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Abstract Although there are many applications available

for the analysis of chromatin immunoprecipitation with

massively parallel DNA sequencing (ChIP-seq), users need

some knowledge about the installation, alignment, and

peak calling procedures prior to the analysis. Here, we

present an easy-to-use application for ChIP-seq analysis

called AutoChIP. With AutoChIP, installation of necessary

programs, alignment of unmapped reads to a reference

genome, and identification of genome-wide binding sites

can be done in a single step with a large set of ChIP-seq

data. Evaluation of the cocktail algorithm implemented in

AutoChIP showed that it outperformed a single ChIP-seq

tool in terms of the ratio of motif occurrences and the

average height of normalized read density over the iden-

tified peaks. In addition, annotation of the identified peaks

with the known gene and repeat elements information

provides a comprehensive picture of the genome-wide

binding sites of given proteins. Overall, AutoChIP provides

a comprehensive platform to analyze a large set of ChIP-

seq data in one step.
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Introduction

Recent advances in genomic DNA sequencing, mainly

driven by the next-generation sequencing (NGS) technique,

have revolutionized ways to examine molecular events

inside cells in several aspects. For example, chromatin

immunoprecipitation with massively parallel DNA

sequencing (ChIP-seq) generates molecular maps that

pinpoint genome-wide binding positions of various pro-

teins in many different cell types (Mouse et al. 2012; Kang

et al. 2013). With these maps, researchers can distinguish

target and non-target genes of transcription factors. Whole

transcriptome shotgun sequencing (RNA-seq) can estimate

the abundance of whole transcripts including protein-cod-

ing genes, non-coding RNAs, and small RNAs (Feuermann

et al. 2013; Yamaji et al. 2013). As the number of NGS-

based datasets increases, many tools have been developed

to help turn sequenced short DNA fragments into biolog-

ically meaningful information. According to statistics from

the OMICtools website (http://omictools.com/) (Henry

et al. 2014), more than 2,000 tools are currently available

for the analysis of NGS-based data. In case of ChIP-seq,

several thousand datasets have been deposited in NCBIs

gene expression omnibus (GEO) (http://www.ncbi.nlm.nih.

gov/geo/) (Barrett et al. 2013).

In the era of NGS, however, there is no gold standard for

analyzing a given NGS data set, although most of programs

provide some statistics-based output. For instance, several
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studies have pointed out that the number of binding sites of

a given ChIP-seq data set can vary depending on the

algorithms and the parameters used for the analysis (Kang

et al. 2013; Adomas et al. 2014). In addition, setting up a

computer for the analysis can be challenging for novice

users. Therefore, it is very difficult for users to select

appropriate applications and establish a computing envi-

ronment for the analysis. To address this issue, the present

authors have developed AutoChIP, an automated analysis

pipeline that can analyze a large number of ChIP-seq

datasets simultaneously. Based on a graphical user inter-

face (GUI), it installs required programs from websites

automatically, generates an appropriate genome index for

alignment and then processes several types of input such as

FASTQ (unmapped reads) and BAM (mapped reads) files

sequentially. To produces a list of high-confidence binding

sites, which are defined as the peaks detected by all the

algorithms as a cocktail strategy, AutoChIP utilizes the

following popular peak calling programs; model-based

analysis of ChIP-seq (MACS), hypergeometric optimiza-

tion of motif enrichment (HOMER), and PeakRanger

(Zhang et al. 2008; Heinz et al. 2010; Feng et al. 2011).

Our evaluation demonstrated that the cocktail approach

implemented in AutoChIP improves overall performance

of peak finding in terms of the ratio of motif occurrences

and the average density of ChIPed reads.

Materials and Methods

Development environment

AutoChIP was developed in Java programming language

(JDK1.7) using Eclipse (Kepler version Java EE IDE). The

GUI was made by using Swing and Windowbuilder. Since

most applications implemented in AutoChIP are solely

based on the Linux operating system, it can only run on a

Linux operating system such as Ubuntu and Fedora.

AutoChIP will download and install the following tools

automatically: Samtools, twoBitToFa, and BEDTools for

the manipulation of files and output (Li et al. 2009; Quinlan

and Hall 2010); Bowtie2 and Subread for alignment

(Langmead and Salzberg 2012; Liao et al. 2013); and

MACS (version 1.4), HOMER, and PeakRanger for peak

calling (Zhang et al. 2008; Heinz et al. 2010; Feng et al.

2011). To identify genome-wide binding sites, it runs all

three peak calling programs and intersects the outputs.

ChIP-seq data sets used in the study

To assess the performance of AutoChIP, the following

mouse and human ChIP-seq data were downloaded and

analyzed by MACS, HOMER, PeakRanger, and AutoChIP;

mouse STAT5A (GSM1005189) and STAT5B (GSM100

5190) and their corresponding input (GSM1005193) in

mammary gland tissues; human GATA3 (GSM1241752)

and its corresponding input (GSM1241753) in MCF7 cell

line; and human GATA3 (GSM1241754) and its corre-

sponding input (GSM1241755) in T47D cell line (Adomas

et al. 2014; Kang et al. 2014).

Motif analysis and peak annotation

To predict over-represented motifs in peaks, MEME-ChIP

(http://meme.nbcr.net/meme/cgi-bin/meme-chip.cgi) was

used with the default setting (Machanick and Bailey 2011).

The absence or presence of the predicted motifs within a

200 bp flanking sequence was assessed by the FIMO tool

(http://meme.nbcr.net/meme/cgi-bin/fimo.cgi) (Grant et al.

2011). Distributions of peaks were estimated according to

gene and repetitive element annotation (mm9 for mouse

and hg19 for human) using HOMER.

Program availability

AutoChIP can be downloaded at https://sites.google.com/

site/kangklab/.

Results and Discussion

AutoChIP workflow

AutoChIP automatically installs required programs upon its

first run. For the analysis, it accepts FASTQ (unmapped

reads) and BAM (mapped reads) files as inputs and per-

forms one of the following analyses: Indexing, Alignment,

or Align-ChIP (Fig. 1). In the indexing tab, users can

generate a genome index for alignment using either Bow-

tie2 or Subread (Fig. 1a) (Langmead and Salzberg 2012;

Liao et al. 2013). This is a necessary step when input files

are provided in the FASTQ format and there is no existing

genome index. Human, mouse, and drosophila genomes

can be downloaded from the designated AutoChIP server.

In the alignment tab, FASTQ files can be aligned to an

indexed genome (Fig. 1b). Multiple files can be processed

sequentially. The Align-ChIP tab provides a fully auto-

mated mode for the ChIP-seq analysis when FASTQ files

and an indexed genome are provided (Fig. 1c). The main

algorithm to detect binding sites of proteins of interest is a

cocktail approach that generates a list of high-confidence

peaks by intersecting the outputs from MACS, HOMER,

and PeakRanger (Zhang et al. 2008; Heinz et al. 2010;

Feng et al. 2011). We chose those peak calling tools due to

the following reasons: (1) MACS is one of the most widely

used peak calling programs for ChIP-seq analysis; (2)
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HOMER is a versatile tool that can analyze different types

of NGS-based data including ChIP-seq, RNA-seq, and

MNase-seq; and (3) PeakRanger was used to process a

large set of ChIP-seq data produced by the modENCODE

consortium. Additionally, AutoChIP can annotate the

identified peaks by means of HOMER with appropriate

gene and repetitive element information. All the functions

are provided in GUI mode; therefore, there is no need for

users to learn how to install and execute each program.

Inconsistency between peak calling applications

To identify genome-wide binding sites from given ChIP-

seq datasets, available peak calling programs including

Fig. 1 Three main functions of

AutoChIP. a If mapped files

(BAM) were not provided, input

files (FASTQ) should be aligned

to a reference genome before

peak calling. The genome

should be indexed prior to the

alignment. To generate an index

for the given genome, the

Indexing tab provides a function

that generates an index of the

genome by using either Bowtie2

(default) or Subread. The

following reference genomes

can be automatically

downloaded from https://sites.

google.com/site/kangklab/:

hg19 (Human), mm9 and mm10

(Mouse), and dm3 (Drosophila).

b The alignment tab provides a

function that can align unmap-

ped reads (FASTQ) to the

indexed genome. Multiple files

can be processed sequentially. If

an indexed genome and mapped

files (BAM) were provided, the

analysis of peak calling, and

annotation of the identified

peaks can be conducted. c If an

indexed genome and unmapped

files (FASTQ) were provided,

the alignment, peak calling, and

annotation steps can be con-

ducted sequentially in the

Align-ChIP tab
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MACS, HOMER, and PeakRanger use different strategies

despite being based on statistical methods such as false

discovery rate (FDR) (Zhang et al. 2008; Heinz et al. 2010;

Feng et al. 2011). Due to the differences in strategy, several

studies reported that the number of genome-wide binding

sites identified can vary by up to several thousand (Malone

et al. 2011; Kang et al. 2013). We confirmed the incon-

sistency by reanalyzing available mouse STAT5A

(GSE40930, mammary gland tissues) (Kang et al. 2014)

and human GATA3 (GSE51274, MCF7 and T47D breast

cancer cell lines) (Adomas et al. 2014) ChIP-seq data with

MACS, HOMER, and PeakRanger. Up to several thousand
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Fig. 2 Reanalysis of published STAT5 and GATA3 ChIP-seq with

MACS, HOMER, and PeakRanger. Different numbers of STAT5A,

STAT5B and GATA3 (MCF7 and T47D cell lines) binding sites were

identified by MACS, HOMER, and PeakRanger. The published data

were downloaded from the Gene Expression Omnibus (GEO acces-

sion number GSE40930 and GSE51274) (Adomas et al. 2014; Kang

et al. 2014)
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Fig. 3 Comparison of

AutoChIP to MACS, HOMER,

and PeakRanger. a Top motifs

(the lowest E-value) predicted

in the common peaks of the

given ChIP-seq data by MEME-

ChIP are shown (Machanick

and Bailey 2011). These were

used for further analysis. b The

percentage of the common

peaks containing at least one

motif was calculated with

different p value thresholds for

detecting motifs in the peaks.

c The percentages of the motifs

in the peaks identified by

HOMER, MACS, PeakRanger,

and AutoChIP were shown as

bar graphs. d The average of

normalized read density (reads

per million per nucleotide,

RPM) on the AutoChIP and

marginal peaks is shown. The

marginal peaks were defined as

the peaks identified that were

unique to a single program
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peaks were differentially identified between peak calling

programs (Fig. 2). For example, 33495 STAT5A binding

sites were identified by all three tools, while 8987, 2891,

and 1703 STAT5A peaks were uniquely detected by

MACS, HOMER, and PeakRanger, respectively. Similarly,

3751, 6031, and 429 GATA3 peaks were identified in

MCF7 cells only by each respective program. Totals of

33495 STAT5A, 9486 STAT5B, 18296 GATA3 (MCF7),

and 12513 GATA3 (T47D) peaks were identified by all

three applications. The results demonstrated that current

ChIP-seq analysis tools still have room for improvement.

Performance evaluation of the cocktail approach

implemented in AutoChIP

AutoChIP takes advantage of each algorithm by intersecting

their outputs and provides a list of high-confidence peaks,

which are defined as the peaks identified by all the algo-

rithms, as a cocktail approach. To assess the cocktail

approach, motif frequency (absence or presence of a given

motif per peak) was calculated. Since DNA binding proteins

recognize specific DNA sequences (motifs), STAT5 and

GATA3 binding motifs were first predicted by using MEME-

ChIP, with the peaks identified by AutoChIP (Machanick

and Bailey 2011). The known STAT5 and GATA3 motifs

were significantly identified (Fig. 3a). With the top motifs

showing the lowest E-value, motif frequency

(p value \ 0.0001 for detecting motifs) in T47D cells was

estimated using the FIMO tool with the identified peaks

(Grant et al. 2011): 33495 (AutoChIP), 50266 (MACS),

40476 (HOMER), and 40696 (PeakRanger) STAT5A peaks;

9486 (AutoChIP), 15866 (MACS), 14825 (HOMER), and

12129 (PeakRanger) STAT5B peaks; 18296 (AutoChIP),

30222 (MACS), 32186 (HOMER), and 20151 (PeakRanger)

GATA3 peaks in MCF7 cells; and 12513 (AutoChIP), 32279

(MACS), 29128 (HOMER), and 13678 (PeakRanger)

GATA3 peaks. The result shows that the cocktail approach

by AutoChIP outperformed the single peak calling tool in all

cases according to the percentage of peaks containing at least

one top motif (Fig. 3b). This tendency was maintained when

applied to degenerated motifs defined by increasing the

p value cutoff from 0.001 to 0.1 (Fig. 3c). In addition, the

normalized read densities of the peaks identified by Auto-

ChIP in STAT5A, STAT5B, and GATA3 (MCF7 and T47D)

ChIP-seq are higher than those identified by the single

method (Fig. 3d). The results demonstrated that the cocktail

approach implemented in AutoChIP identified high-quality

peaks in terms of the ratio of motif occurrence and the

binding strength of the given proteins to the sites.

Annotation of the identified peaks with the information

of genes and repetitive elements

AutoChIP provides several advantages to users. First, all

the required programs are automatically installed and

necessary procedures for peak calling such as alignment
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Fig. 4 Annotation of the

common peaks. The distribution

of the identified peaks by

AutoChIP relative to genes and

repetitive elements was

estimated
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are conducted in one step. Second, additional analyses can

be performed after the peak calling. For example, annota-

tion of the identified peaks can easily be executed with the

Perl script (annotatePeaks.pl) provided by HOMER.

Annotation analysis of the identified peaks by AutoChIP

showed that the majority of STAT5A, STAT5B, and

GATA3 peaks were located in intergenic and intron

regions (Fig. 4a; Table S1). The result is consistent with

the known feature of STAT5 and GATA3 as enhancer

binding proteins (Ranganath et al. 1998; Gonsky et al.

2004). Additionally, the relationship between STAT5 (or

GATA3) binding and repetitive elements was assessed by

using the Perl script (analyzeRepeat.pl) from HOMER.

Interestingly, 2.95 and 0.80 % of the known repetitive

elements coincided with STAT5A and STAT5B in mouse

mammary glands, respectively (Fig. 4b; Table S2). In

addition, 1.44 % (MCF7) and 0.98 % (T47D) of promoter

regions of the repetitive elements were bound by GATA3.

However, the importance of these bindings related to the

activity of repetitive elements needs to be validated in near

future.

Conclusion

Owing to the NGS technique, various molecular events can

be captured and visualized by means of bioinformatic

approaches. Among them, ChIP-seq has been widely used to

detect genome-wide binding sites of proteins. Currently,

more than 30 peak calling programs and several thousand

ChIP-seq datasets have been reported. Incorporating the

available data into an ongoing study can give rise to new

biological insights. However, it is a daunting task for novice

users to install programs and use them to detect genome-wide

binding sites of proteins of interest. In addition, false positive

peaks might be identified along with true positive peaks,

regardless of statistical methods, due to problematic genomic

regions, sequencing bias, inadequate statistical power, and

insufficient sequencing depth. Through a series of analyses,

we showed that the cocktail approach implemented in

AutoChIP outperformed a single peak calling method. Using

AutoChIP, all necessary steps including the installation of

required programs, genome indexing, alignment, peak call-

ing, and annotation of identified peaks can be done in one

step. The easy-to-use GUI will help novice users to analyze

their own and available ChIP-seq datasets. Understanding of

genome-wide protein binding networks could be facilitated

by using AutoChIP along with various other NGS-based

methods such as RNA-seq and MNase-seq.
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