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Stopping Rule Sampling to Monitor and
Protect Endangered Species

Lara Mitchell , Leo Polansky , and Ken B. Newman

Ecological science and management often require animal population abundance esti-
mates to determine population status, set harvest limits on exploited populations, assess
biodiversity, and evaluate the effects of management actions. However, sampling can
harm animal populations. Motivated by trawl sampling of an endangered fish, we present
a sequential adaptive sampling design focused on making population-level inferences
while limiting harm to the target population. The design incorporates stopping rules
such that multiple samples are collected at a site until one or more individuals from the
target population are captured, conditional on the number of samples falling within a
predetermined range. With this application in mind, we pair the stopping rules sampling
design with a density model from which to base abundance indices. We use theoretical
analyses and simulations to evaluate inference of population parameters and reduction
in catch under the stopping rule sampling design compared to fixed sampling designs.
Density point estimates based on stopping rules could theoretically be biased high, but
simulations indicated that the stopping rules did not induce noticeable bias in practice.
Retrospective analysis of the case study indicated that the stopping rules reduced catch
by 60% compared to a fixed sampling design with maximum possible effort.

Supplementary materials accompanying this paper appear online.
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1. INTRODUCTION

Abundance estimates are important populationmetrics for ecological science, being inte-
gral for population ecology (Krebs 1999) andmodeling (Newman et al. 2014), species status
assessments (Smith et al. 2018), and conservation andmanagement (Morris andDoak 2002).
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Abundance estimates, or indices of abundance, are often based on data collected through a
statistical sampling procedure, including, for example, stratified random sampling of areas
or volumes (Hankin et al. 2019), capture–recapture methods (McCrea and Morgan 2014),
distance sampling (Buckland et al. 2015), and presence–absence sampling (MacKenzie et al.
2017). For a species that is at risk and increasingly rare, there can be pressure to increase
monitoring in order to optimize management decisions, especially if the species has not
been observed for some time (Chadès et al. 2008).

In ecology, it is recognized that many if not most species have spatial distributions
leading to rarity at different scales (recently reviewed at the intersection of conservation,
monitoring, and modeling by Jeliazkov et al. (2022)). This has led to sampling designs to
address populations that are clustered in space, such as adaptive cluster sampling (Thompson
1990)which increases sampling in areaswhere the target species is encountered, and analysis
using statistical models capable of addressing zero inflation (Cunningham and Lindenmayer
2005).

However, when the species is also at risk and ongoing monitoring further harms the
individuals, referred to as “take” in the context of biological opinions (USFWS 2006), it is
important to consider whether sampling may negatively impact the population (McGowan
and Ryan 2009; Gezon et al. 2015; Hope et al. 2018). While statistical sampling theory
generally indicates thatmore samples are better than fewer samples for population inference,
when take must be considered or the cost of sampling is consequentially high in some other
way, then a sampling design limiting overall effort may be of interest.

To address these challenges as they relate to threatened populations, we describe an
adaptive sampling design with the objective of generating an index of population size,
which necessarily involves frequent sampling with good spatial coverage due to rarity and
patchiness, while limiting take. Achieving this objective leads to a tension between a need
for multiple samples at each site to reduce negative bias by incorrectly concluding there are
no individuals at a site (and whichmay also allow quantification of imperfect detection), and
a desire to cap effort and minimize take. In the proposed design, referred to as a stopping
rule sampling design, multiple samples are collected at a sampling site until one or more
individuals from the target population are successfully sampled, conditional on the number
of samples falling within a predetermined range. Because sampling at a site beyond the
minimum stops after the species is found, the sampling design limits the handling of target
species and reduces field time by minimizing the number of samples taken at a site once the
species has been found. Bounding sample effort at the site level is important for achieving
a sufficient number of sites across a species’ range for making robust population-level
inference. At the same time, collecting multiple samples per site increases the amount of
data available for modeling variability in observed counts, though in practice the effects
of increasing total sample size in this way may be affected by pseudo-replication at the
site level. This design is in contrast to more commonly used adaptive sampling designs in
environmental and ecological sampling where samples are added in an area around a site
after a nonzero detection (Thompson 2003).

The stopping rule sampling design described here was motivated by the need to monitor
delta smelt (Hypomesus transpacificus), a finger-length fish that has experienced severe
population declines and is susceptible to harm during sampling, but remains a high priority
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for active monitoring (Sect. 2). With this application in mind, we present a density model
from which to base abundance indices (Sect. 3). Potential effects of the stopping rules on
inference about density and comparisons of the performance of the stopping rule sampling
design are examined in general using both theoretical analyses and simulation experiments
(Sect. 4). We derive delta smelt abundance indices and use a simulation study to estimate the
reduction in their take based on stopping rule sampling (Sect. 5). We close with a discussion
that includes comparing our approach to other adaptive designs along with some limitations
and future research needs (Sect. 6).

2. BACKGROUND ON THE MOTIVATING CASE STUDY

Delta smelt are endemic to the San Francisco Estuary (SFE) in California, USA. Human
activity has substantially altered the SFE (Nichols et al. 1986;Whipple et al. 2012), resulting
in reduced habitat quality for native fishes. These changes have coincided with the long-term
decline of delta smelt (Sommer et al. 2007; Moyle et al. 2016), which are included in both
state (CFGC 2009) and federal (USFWS 1993) government endangered species lists. There
is ongoing interest in contemporary determinants of the distribution and abundance of the
delta smelt population, despite the species becoming increasingly rare.

InDecember 2016, the EnhancedDelta SmeltMonitoring (EDSM) programwas initiated
by the U.S. Fish and Wildlife Service to provide near real-time and year-round informa-
tion on the population distribution and abundance of delta smelt through trawl sampling.
However, collection and handling of delta smelt can result in harmful levels of stress and
injury (Swanson et al. 1996), leading to a conflict between two goals, continued population
monitoring and minimizing take. Furthermore, because of their small size compared to the
volume of potential habitat, and varying density at multiple spatial scales (Polansky et al.
2018), there is an additional conflict between the need for (1) multiple samples per site
while also (2) visiting enough sites to enable population-level inference. EDSM attempts to
achieve both of these goals while minimizing take by employing stopping rules.

3. METHODS

3.1. SAMPLING DESIGN

Suppose sampling is to take place at a set of n sites and that at each site k = 1, . . ., n
a set of Qk independent samples is to be collected. We assume the number of individuals
of the target species observed or captured in sample i , denoted Yk,i , is recorded along with
a measure of sampling effort, denoted vk,i . This measure of effort is needed because the
sample unit is not precisely definable. Under the stopping rule sampling design, the number
of samples collected at a site is constrained to fall within a predetermined range denoted
qmin to qmax. Sampling stops after qmin samples if any of the first qmin samples results
in a positive count of the target species. Otherwise, sampling proceeds until a positive
count is observed, after which sampling at the site stops, or until qmax samples have been
taken.
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The number of samples collected at a given site k, Qk , is a random variable taking on
integer values from qmin to qmax. Its value depends on which of the following three sets of
conditions occur.

Qk =

⎧
⎪⎪⎨

⎪⎪⎩

qmin, if
∑qmin

i=1 Yk,i > 0

q ∈ {qmin + 1, . . . , qmax − 1}, if
∑q−1

i=1 Yk,i = 0 and Yk,q > 0

qmax, otherwise

(1)

Qk’s probability distribution is thus determined by qmin, qmax, and the probability of
observing a zero count in a given sample, P(Yk,i = 0) (Supplemental Information (SI)
Section S1.1). When sampling effort is constant, Qk can be interpreted as following a
doubly truncated non-homogeneous geometric distribution with lower truncation at qmin,
upper truncation at qmax, and success defined as observing a positive count.

At each site, the expected total number of samples E(Qk) and the expected total count
E(Yk,·) are

E(Qk) = qmin +
qmax−1∑

q=qmin

q∏

i=1

P(Yk,i = 0) (2)

E(Yk,·) =
qmin∑

i=1

E
(
Yk,i

) +
qmax∑

q=qmin+1

E
(
Yk,q

)
q−1∏

i=1

P
(
Yk,i = 0

)
, (3)

respectively (SI Sections S1.2 and S1.3). These equations can be used in conjunction with
preliminary estimates of parameters defining the distribution of Yk,i to inform decisions
about setting survey design parameters and anticipate take. For example, if r1 is the average
travel time between sites and r2 is the average time required to collect a single sample,
then values of qmin, qmax, and n can be found that constrain (1) total sample time, T =
r1(n−1)+r2

∑n
k=1 Qk , and (2) total catch across sites,C = ∑n

k=1 Yk,·. The corresponding
expected values are E(T ) = r1(n − 1) + r2nE(Qk) and E(C) = nE(Yk,·).

A density model given stopping rule data is developed next in Sect. 3.2, but here we
note that the stopping rules do not influence the probability that a given count will be
observed during a given sample. The joint distribution for all random variables associated
with site k can therefore be written as the product of the count probabilities (SI Section

S1.4): P(Yk,1, . . . ,Yk,Qk , Qk) =
Qk∏

i=1

P(Yk,i ).

Because stopping depends only on the observed counts and not the parameters to be esti-
mated, the stopping rule is “non-informative” for likelihood inference (Roberts 1967) and
the likelihood is the same with regard to model parameters whether the stopping rules are
followed or broken (SI Section S1.5; see Roberts (1967) for examples of informative stop-
ping rules). We also note that the non-informative design with regard to the likelihood does
not mean that parameter estimates will be unbiased given data collected under a stopping
rule sampling design (Sect. 4).
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3.2. DENSITY MODEL

A goal of the stopping rule sampling design is to provide data for fitting models to
estimate population densities, abundance indices, or other similar population metrics. Here
we present a generalized linear mixed model (GLMM) for estimating relative density using
count data collected with the stopping rule sampling design and demonstrate how the fitted
model can be used to calculate indices of abundance.

Suppose sampling takes place over t = 1, . . . , T time periods in h = 1, . . . , H spatial
strata with k = 1, . . . , nt,h sites in a given time period and stratum. We consider the general
model

yt,h,k,i ∼ D
(
μt,h,k,i , [θt,h,k,i ]

)

log
(
μt,h,k,i

) = β0,t,h + xTt,h,k,iβ + αt,h,k + log
(
vt,h,k,i

)

αt,h,k ∼ N (0, σα)

log
(
θt,h,k,i

) = γ0 + wT
t,h,k,iγ

(4)

where yt,h,k,i is the count from the i th sample at site k in stratum h and time period t ,
and D is a probability distribution with expected count μt,h,k,i and optional dispersion
parameter θt,h,k,i . The expected count is a log-linear combination of (1) time- and stratum-
specific intercepts β0,t,h , (2) a site- and sample-specific covariate matrix xt,h,k,i multiplied
by coefficient vectorβ , (3) a normally distributed site randomeffect (RE)αt,h,k with standard
deviation σα , and (4) sampling effort offset, log

(
vt,h,k,i

)
. The intercepts reflect large-scale

spatiotemporal changes in density (number of organisms per unit of sampling effort) while
site random effects account for variability between sites as well as correlation between
samples at a site. The covariates reflect finer-scale patterns in availability or detection or
both. We assume that a new set of sites is sampled within each time period and stratum (e.g.,
subscripts t , h, and k are needed to denote a unique site), though the site effect could be
simplified. For example, if the same set of sites was visited over time, the site effect could
be time invariant, αh,k ∼ N (0, σα).

We consider models where the distribution D is either Poisson, in which case θt,h,k,i is
not needed, or negative binomial with variance Var(Yt,h,k,i ) = μt,h,k,i + μ2

t,h,k,i/θt,h,k,i .
The dispersion parameter θt,h,k,i controls the level of aggregation of organisms with smaller
values corresponding to increased aggregation (Stoklosa et al. 2022). We treat the log of
θt,h,k,i as a linear combination of covariates wt,h,k,i with coefficients γ to allow the level
of aggregation to change, for example with changes in habitat quality.

One alternative to the GLMM approach is N-mixture models, which separate out pat-
terns in abundance and detection using replicate samples per site (Royle 2004). Suchmodels
require, among other things, that replicates are unambiguous re-samples of a closed popu-
lation at the site, and it is generally recognized that many empirical data sets likely violate
this closure assumption (Barker et al. 2018; Goldstein and de Valpine 2022). We expect
our motivating case study, which involves sampling of a mobile organism with trawls in
a highly dynamic habitat, to fall into this category. The exact boundaries of a site and the
amount of overlap in habitat sampled between samples (tows of the trawl) at a site are not
easily definable, and the degree to which the movement of fish and water may violate the
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closure assumption at a site is generally unknown. For this reason, we keep our focus on
GLMMs, acknowledging that this class of models produces estimates of relative density or
abundance rather than absolute abundance (Dénes et al. 2015; Barker et al. 2018).

Estimates of relative abundance can be calculated using parameter estimates from a
fitted model if sampling effort vt,h,k,i represents a measure of habitat quantity such as water
volume sampled for aquatic species or area sampled for terrestrial species, and estimates of
total habitat quantity, Vt,h , are available. Let δ̂t,h = exp(β̂0,t,h + x̄Tt,h β̂) be the estimated

density given average covariate values x̄t,h . Then a relative abundance index Ît,h is given by
Ît,h = δ̂t,hVt,h . Standard error estimates ŜE( Ît,h) can be calculated with model parameter
standard errors using the delta method (Rao 1973). Assuming independence between strata,
a total index and its variance for a given time period are given by the sum of stratum-
specific estimates: Ît = ∑H

h=1 Ît,h and V̂ar( Ît ) = ∑H
h=1 V̂ar( Ît,h). Further assuming that

the sampling distribution for the total estimate Ît is approximately lognormally distributed

with log-scale mean μ = log( Î/
√

1 + (V̂ar( Î )/ Î 2) and log-scale standard deviation σ =
√

log(1 + V̂ar( Î )/ Î 2), a confidence interval (CI) for Î can be constructed using the quantiles
from this lognormal distribution.

3.3. MODEL FITTING

A range of tools are available for fitting GLMMs (Bolker et al. 2009). All analyses
presented in this paper were carried out in R (RCore Team 2023), andmodels were fit within
a frequentist framework using the glmmTMB package (Brooks et al. 2017), with covariates
standardized to have mean zero and standard deviation one. The DHARMa package (Hartig
2022) was used for residual analyses in the case study (Sect. 5).

4. INVESTIGATION OF PARAMETER ESTIMATION UNDER
THE STOPPING RULES

The use of stopping rules to collect count data may affect inferences based on the data.
Brown and Manly (1998), for example, discuss bias in the context of adaptive cluster sam-
pling with a different stopping rule than the one considered here. We used a combination of
analytic and simulation approaches to investigate properties of model parameter estimates
given data collected according to the stopping rule sampling design.

4.1. INVESTIGATION 1: POISSON COUNT DISTRIBUTION

4.1.1. Methods

Here we consider a highly simplified scenario in which there is a single time period and
stratum, sites share a constant mean density of organisms (δ), sampling effort (v) is constant,
and counts follow a Poisson distribution. Dropping non-varying subscripts, the model can
be written as yk,i ∼ Poisson(δv) for all samples at all n sites. We analytically derived the
maximum likelihood estimate (MLE) of density, δ̂, and an approximation of the theoretical
bias, Bias

(
δ̂
) = E(δ̂) − δ, based on a Taylor series expansion of δ̂ (SI Section S2.1). We
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investigated how bias in δ̂ changes as a function of qmin, qmax, and the number of sites n. For
this, we used v = 1 and let true density δ range from 0.001 to 4, allowing the probability of
observing a zero to vary from 0.018 to 0.999. We set qmin = 2, 4, 6, or 8, qmax = 4, 6, 8, or 10,
and n = 2 or 4. The ranges of values considered for qmin and qmax are generally based on the
case study where qmin has consistently been 2 and qmax has ranged from 4 to 10 (Sect. 5); we
allowed qmin to be larger than 2 for investigative purposes. For each combination of inputs,
we used the bias approximation to calculate percent relative bias as 100 × Bias

(
δ̂
)
/δ and

graphically summarized the results.

4.1.2. Results

An approximation of the theoretical bias in the density MLE is given by

Bias(δ̂) ≈ δ
∑qmax

q=qmin+1

(
q − 1

)
exp

( − δv(q − 1)
)

n
(
qmin + ∑qmax

q=qmin+1
exp

( − δv(q − 1)
))2

. (5)

The theoretical bias approximation is positive and decreases as total sample effort is
increased by increasing n, increasing v, or increasing qmin while qmax is held constant
(Fig. 1a). We note that with a fixed number of samples per site, i.e., with no stopping rules,
the estimate δ̂ would be unbiased (SI Section S2.1).

The bias may be associated with the stopping rules that allow data collectors to “quit
while ahead,” i.e., stop sampling after the first positive catch after sample qmin and before
sample qmax. This is supported by the observation that relative bias generally increases as
density decreases (Fig. 1): In the lower density range, the stopping rules are more likely be
invoked after sample qmin while at larger densities the stopping rule sampling design appears
more like a fixed sampling designwith the number of samples fixed at qmin. Furthermore, the
bias may depend on the difference between qmin and qmax, with larger differences allowing
the stopping rules to have more of an effect on bias and smaller differences again bringing
the stopping rule sampling design closer to a fixed sampling design. This is supported by the
finding that at lower densities, increasing the difference between qmin and qmax by holding
qmin = 2 constant and increasing qmax could result in increased relative bias (Fig. 1b).

Relative bias ranged from 0 to 27.1% across the complete sets of inputs considered here.
For an example of the magnitude of bias, when δ = 0.5 with qmin = 2, qmax = 6, n = 2,
the expected value of δ̂ is E(δ̂) = 0.575, a 15% positive bias. A bias-adjusted estimate of
density could theoretically be calculated as δ̂adj = δ̂ − Bias(δ̂). However, we note that the
expression for Bias(δ̂) depends on the maximum possible number of samples, qmax, and all
associated sample volumes. In practice, it is likely that not all qmax samples will be realized
and sample effort will vary, making application of the bias correction factor unrealistic.

4.2. INVESTIGATION 2: NEGATIVE BINOMIAL COUNT DISTRIBUTION

4.2.1. Methods

Herewe consider a negative binomialmodel (Eq.4) with site- and sample-specific covari-
ates, random site effect, and constant dispersion parameter. We simulated data sets that
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(a)

(b)

Figure 1. Percent relative bias in density estimates (δ̂) based on stopping rule data as described in Investigation 1
in Sect. 4.1. Panel a reflects the effects of fixing the maximum number of samples (qmax) and varying the number
of sites (n) and the minimum number of samples (qmin). Panel b reflects the effects of fixing qmin and varying n
and qmax. Quantities indicated in sub-panel titles are held constant at the indicated values.

applied the stopping rules as well as three alternative sampling designs and fit the model
to these data sets. Our goals were twofold: to compare parameter estimates based on the
different sampling designs, looking for bias in estimates based on the stopping rules, and
to investigate trade-offs between the number of organisms caught and parameter estimate
quality.

We selected T = 10 time periods, H = 1 stratum, n = 40 new sites per time period and
set qmin = 2 and qmax = 10. The “true” parameter values used for data generation were
β0,t = log(0.0002 exp(−0.07(t − 1)), β1 = 0.4 for a site-specific covariate coefficient,
β2 = 0.2 for a sample-specific covariate coefficient, σα = 0.8, and θ = 0.4. Values of
sampling effort, vt,k,i , were drawn from a gamma distribution with shape parameters 11.86
and expected value 3100, and were similar to values from the case study (Sect. 5). Site- and
sample-specific covariate values were generated from a Uniform (−1,1) distribution. Inputs
were chosen so counts were relatively low with high variability as this is a scenario where
the stopping rule sampling design is likely to be relevant. In time period t = 1, for example,
the expected count in a sample was approximately 0.46 with coefficient of variation 2.16
and probability of observing a zero count equal to 0.74.

Data sets were generated according to the following process. We first generated a single
data set according to Eq.4 with 10 samples per site, designating this the “max” effort data
set because sample size is fixed at the value qmax. We then created three additional versions
of the data, starting with the max data set each time. First, a “min” effort data set was created
by retaining only the first qmin = 2 samples from each site. Next, a “stopping rule” data set
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was created by applying the stopping rules. Finally, a “randomized” data set was created by
taking the numbers of samples that would be retained under the stopping rules, randomly
reassigning those numbers across sites, and then retaining the assigned number of samples
from each site. The max, min, and randomized data sets represent sampling designs where
there is no potential effect of stopping rules on model inference and no effort is made to
limit catch. The randomized data set keeps the total number of samples equal to that of the
stopping rules data set so that potential differences in parameter estimates are less affected
by differences in sample size. This complete data generation process was carried out 10,000
times.

We fit the model to each of the 40,000 data sets using restricted maximum likelihood
(REML). Although the true log intercepts β0,t were related in time through an exponential
function for convenience, we note that this time dependence was not reflected in the model
(Eq.4). We checked to ensure that all models converged.

For each sample design, parameter estimates were summarized using the mean, 95th
(2.5−97.5) quantile range, and mean squared error. Additionally, total catch in each data set
(total number of organisms caught across time, sites, and samples) was summarized using
the mean and 95th quantile range. To determine how well the proposed lognormal-based CI
performed, we calculated abundance indices and CIs from the fitted models using habitat
volume Vt =10,000 for all t , and determined the proportion of times the CI contained the
value It = exp(β0,t )Vt .

4.2.2. Results

The average number of samples collected under the stopping rule design, across time
periods, ranged from 2 to 10 with mean 4.2. Accuracy and precision of the parameter esti-
mates generally improved as the total number of samples increased across sampling designs
(Figs. 2a, b and 3; SI Section S2.2), consistent with expected patterns. The stopping rule
sampling design fit within this pattern and did not show systematic bias in parameter esti-
mates or unusually high uncertainty compared to the min and randomized designs. All four
sampling designs generally estimated the coefficient parameters β1 and β2 comparably. The
parameters σα and θ were more likely to be underestimated than overestimated regardless
of sampling design, with the bias worst with qmin. Increasing the number of samples beyond
qmin through application of the stopping rules was particularly beneficial in estimating σα

and θ and reducing bias in estimates of β0,t compared to the min sampling design. Overall,
the stopping rule and randomized designs performed equally, though the extra catch allowed
under the randomized design resulted in a marginal decrease in uncertainty in estimates of
β2 and θ .

The stopping rule sampling design reduced average total catch by 22.8% and 67.9%
relative to the randomized and max sampling designs, respectively, and increased average
total catch by 60.3% relative to the min sampling design (Fig. 2c). The lognormal-based CIs
had coverage between 94.1% and 95.7%, consistent with the target coverage of 95% (SI
Section S2.2).
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Figure 2. Summary (mean and 95th quantile range) of parameter estimates (panels a and b) and total catch (panel
c) under the four sampling designs from Investigation 2 in Sect. 4.2. Parameters are covariate effect coefficients
β1 and β2, site random effect standard deviation σα , dispersion θ , and log densities β0,t , t = 1, . . . , 10. Sampling
design is indicated by order (min, stopping rule, randomized, and max) as well as color and point shape across all
sub-panels. In panels a and b, thick horizontal black lines reflect true values.

5. CASE STUDY

5.1. DATA COLLECTION

The EDSM program uses trawls to sample delta smelt from the beginning of July, when
individuals reach the juvenile life stage, through the subsequent March, by which time they
have developed into mature adults and the majority of spawning is thought to have occurred.
The habitat range has been stratified into between 4 and 10 strata throughout the life of the
program (2016 to present, SI Figures S3.1, S3.2) to account for geographically varying
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Figure 3. Parameter estimatemean squared errors from Investigation 2 in Sect. 4.2. Parameters are covariate effect
coefficients β1 and β2, site random effect standard deviation σα , dispersion θ , and log densities β0,t , t = 1, . . . , 10.
Sampling design is indicated by order (min, stopping rule, randomized, and max) as well as color and point shape
across all sub-panels.

habitat types and densities. Sampling occurs weekly in all strata. Within each stratum,
sites are defined by a set of coordinates generated using a generalized random tessellation
stratified design (Stevens and Olsen 2004). The target number of sites per stratum per week,
nt,h , has varied over time but generally ranges from 2 to 6.

A tow of the trawl constitutes a single sample and a flow meter is used to estimate the
volume (m3) of water sampled in a tow as a measure of sampling effort. Delta smelt are
identified and enumerated after each tow. The stopping rules are applied July–March, a
period when individuals are typically large enough to be identified in the field. The value
of qmin has remained at 2 while qmax has varied between 4 and 10 depending on the year
and the availability of sampling resources. Auxiliary data on environmental conditions are
also collected with each tow including Secchi depth (m; a measure of water clarity), spe-
cific conductance (μS/cm at 25 ◦C, a measure of water electrical conductivity subsequently
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referred to as EC), water temperature (◦C), and tide stage (ft, see below). See SI Section
S3.1 for program history and sampling details.

5.2. MODEL FITTING, INDEX CALCULATIONS, AND THEORETICAL TAKE

CALCULATIONS

We used data collected between December 2016 and March 2021 to fit negative bino-
mial models with a weekly time step, geographic stratification, and site random effect. We
included four sample-level environmental covariates (Secchi depth, EC, water temperature,
tide) and a categorical variable st representing spawning season (winter, approximately
December–March) or non-spawning season (summer/fall, approximately July–November).
The full model can be written as

log
(
μt,h,k,i

) = β0,t,h +
4∑

u=1

(
βu,1 x(u),t,h,k,i + βu,2 x

2
(u),t,h,k,i

)
× st + αt,h,k + log

(
vt,h,k,i

)

αt,h,k ∼ N (0, σα)

log
(
θt,h,k,i

) = γ0 + γ1 × st
(6)

where the uth environmental covariate is represented with the notation x(u). Catch densities
of delta smelt have previously been associated with environmental conditions (Feyrer et al.
2007; Polansky et al. 2018; Hendrix et al. 2023), and we hypothesized that the nature of this
association may change during the spawning season. We also hypothesized that the level of
aggregation would be higher in winter when spawning occurs.

Because EDSM did not record tide data in the early months of the program, we used
hourly mean tide level (ft) at Port Chicago, CA (station ID 9415144; NOAA (2024)) as the
tide variable throughout the modeled time period. We joined the two data sets by rounding
the start time for a tow to the nearest hour and assigning the corresponding mean tide
level to that tow. We excluded weeks with no catch from the model data set. Following
the assumption that delta smelt are distributed between 0.5 and 4.5 m depth, we adjusted
tow volumes to account for the fraction of sampling carried out within this depth stratum
(Polansky et al. 2019). See SI Section S3.2 for further details on data processing.

We relied primarily on an information-theoretic approach based on Akaike information
criteria (AIC) to arrive at a final model structure (Mundry and Nunn 2009; Zuur et al.
2009). We first found an optimal random structure (site RE or no RE) given the full fixed
effects structure using restricted maximum likelihood estimation (REML), then carried out
a backward elimination procedure on the fixed effects usingmaximum likelihood estimation
(ML). Results presented here are based on REML.

We examined relationships between environmental covariates and relative catch to verify
that these relationships appeared biologically plausible. For each covariate retained in the
selected model, we used parameter estimates β̂u,1 and β̂u,2 to calculate and plot the quantity
exp(β̂u,1 x(u) + β̂u,2 x2(u)) over the observed range of values of x(u). This effectively fixes
the intercept parameter, random effect, log sample volume, and remaining covariate values
at zero to allow inspection of the general relationship between μ and xu . We note that
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combinations of covariate values used in these calculations do not necessarily represent
combinations that were observed in the data.

Using the selected model, we calculated Ît,h and ŜE( Ît,h) using estimates of the volume
of water between 0.5 and 4.5 m depth in each stratum (SI Section S3.3). To investigate the
effects of the stopping rules on delta smelt catch, we used the selected model to generate
catches in additional tows that would have been conducted if there were no stopping rules
and sample size was fixed at qmax. For each additional, hypothetical tow i∗, we used site-
level covariate averages (standardized in accordance with the model) and site-level sample
volume averages to calculate estimates μ̂t,h,k,i∗ and θ̂t,h,k,i∗ , generated the additional counts
from negative binomial distributions using these parameters, and added these catches to the
realized total catch of delta smelt to estimate a hypothetical total catch across the study
period. We carried out this procedure 10,000 times and summarized the distribution of the
resulting total catches by calculating the mean and 95th quantile range.

5.3. RESULTS

A total of 23,168 tows were collected from a total of 5,394 sites over the sampling period
used in this analysis. At least one delta smelt was caught in 407 (1.76%) of the samples
and at 354 (6.6%) of the sites. A total of 888 individual delta smelt were caught with 29%
caught in the first sample at a site, 29.7% in the second sample, 16.2% in the third, 14.5%
in the fourth, 6.9% in the fifth, 2.2% in the sixth, 0.5% in the seventh, and 1% in the eighth
sample.

The selected model retained the site random effect as well as linear and quadratic terms
for Secchi depth, EC, and temperature (Table 1; SI Sections S3.4, S3.5). One of the three
residual tests did not pass, indicating possible deviation from the expected distribution (SI
Section S3.6). However, all tests passed for the same model refit with ML.

Relative catch density decreased with increasing Secchi depth (increasing water clarity)
and increasing EC (increasing salinity; Fig. 4), consistent with patterns found previously
(Nobriga et al. 2008; Hendrix et al. 2023). The relative effect of temperature was generally
highest between 15 and 20 ◦C. Lack of support for a tide effect is in contrast to other studies
(Feyrer et al. 2013; Bennett and Burau 2015; Polansky et al. 2018), but may be due in part
to the lack of spatial resolution in the tide data. The estimated standard deviation for the
site random effect was σ̂α = 1.31, and the estimated dispersion parameter was θ̂ = 1.22.
Estimates of relative density, exp(β̂0,t,h), ranged from 1.65×10−6 to 4.87×10−2, and total
indices ranged from 0 to 625,986 with high uncertainties (Fig. 5).

Under the hypothetical scenario in which qmax samples were collected at every site
(without stopping rules), the simulated total catches had mean 2220, 150% higher than
the actual number caught, and 95th quantile range 1902 to 2618. Based on the mean, this
corresponds to a 60% (1332/2220) decrease in catch under the stopping rule sampling design
relative to a design with the maximum number of samples per site.
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Table 1. Estimates and standard errors of environmental covariate coefficients from the final model from the case
study (Sect. 5)

Parameter Estimate Std. Error

β1,1 (Secchi) − 3.6129 0.3963
β1,2 (Secchi2) − 1.2448 0.4435
β2,1 (EC) − 0.2491 0.4044
β2,1 (EC2) − 0.1715 0.1252
β3,1 (Temp) 0.7203 1.0109
β3,1 (Temp2) − 1.2293 0.4810

(a) (b) (c)

Figure 4. Relationships between each environmental covariate (a Secchi depth, b EC, c water temperature) and
relative catch of delta smelt based on the selected case study model (Sect. 5). In each panel, the indicated covariate
is allowed to vary while other terms in the log expected count are fixed at zero. Covariate values shown on the
horizontal axes are on their original scales (not standardized).

6. DISCUSSION

Ecological field sampling involves balancing the objective of estimating one or more
quantities of interest (to a desired level of accuracy and precision) with the cost of sampling.
For rare species, this cost can include harm to individuals in the population of interest. We
presented an adaptive sampling design developed to provide data for making population-
level inferences while aiming to limit the handling or take of the target population, and
illustrated how these data can be used to calculate abundance indices via a GLMM that is
fit using readily available software. Through an analytic investigation, we found that maxi-
mum likelihood estimates of population density based on stopping rule data have increased
positive bias as densities decline. Through a simulation-based investigation intended to
more closely reflect real data collection processes, we found that the stopping rule sampling
design can improve accuracy and precision of parameter estimates through increased data
collection while simultaneously reducing catch without noticeable bias. In practice, what
constitutes an acceptable trade-off between take-related costs of sampling and quality of
estimates of population parameters will be situation specific.

An important consideration of the stopping rule sampling design is the trade-off between
the number of sites sampled and the number of samples collected per site. The stopping
rules can help achieve good spatial balance and coverage by allowing a high number of
sites, particularly when positive counts are observed and time saved at one site can be used
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Figure 5. Delta smelt abundance index time series for 5 cohorts from July through March, the period over which
a cohort of delta smelt develop through the juvenile to spawning adult life stages. Circles represent point estimates
and vertical lines represent 95% confidence intervals. Point type reflects spatial coverage (complete=all strata were
sampled; partial=at least one stratum was not sampled).

to visit one or more additional sites. At the same time, collecting multiple samples per site
may allow for modeling of imperfect detection when model assumptions are met (Royle
2004) or exploration of alternative density models.

There are both similarities and differences between the adaptive design described here
and someothers used in ecology. Sequential sampling aims to sample until somedecision can
be made with some amount of certainty (Krebs 1999). In mark–recapture studies, sequential
analysis has been used to determine the number of recaptures needed to estimate population
size with a given level of precision (Mukhopadhyay and Bhattacharjee 2018; Silva et al.
2023). Suchmethodology did not apply to our case study because therewere nomarked delta
smelt in the SFE at the time (though see next paragraph) and the bound on sampling effort
for recaptures would likely apply to total sites, not number of samples per site or necessarily
with the aim of minimizing take. Removal design, whereby surveying stops at a site on
first detection, has been developed within an occupancy modeling framework (Azuma et al.
1990; MacKenzie and Royle 2005) where the goals are to estimate species occurrence and
detection probabilities, but not abundance. Adaptive cluster sampling does aim to acquire
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data for estimating abundance, but increases rather than decreases effort upon detection
(Thompson 1990). Adaptive cluster sampling has perhaps received themost attention within
ecology (see, e.g., the special issue in Environmental and Ecological Statistics edited by
Thompson (2003)). Such research has included adding a stopping rule by fixing a maximum
number of adaptive sample iterations (Su and Quinn 2003), different than the condition-
based rule described here that aims to minimize positive counts.

To maximize generality and applicability, we used a common but relatively simple
GLMM to analyze the data. This model could be extended by adding complexity to the
fixed effect structure to include explicit spatial, temporal, or spatiotemporal terms. Exten-
sion to the probabilistic structure of the model allowing for zero inflation at the sample level
(currently available in the glmmTMB package) or site level are some additional ways for
building on the model considered here. For example, if no fish are within the water associ-
ated with a given site the density at that site may be considered a structural zero. As noted
previously, explicitly modeling imperfect detection might be considered.

The delta smelt case study provides insight into the application of the stopping rule sam-
pling design to a species that embodies the challenge of balancing monitoring and take. The
stopping rules likely reduced overall take of delta smelt while providing indices of abun-
dance on a weekly basis, whereas other monitoring programs deploying less effort have by
in large ceased to detect any delta smelt at all. In recent years, cultured adult delta smelt
marked with tags or fin clips have been released into the SFE as part of experimental efforts
to supplement the decreasing wild population (USFWS 2020). In addition to potentially
bolstering the population, this opens new avenues for mark–recapture modeling and addi-
tional efforts to quantify population size and vital rates. As the research community enters
this new phase in delta smelt science and management, we expect the question of how to
balance take considerations with monitoring objectives to remain relevant.

When species status assessments indicate a population is at risk, the importance of indices
increases to uncover mechanisms driving the decline and evaluate the effectiveness of man-
agement actions. As a result, pressure to monitor may also increase, but this can impact the
larger objective of protecting the population. Pressure for increased monitoring to assess
conservation actions can become particularly intensewhen actions involve significant cost to
humans, as is the casewith delta smelt. Asmore species decline (IUCN2022), it will become
increasingly important to develop and apply methods of reducing the harmful impacts of
sampling.
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