP2 de-

creases the expression of both p16Ink4a and p19Arf, which

inhibits progression of the cell cycle. It is supposed that

JDP2 not only inhibits the transformation of cells but also

plays a role in the induction senescence. These two func-

tions imply that JDP2 might act as an inhibitor of tumor

formation (Nakade et al. 2009). TMEM207 achieved dis-

tinctively higher information gain considering RNASeqV2.

TMEM207 facilitates tumor invasion possibly through

binding to WWOX (WW domain-containing oxidoreduc-

tase), a molecule plays an important role in the regulation of

a wide variety of cellular functions such as protein degra-

dation, transcription, and RNA splicing. Human TMEM207

was found to be overexpressed in many aggressive gastric

signet-ring cell carcinomas and TMEM207 expression is

relatively restricted to the kidney physiologically (Kito

et al. 2014). VCP was associated with higher information

gain considering somatic mutations. VCP regulates various

cellular processes such as chromatin decondensation, ho-

motypic membrane fusion, and ubiquitin-dependent protein

degradation by the proteasome. Interference of proteasome

inhibitors with the ubiquitin proteasome pathway leads to

the accumulation of proteins engaged in cell cycle pro-

gression, which ultimately put a halt to cancer cell division

and induce apoptosis (Rastogi and Mishra 2012; Tresse

et al. 2010). BCL11B was a highly informative gene in the

domain of somatic mutations. The BCL11B gene is re-

sponsible for the regulation of the apoptotic process and cell

proliferation. BCL11B has recently been identified as a tu-

mor suppressor gene. In particular, BCL11B is known as a

haplo-insufficient tumor suppressor, the absence of

BCL11B resulted in vulnerability to DNA replication stress

and damage, and down-regulation of BCL11B gene by

siRNA (small interfering RNA) led to growth inhibition and

apoptosis in a human T-ALL cell line (Huang et al. 2012).

EPO was associated with higher information gain consid-

ering the combination of CNV and RNVSeqV2. Tumor

necrosis factor-alpha (TNF-alpha) selectively kills tumor

cells in vitro and in vivo. It was shown that EPO could be

Table 3 The list of genes with higher information gain and their relevance to tumorigenesis in general

Target cancer Omics combination Gene name

BLCAa CNV only SLC6A6, DEFB109P1, DEFB109P1B, DEFB108P4, DEFB109

DNA methylation only CD8A, ZNF154, RBP7, MIR663A, ZSCAN18

RNASeqV2 only CLEC3B, PI16, PYGM, ADH1B, XPNPEP2

Somatic mutations only KIAA0100, ARID1A, MUC16, ELF3, ANKRD36

CNV and DNA methylation CD8A, ZNF154, CMTM2, BOLL, DRD4

CNV and RNASeqV2 PCP4, MYRIP, FAM107A, SORCS1, VIT

CNV and somatic mutations MTUS1, RAB11FIP1, SLC7A2, KCNU1, ERICH1-AS1

DNA methylation and RNASeqV2 MMP23B, CDO1, ZNF154, ZIC5, NKAPL

DNA methylation and somatic mutations PCDHA6, CMTM2, PRDM14, FOXG1, NKAPL

RNASeqV2 and somatic mutations KRT24, PI16, ITIH5, ZNF695, MYOC

KIRPb CNV only SDK1, AC004160.4, AC004538.3, THSD7A, AC073109.2

DNA methylation only JDP2, IFITM10, KLHDC7B, BNC1, COL9A2

RNASeqV2 only TMEM207, CALB1, TYRP1, MOGAT2, MT1G

Somatic mutations only VCP, BCL11B, LINC00971, AC004381.6, CIDECP

CNV and DNA methylation COL9A2, IFITM10, BNC1, CA3, DRD4

CNV and RNASeqV2 AQP2, AKR1B10, PTPRO, EPO, WEE2

CNV and somatic mutations TTYH3, ACTB, HEATR2, PMS2CL, C7orf26

RNASeqV2 and somatic mutations AQP2, CDH10, SLC7A13, UPP2, SLC12A3

Bold face genes denote carcinogenesis-relevant genes verified through literature search

For KIRP, we ignored two omics-combinations where insufficient number of data instances was produced
a Bladder urothelial carcinoma
b Kidney renal papillary cell carcinoma
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used to prevent TNF-alpha-induced erythroid suppression

(Johnson et al. 1990) (Supplementary Material for the de-

tails of other relevant genes).

Information gain-based analysis of putative

significantly mutated genes

Genomic variant causing ‘gain of function’ or ‘loss of

function’ plays a key role in cancer diagnostics and tar-

geted therapy (Krishnan and Ng 2012). Therefore, the

identification of potential cancer drivers is another role of

cancer genomics. The Cancer Genome Atlas Research

Network analyzed urothelial bladder carcinoma. As a re-

sult, 29 significantly mutated genes and 20 genes with

statistically significant focal copy number changes were

identified (The Cancer Genome Atlas Research Network

2014). For 29 significantly mutated genes identified in (The

Cancer Genome Atlas Research Network 2014), we col-

lected their information gain from our experiment results

and found that the average information gain was 0.254. The

maximum information gain is 0.705 of RHOB and the

minimum information gain is 0.0367 of FOXA1. Because

information gain is quantified by the distribution of at-

tributes in tumor and normal tissue samples, if an attribute

is evenly observed in tumor and normal tissue samples then

the attribute would have low information gain. As a result,

the 29 identified genes reported relatively low average in-

formation gain with high standard deviation of 0.146.

Among 20 genes with statistically significant focal copy

number changes, the average information gain is 0.294.

The maximum information gain is 0.610 of CCNE1 and the

minimum information gain is 0.0728 of CCND1. The most

differentially regulated 48 genes in renal cell carcinoma

were identified (Beleut et al. 2012). For the identified 48

genes, we observed information gain of genes excluding

genes no longer serviced by NCBI (http://www.ncbi.nlm.

nih.gov/). For the remaining genes, the average information

gain is 0.175. The maximum information gain is 0.759 of

PTPRO and the minimum information gain is 0.0198 of

SMARCA4. The complete list of significant genes and their

corresponding information gain values are provided in

Supplementary Tables 2 and 3.

Conclusions

In this paper, we investigated the potential of information

gain for analysis of biomedical datasets generated from

multiple platforms. The quantitative analysis based on the

concept of information gain showed that the utilization of

multiple-omics data is beneficial for in silico classification

of tumor-normal instances. Furthermore, the experimental

results reported that the classification power of each omics

data and their combinations are very distinct. The

qualitative analysis based on previous researches also

verified the usefulness of the concept of information gain.

We verified the relevance of genes with higher information

gain to tumorigenesis through literature search.

However, this research also revealed the weakness of the

information gain-based approach. Basically, the concept of

information gain employed in this research utilizes the

distribution of attributes across classes or categories of a

target disease. As a result, our research was able to find

genes whose expression pattern is biased to tumor or nor-

mal samples but it was unable to find ‘‘significantly’’ mu-

tated genes as in (Beleut et al. 2012; The Cancer Genome

Atlas Research Network 2014). This weakness was ex-

pressed during quantitative analysis. Although, it was

confirmed that the majority of genes with higher informa-

tion gain are tumorigenesis-relevant genes, the computed

information gain of significantly mutated genes or genes

with significant focal copy numbers reported relatively

lower information gain. These findings suggest a number of

useful guides for future researches. Firstly, the information

gain-based approach would be useful for limiting candi-

dates for detailed analysis. For example, DNA methylation

is superior to other omics data for in silico classification of

tumor-normal samples. Therefore, DNA methylation fo-

cused approach would produce tumor-intensive expressed

genes. Secondly, a novel method is needed to reflect prior

knowledge. Current approach is unable to recommend

significantly mutated genes without incorporating prior

knowledge. Finally, a novel approach is needed to utilize

the unbalanced composition of biomedical data sets. For

the same target cancer, the omics composition of each data

instance from TCGA is very different. As a result, data

instances lacking observations on the target omics data

should be ignored in this study. In future works, we will

focus on developing a novel method capable of utilizing

data instances with different composition of data sources.
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