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Sample Size for Estimating Disease Prevalence
in Free-Ranging Wildlife Populations: A

Bayesian Modeling Approach
James G. Booth, Brenda J. Hanley, Florian H. Hodel,

Christopher S. Jennelle, Joseph Guinness, Cara E. Them,
Corey I. Mitchell, Md Sohel Ahmed, and Krysten L. Schuler

A two-parametermodel and aBayesian statistical framework are proposed for estimat-
ing prevalence and determining sample size requirements for detecting disease in free-
ranging wildlife. Current approaches tend to rely on random (ideal) sampling conditions
or on highly specialized computer simulations. The model-based approach presented
here can accommodate a range of different sampling schemes and allows for compli-
cations that arise in the free-ranging wildlife setting including the natural clustering of
individuals on the landscape and correlation in disease status from transmission among
individuals. Correlation between individuals and the sampling scheme have important
consequences for the sample size requirements. Specifically, high within cluster corre-
lations in disease status can reduce sample size requirements by reducing the effective
population size. However, disproportionate sampling of small subsets of subjects from
the greater target population, combined with high correlation of disease status, tends to
inflate sample size requirements, because it increases the likelihood of sampling mul-
tiple animals within the same highly correlated clusters, resulting in little additional
information gleaned from those samples. Our results are consistent with those gener-
ated using both previously established approaches and extend their ability to adapt to
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additional biological, epidemiological, or societal sampling complications specific to
wildlife health.

Key Words: Beta-binomial; Correlation; Sampling design; Wildlife disease surveil-
lance; Wildlife health.

1. INTRODUCTION

Thediscipline ofwildlife health is concernedwith surveillance andmonitoring of diseases
that originate in wildlife, cause morbidity or mortality in wildlife, affect conservation status
of wildlife at the population level, or cross the species barrier to affect domestic animals or
humans. Notable diseases such as rabies, Ebola, dengue, andHIVhave arisen in free-ranging
wildlife, then crossed the species barrier to humans (Wolfe et al. 2007). Few technical
standards exist to ensure the statistical reliability of surveillance data collection (or its
sampling methodologies) before specimens are transferred to an approved laboratory for
testing. Because health surveillance begins in the field, not the laboratory (Ryser-Degiorgis
2013), there exists a need to establish rigorous fundamental statistical guidance that allows
investigators in wildlife health to substantiate claims regarding freedom-from-disease when
surveillance data are used for population-scale inference (Martin et al. 2007).

The collection of samples to study disease in free-ranging wildlife is complicated, and
practical limitations to the collection of subjects are numerous. Difficulties include: imbal-
anced migrations or dispersal of wildlife; (un)availability of samples by season or year;
differential access to land parcels for data collection; discrepant land use policies or prac-
tices; and a patchwork of regulations or laws limiting harvest, collection, or take (Wobeser
1994; Cannon 2001; Stallknecht 2007; Ryser-Degiorgis 2013; Belsare et al. 2020). Conse-
quently, historical inferences on free-ranging populations have overwhelmingly relied on
the analysis of data sets that frequently include biased, non-random, or opportunistically-
collected data (Belsare et al. 2020).

Appropriate sample sizes are crucial components to produce statistically rigorous infer-
ences in quantitative explorations (Cochran 1977, Chapter 4). Officials in animal health
studies have long computed target sample sizes using questions such as (1) what is the nec-
essary sample size to substantiate freedom from disease?, (2) how many subjects should we
sample to detect the presence (of a disease) at a low prevalence threshold?, and (3) howmany
samples need we collect to adequately monitor disease distribution or prevalence (Cannon
and Roe 1982)? Until the turn of the century, sample sizes were computed using models
containing simplistic assumptions such as perfect diagnostic tests and infinite populations
(Cameron and Baldock 1998).

In recent years, scientists have accommodated more complexity using a variety of infer-
ential strategies, including Bayesian approaches to infer disease prevalence under imperfect
diagnostic tests (Joseph et al. 1995; Johnson et al. 2004; Branscum et al. 2004; Messam
et al. 2008), and simulation-based approaches to compute desired sample sizes for particular
pathogens and species under specific circumstances (Belsare et al. 2020). However, each
of these strategies lack the generalizability necessary to render them foundational for the
computation of target sample sizes in the field of wildlife health.
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Correlation in disease status between individuals has important consequences in terms of
sample size requirements for making inferences about disease prevalence that depend upon
the sampling scheme. The influence of the sampling scheme on the sample size requirements
has been highlighted recently by Belsare et al. (2020) who contrast simple random (SR)
sampling with high-harvest (HH) sampling of clustered populations for surveillance of
chronic wasting disease (CWD) in white-tailed deer (Odocoileus virginianus). High-harvest
sampling occurs when a large proportion of the sample is taken from a small proportion
of the clusters, reflecting the fact the hunters disproportionately concentrate their efforts in
certain (presumably more accessible) habitats. While not explicitly modeling correlation,
Belsare et al. (2020) simulate samples from a population in which 1% of the clusters are
entirely diseased and the other 99%are entirely free fromdisease and show thatHH sampling
requires a significantly larger sample size to achieve the same level of disease detection as
SR sampling.

Here, we describe a Bayesian statistical modeling approach for situations in which cor-
relation between the disease status of individuals exists in a naturally clustered population.
Inferences about disease prevalence, detection and required sample size are determined from
the predictive distribution of population prevalence given either observed or hypothetical
data obtained under a specified sampling design. In Sect. 2 we use chronic wasting dis-
ease (CWD) in white-tailed deer as motivation and case study for our modeling approach,
although the methodology is intended to be quite general, applicable in a wide range of
wildlife systems, and not limited to CWD in deer. The two parameter beta-binomial dis-
tribution (Rosner 2005), introduced in Sect. 3, is the key ingredient needed to model both
prevalence and correlation. This distribution also arises as the posterior for the disease
prevalence under the independence (no correlation) assumption which underlies most of
the literature on detection probabilities and sample size requirements for disease monitor-
ing. Bayesian and classical methods and formulas in the independence case are reviewed in
Sect. 4. The Bayesian model that allows for within cluster correlations is described in Sect. 5
as well as details of how the Bayesian analysis can be implemented. Computational results
are given in Sect. 6, and we conclude with some discussion, including possible extensions
of the model, and recommendations for usage in Sect. 7.

2. CASE STUDY

Chronic wasting disease is a fatal neurodegenerative disease first characterized in the late
1960s in Colorado, USA that affects ungulate species from the family Cervidae (Williams
and Young 1980). It has been detected in free-ranging cervids in 29 U.S. states and three
Canadian provinces in North America, as well as Finland, Norway, South Korea, and Swe-
den. The disease is of particular concern due to potential long-term demographic impacts
to infected cervid populations [Edmunds et al. (2016), DeVivo et al. (2017)] and the eco-
nomic importance of deer hunting in the USA, which generated over 27 billion dollars in
2016 (Southwick-Associates 2018). Generally, wildlife agencies lead efforts to conduct all
disease surveillance and management activities in their jurisdiction. Despite a variety of
significant efforts however, CWD has proven extremely difficult to control (Uehlinger et al.
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2016), meaning that early detection to improve the chance of successful management has
emerged as a widespread priority across agencies.

Since 2010 in the U.S. state of Minnesota (MN), the Minnesota Department of Natural
Resources (MNDNR) has repeatedly detected CWD in free-ranging white-tailed deer, lead-
ing to the creation of multiple management zones and surveillance areas considered to be
high-risk areas for CWD invasion (MNDNR 2023). The MNDNR uses deer permit areas
(DPA), which range in size from 88 to 3,662km2, to assign harvest regulations for deer
population management goals. Tissues from these harvested deer are simultaneously used
to surveil for CWD, and therefore, harvest and CWD sample effort are regularly reported at
a DPA spatial scale.

We used harvest registration data generated in 2022 by the MNDNR at the DPA scale to
parameterize the clusters in our sample sizemodel. Specifically,we calculated the proportion
of adult males (1.5 years and older) and antlerless deer (all females and male fawns) that
might be expected in a surveillance sample inMN. Since deer harvest inMNoccurs typically
in the northern fall during rutting season, adult males are competing for femalemates and are
not generally associated with any particular group during that time (Hawkins and Klimstra
1970). We therefore treated these males as singletons (social groups of size 1). On the other
hand, during that time females form matrilineal social groups centered upon an adult doe,
very commonly containing a yearling doe, and two fawns (Hawkins and Klimstra 1970),
with structuring ranging from 3 to 9 deer per female social group (Porter et al. 1991). In
2022, the MNDNR established CWD surveillance areas in 13 DPAs, reporting a total of
28,008 deer harvested, 51.6% were adult males (singletons) and 48.4% were antlerless deer
(social groupings containing more than one animal).

3. BASIC NOTATION

Let Y denote the number of infected (positive) individuals in a population of size N . The
goal is to describe in a probabilistic manner what can be said about the prevalence in the
population, Y/N , based on a sample of size n. Towards this, let Ys and Y−s denote respec-
tively the number of diseased individuals in the sample and the number in the remaining
(unsampled) N − n individuals. We will assume in what follows that positive diagnostic
tests are validated and so that the specificity, psp, is equal to 1. To simplify the exposition
we will also assume, initially, that there are no false negatives (i.e., sensitivity, pse = 1),
although this assumption will be relaxed later.

ABayesian solution to this problem is to determine the predictive probability distribution,
P(Y = y|Ys = ys), for Y = ys + Y−s based on a specific data generating mechanism and
prior distribution on the model parameters; that is, we determine the probability there are y
cases in the entire population given we observed ys cases among the n sampled individuals.
For a given sample size,n, we can then estimate the probability that the population prevalence
is less than a threshold value π0, or alternatively determine what sample size is necessary
to conclude that the prevalence is low with high posterior probability. We note that the
Bayesian approach emphasized in this paper is inherently conditional on an observed (or
perhaps hypothetical) sample. An alternative, unconditional approach, is based on sampling
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from populations that were assumed to have been generated under a specific data-generating
model, and to constructMonteCarlo estimates of quantities such as the detection probability.
The latter is the approach taken, for example, by Belsare et al. (2020).

Themain contribution of this work is to allow for correlation in the disease status between
individuals in the same social group (also referred to as a cluster), using a beta-binomial
model parameterized in terms of a correlation, ρ and a probability π . The beta-binomial
distribution (Rosner 2005) provides a two-parameter probabilistic model for a nonnegative
count, Y , with probability π and (positive) correlation ρ. Specifically, suppose that given π

and ρ

P(Y = y|π, ρ) =
(

N

y

)
Be(y + α, N − y + β)

Be(α, β)
, y = 0, 1, . . . , N , (1)

where α > 0 and β > 0 are related to π and ρ via the 1–1 transformation

α = 1 − ρ

ρ
π and β = 1 − ρ

ρ
(1 − π), (2)

and Be(α, β) = �(α)�(β)/�(α + β) is the beta function. Note that the inverse of the
parameter transformation in (2) is

π = α

α + β
and ρ = 1

α + β + 1
. (3)

In what follows we write Y ∼ BetaB(N , π, ρ) and denote the probability mass function in
(1) byBetaB(y; N , π, ρ). Similarly, Beta(α, β) denotes a beta distribution andBeta(x;α, β)

denotes the beta density function. As its name suggests, the beta-binomial distribution can
be derived as a beta mixture of binomials. Specifically, suppose that Y is conditionally a
binomial count,Y |P ∼ B(N , P), and that the ‘success’ probability, P , has a beta distribution
with parameters α > 0 and β > 0 satisfying (2). Then, the marginal distribution of Y is the
beta-binomial distribution given in (1).

As ρ approaches zero with π fixed, the beta-binomial distribution (1) converges to the
ordinary binomial distribution with N trials and success probability π ; i.e., Y ∼ B(N , π).
This limiting case corresponds to the model in which each individual’s disease status is
independent of other members of the population and positive with probabilityπ . The sample
size formulas that appear in the wildlife monitoring literature are largely based on this
assumption. In the next subsection we describe some of these methods.

4. STANDARD APPROACHES

Under the binomial (independence)model the number of diseased individuals in a sample
of size n, as well as the number in the unsampled portion of the population, are also binomial
specifically, Ys ∼ B(n, π) and Y−s ∼ B(N − n, π). Since the beta distribution is conjugate
to the binomial, the prior π ∼ Beta(απ , βπ ) results in a beta posterior, π |Ys = ys ∼
Beta(ys + απ , n − ys + βπ) for π , and a beta-binomial posterior predictive distribution for
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Table 1. Sample size requirements to conclude the disease prevalence is less than or equal to a specified threshold
with 95% confidence, assuming no positives in the sample and no correlation in disease state among
individuals

Theshold Population Size
100 500 1,000 2,000 5,000 10,000 ∞

1% 78 195 237 264 283 290 298
2% 63 118 131 139 144 146 148

the number of diseased individuals in the unsampled portion of the population, Y−s |Ys =
ys ∼ BetaB(N − n, πys ,n, ρn) where πys ,n = (ys + απ)/(απ + n + βπ) and ρn = 1/(1 +
απ + n + βπ). In particular, with a uniform (Bayes-Laplace) prior on π , if there are no
diseased individuals in the sample, the predictive distribution for the number diseased in the
population is BetaB[N − n, 1/(n + 2), 1/(n + 3)]. This predictive distribution can be used
to directly evaluate the sample size required to declare the population prevalence less than
any threshold, π0, with high probability. For example, if N = 1000 and the sample size is
n = 237, the predictive probability that the prevalence is less than or equal 1% is 0.9504.
The corresponding sample size to declare the prevalence less than or equal to 2% with
95% probability is only 131, a fact that illustrates the diminishing return from additional
sampling in the effort to gain greater certainty. Sample size requirements for a variety of
other population sizes are given in Table 1

If the sample size is negligible relative to the population size, one needs to consider the
limit of the predictive distribution of Y/N as N → ∞. This limiting distribution is beta
with mean πys ,n and variance πys ,n(1− πys ,n)ρn , or beta with parameters determined from
πys ,n and ρn using the the transformation in (2) (see Appendix A.2). For example, if there
are zero positives in a sample of size n = 298, then αs = 1 and βs = 299, and the predictive
probability that the prevalence is less than 0.01 is 0.9505.

There is in fact a large existing literature on Bayesian inference about disease prevalence
based on diagnostic tests. Examples include Joseph et al. (1995), Johnson et al. (2004),
Branscum et al. (2004) andMessam et al. (2008). A common theme is the use of a beta prior
for the prevalence, as we have here, but also beta priors for the sensitivity and specificity to
account for imperfections in the diagnostic test. The posterior for prevalence given the testing
data can then be computed using MCMC methods such as the Gibbs sampler. However,
these papers all assume the binomial or multinomial model, or a hypergeometric model in
the finite population setting, so they do not account for the correlation between individuals
who cluster into social groups.

The standard non-Bayesian approach to the sample size question is based on the hyper-
geometric distribution of the number of diseased individuals in a sample of size n from a
population of size N containing Y = y diseased individuals given by

P(Ys = ys |Y = y) =
( y

ys

)(N−y
n−ys

)
(N

n

) , max(0, n + y − N ) ≤ ys ≤ min(n, y). (4)
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In particular, for an entirely negative sample, we have

P(Ys = 0|Y = y) =
(y
0

)(N−y
n

)
(N

n

) =
y−1∏
k=0

(
1 − n

N − k

)
(5)

(see e.g., Cannon 2001, equation 4.2). For a given target prevalence, π0, we can determine
the sample size necessary for this probability to be less than, say a = 0.05; that is, find the
minimum n such that P(Ys = 0|Y = Nπ0) ≤ a.

If the sample size is negligible relative to the population size, the probability in (5) can
be approximated by (1 − π)n , since each individual sampled has a probability 1 − π of
testing negative, independently of others in the sample. In this case, the sample size problem
reduces to finding the maximum n such that (1 − π0)

n ≤ a, which implies n ≥ log a
log(1−π0)

(see Cannon 2001, Eq. 4.5). For example, the number of negative tests required to declare
the prevalence less than 1%with 95% confidence is n = log(0.05)/ log(0.99) = 298, which
agrees almost exactly with the Bayesian solution with a uniform prior on the prevalence.

5. A BETA BINOMIAL MODEL FOR POPULATIONS WITH
CORRELATED DISEASE STATES AMONG INDIVIDUALS

We now consider a model in which the disease status of individuals is correlated. Specifi-
cally, suppose that Y ∼ BetaB(N , π, ρ). A Bayesian approach to predictive inference about
the prevalence requires the specification of a prior distribution for both π and ρ. Since both
lie in the interval (0, 1), a natural choice of prior for the pair is a product of independent
beta distributions. Figure1 shows the marginal distribution of Y for various choices of the
beta priors including uniform distributions and priors that concentrate the latent prevalence
near zero and/or the correlation near one. Of particular note is that, when the correlation is
high (1b and 1d), the distribution of Y is concentrated at Y = 0 (all disease free) and Y = N
(all diseased).

Under the beta-binomial model, the distribution of the number of positives in a sample of
size n is also beta-binomial; specifically, Ys |(π, ρ) ∼ BetaB(n, π, ρ) (see Appendix A.1).
If the sensitivity is less than one, the probability of X ≤ Ys positive tests is given by

P(X = x |π, ρ) =
n∑

k=x

(
k

x

)
px

seqk−x
se BetaB(k; n, π, ρ), (6)

where qse = 1 − pse.
However, the assumption of equicorrelated disease status for all pairs of individuals in the

entire population is unrealistic in practice. Social structuring in wild animal populations is
ubiquitous across taxa (Wilson 1975), and accounting for this biological realism is critical
for estimating disease prevalence or calculating sample sizes to determine disease-free
thresholds (Cannon and Roe 1982). To this end, we consider a population consisting of c
clusters of sizes, N1, . . . , Nc, so that N = ∑c

i=1 Ni , and suppose that the number of infected
animals in cluster i is Yi ∼ BetaB(Ni ;π, ρ) independently for i = 1, . . . , c. Suppose that a
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Figure 1. Marginal distributions of the number of positives in populations of size five with independent beta
priors on the prevalence and correlation parameters .

sample of size n is selected from the population. Let n = (n1, . . . , nc) denote the vector of
counts selected from the clusters and let P(n) denote the probability of this configuration
of counts. For example, under simple random sampling

P(n) =
(

N

n

)−1 c∏
i=1

(
Ni

ni

)
, n ∈ S, (7)

where S = {n|0 ≤ ni ≤ Ni , i = 1, . . . , c,
∑c

i=1 ni = n}. However, in general, all
that is required is for the conditional probability P(n), of any sample configuration, given
the cluster sizes, to have a known form. For example, in situations in which the clus-
ters can be identified in advance, then two-stage cluster sampling, or a stratified design
could be used. Let Yis denote the number of infected animals selected from cluster i .
Then, Y1s, . . . , Ycs are conditionally independent given (n1, . . . , nc) and (π, ρ), with
Yis |ni , (π, ρ) ∼ BetaB(ni , π, ρ) for i = 1, . . . , c. In particular, given n, the posterior
distribution of (π, ρ) if Ys = ∑c

i=1 Yis = 0, that is, if the sample is all negative, is

pc(π, ρ|n, Ys = 0) ∝
{

c∏
i=1

BetaB(0; ni , π, ρ)

}
Beta(π;απ, βπ )Beta(ρ;αρ, βρ), (8)
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with modifications to the bracketed product terms of the form (6) if the sensitivity is less
than one. The predictive distribution of Y−s = (Y1−s, . . . , Yc−s) is therefore

P(Y−s = y−s |Ys = 0) =
∑
n∈S

∫ 1

0

∫ 1

0
P(n)pc(π, ρ|n, Ys = 0)

c∏
i=1

{
BetaB(yi−s; Ni − ni , π0,ni , ρni )

}
dπdρ, (9)

where π0,ni = α/(α +ni +β) and ρni = 1/(1+α +ni +β). Equation (9) assumes that the
actual configuration of the sample, n, is unobserved and so it is necessary to sum over the set
S of all possible configurations. This will always be the case for determining the sample size
required for a desired detection probability, for example, where the sample is hypothetical
(as opposed to observed). In this setting exact calculation of the posterior probabilities
in (9) is infeasible. However, a Monte Carlo approach is possible as follows: a) simulate
cluster sample sizes, n = (n1, . . . , nc), from the sampling probability model P; b) for a
given sample configuration, simulate (π, ρ) from the conditional posterior (8); and c) for
given n and (π, ρ) simulate independent beta-binomials, Yi−s ∼ BetaB(Ni −ni , π0,ni , ρni ),
i = 1, . . . , c.

Simulating from the conditional posterior (8) is accomplished by rejection sampling using
the product of priors for π and ρ as the proposal distribution. (A justification for this choice
is given later in Sect. 6.) Specifically, let f (π, ρ) denote the product of beta-binomials on
the right side of Eq. (8) and let M = supπ,ρ f (π, ρ). Then

1. Generate three independent variables, u ∼ Beta(απ , βπ ), v ∼ Beta(αρ, βρ) and
w ∼ Beta(1, 1).

2. Accept (u, v) as a draw from the conditional posterior ifw < f (u, v)/M . Otherwise,
repeat step 1.

As noted above, sampling schemes other than simple random sampling can be accom-
modated. For example, a sampling scheme in which a subset of the clusters (e.g., social
groups) is over-sampled relative to the remaining clusters (high-harvest sampling, Belsare
et al. 2020) can be modeled as a product of independent multivariate hypergeometric dis-
tributions. Another modification that is easily accommodated is to allow the cluster sizes to
be random with a known probability distribution. This only requires part a) of the Monte
Carlo simulation algorithm to be modified.

A complication that arises in the case of positive tests (Ys > 0) is that, if the clusters
the positives came from are unknown, then all possible allocations of the positives to the
clusters need to be considered. On the other hand, if each sampled animal can be clearly
identified with a particular cluster, perhaps because the clusters are distinct locations that are
isolated fromone another, then it is straightforward tomodify (8) and (9) to allow for positive
tests. In fact, in this case the summation in (9) is not required and the posterior predictive
distribution can, in principle, be calculated via numerical integration. Alternatively, aMonte
Carlo approach involving only steps (b) and (c) could be used. Another comment is that,
if the sample sizes are negligible relative to the cluster sizes, the sampling distribution,
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P , can be replaced by its limiting version; for example, a multinomial distribution in the
case of multivariate hypergeometric sampling. Similarly, it is shown in Appendix A.2 that,
if Y ∼ BetaB(N , π, ρ), then Y/N converges to a beta variable with mean π and variance
π(1−π)ρ as N diverges to infinity. Finally, we note that the clusteringmodel described here
includes the situation inwhich part of the population consists of independent singletons, such
as the white-tailed deer population described in the case study, because the beta-binomial
distribution (1) reduces to a Bernoulli distribution with success probability α/(α +β) when
N = 1.

6. RESULTS

In order to investigate the sensitivity of the posterior in (8) to the choice of prior we
consider a sample of size n = 100 drawn from a population of N = 1000 consisting of
c = 200 clusters each of size 5. Suppose that the sample was drawn from 85 clusters, 3 from
1 cluster, 2 from 13 clusters, and 1 from 71 clusters. We consider two outcome scenarios:
(i) no disease is detected or Ys = 0; and (ii) Ys = 15 positive tests, 11 associated with
singletons and 4 from two of the cluster samples of size 2. In each outcome scenario three
prior specifications (each a product of betas) is considered: (I) Beta(1, 1) × Beta(1, 1);
(II) Beta(1, 9) × Beta(9, 1); and (III) Beta(1, 19) × Beta(5, 1). Tuyl et al. (2008) discuss
examples in which there are no successes in a binomial experiment and argue that the
Beta(1, 1) Bayes-Laplace (uniform) prior is appropriate for that setting. However, the two
other priors chosen for π can be justified on the grounds that we are interested in detecting
and determining the prevalence of rare diseases and so priors that give more weight to values
near zero are justified and are likely to be closer to the marginal posterior than a uniform
prior. Table 2 tabulates the means and standard deviations of the priors and posteriors for all
six combinations of outcome and prior specification. Summarizing the posteriors in terms
of their means and standard deviations is justified by the fact that the marginal posteriors
resemble beta distributions with the same first two moments; see Fig. 2 for illustrations of
this claim. Furthermore, for each of the six settings we generated 1000 draws from the
joint posterior and tested the null hypothesis of independence using Hoeffding’s D-test
(Hoeffding 1948). In every case the test failed to reject independence indicating, given the
large sample size, that the posteriors for π and ρ are almost independent.

The take-away from Table 2 is that the posteriors for π are relatively insensitive to the
choice of prior. We used a Beta(1, 9) prior for π in the computations described below
because it results in a more efficient rejection sampler than a uniform prior. On the other
hand, the posteriors for ρ are very sensitive to the choice of prior. In particular, when no
disease is detected, the priors and posteriors are almost indistinguishable. Thus, in practice,
the choice of prior for the correlation parameter must be based on data from other sources
and/or biological considerations concerning the disease and species being investigated.

Figure 3 compares cumulative distributions for the number of diseased individuals esti-
mated under two different sampling scenarios and two different correlation structures for
populations consisting of 200 clusters with sizes drawn from a discrete distribution on the
integers between 3 and 9 to reflect the sizes of female and fawn social groups of white-tailed
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Table 2. Comparisons of the means and standard deviations (in parentheses) between prior and posterior densities
under senario (i) (no disease detected) and scenario (ii) (disease detected)

Prior distributions Probability, π Correlation, ρ
π × ρ Prior Posterior Prior Posterior

No disease detected
Beta(1, 1) × Beta(1, 1) 0.500 (0.289) 0.0106 (0.0106) 0.500 (0.289) 0.513 (0.289)
Beta(1, 9) × Beta(9, 1) 0.100 (0.090) 0.0104 (0.0103) 0.900 (0.090) 0.901 (0.090)
Beta(1, 19) × Beta(5, 1) 0.050 (0.047) 0.0093 (0.0092) 0.833 (0.141) 0.836 (0.139)
Disease detected
Beta(1, 1) × Beta(1, 1) 0.500 (0.289) 0.1578 (0.0386) 0.500 (0.289) 0.794 (0.179)
Beta(1, 9) × Beta(9, 1) 0.100 (0.090) 0.1463 (0.0360) 0.900 (0.090) 0.925 (0.070)
Beta(1, 19) × Beta(5, 1) 0.050 (0.047) 0.1321 (0.0328) 0.833 (0.141) 0.889 (0.101)
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Figure 2. Priors and posterior predictive densities for π (a, c) and ρ (b, d). In each case a beta approximation with
matching mean and standard deviation is overlaid on the posterior density. Panels 2a and 2b concern scenario (i)
(no positive tests) with beta(1, 9) and beta(9, 1) priors for π and ρ respectively. Panels 2c and 2d concern scenario
(ii) (15 positive tests) with the same priors. The y-axis in 2a is truncated at 12 .
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Figure 3. Cumulative predictive distributions of the number of diseased individuals in a population of size 1000
consisting of 200 clusters of random sizes between 3 and 9, based on an all negative sample of size 100. Panels 3a
and 3b concern situation in which the within cluster correlation is low and high respectively. The four distributions
in each panel correspond to two sampling schemes (SR and HH) and two specificity values (1.0 and 0.8).

deer (i.e., our case study). Specifically, the cluster sizes were drawn using probabilities
of integers 3 through 9 proportional to those of a Poisson distribution with a mean of 5.
Figure3a concerns a situation in which the within cluster correlation is low; specifically,
ρ ∼ Beta(1, 9) resulting in an average correlation of 0.1. The two sampling schemes being
compared are simple random (SR) and high-harvest (HH), and both concern a situation
with an all negative sample of size n = 100. In the HH case, we assumed disproportionate
harvest from available clusters, with 75 individuals drawn from 30 clusters and 25 from the
remaining 170 clusters. Figure3b concerns a situation in which thewithin cluster correlation
is high; specifically, ρ ∼ Beta(9, 1), so the average correlation is 0.9. A takeaway from this
comparison is that SR and HH sampling predict prevalence almost equally well when the
correlation is low, a result that is consistent with the sampling scheme being irrelevant if
the disease statuses of individuals are all independent binary variables with the same prob-
ability of being positive. On the other hand, Fig. 3b compares the two sampling schemes
when the within cluster correlation is high. In this case, HH sampling results in a predictive
distribution that is stochastically larger than SR indicating the need for larger sample sizes
with HH sampling. For example, the estimated probabilities that the prevalence is less than
2% are .878 and .852 for SR and HH sampling, respectively, in the low correlation setting,
and 0.892 and 0.733 for SR and HH, respectively, in the high correlation setting. Each pre-
dictive distribution was based on simulating 1000 samples and took about 10 s on a desktop
computer with a single processor.

In fact, the predictive distribution for the prevalence is stochastically smaller for SR sam-
pling with high within cluster correlation relative to the low correlation setting because the
effective population size is smaller. On the other hand, HH sampling results in a stochas-
tically larger predictive distribution for the prevalence when there is high within cluster
correlation because it is wasteful to sample multiple individuals from the same clusters, and
concentrating sampling in a small percentage of clusters does precisely that.

An alternative way to illustrate differences between SR and HH sampling is by sampling
directly from simulated populations with low and high within cluster correlations. A key
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difference, however, is that this approach is not conditional on a real or hypothetical sam-
ple, so there is no ‘learning’ from the data. Suppose that the low correlation populations
are constructed by (a) again generating 200 cluster sizes independently from the discrete
distribution on the integers 3 through 9 described earlier; (b) generating π and ρ as Beta(1,
99) and Beta(1, 9) independently; and (iii) generating the number of diseased individuals
in the clusters independently (given π and ρ) as BetaB(Ni , π , ρ). We repeated this process
10,000 times, and, in each case, a sample of size 100 was drawn both by SR and by HH
sampling. As in the Bayesian analysis, HH sampling consisted of drawing 75 individuals
from 30 high-harvest clusters and 25 from the remaining 170 clusters. High correlation
populations were constructed in the same way except that ρ was generated as Beta(9, 1).
Thus, in the low population case the average correlation was 0.1 and in the high population
it was 0.9. In both cases, the average prevalence was 0.01.

For each sampling scheme and correlation combination we estimated the detection prob-
ability by the proportion of times there was at least one positive in the sample. In the low
correlation setting the estimates were 0.501 and 0.483 for SR and HH sampling respec-
tively, indicating little difference between the two sampling schemes in agreement with the
(conditional) Bayesian analysis. However, in the high correlation setting the corresponding
estimates were 0.455 and 0.355, the lower detection probability with HH sampling indicated
the need for larger sample sizes. (The Monte Carlo standard errors for these estimates are
all less that 0.005.)

7. DISCUSSION

Wildlife health monitoring is the science of seeking out and evaluating a sample of
animals from a free-ranging population to obtain a probabilistic statement about disease
prevalence (Heisey et al. 2014). The Bayesian modeling approach described here highlights
the key roles played by the sampling scheme and correlation between animals. It leads
to similar conclusions as classical frequentist approaches in the case of simple random
sampling with no correlation, as described in Cannon (2001), for example, and to complex
simulation-based, species-specific, approaches such as Belsare et al. (2020).

Unlike previous literature on the topic, ourmodeling approach is species agnostic, linking
only to the biology of the host through the scale of the clusters, the inferred source of the
correlation, and the relevancy of the two to the degree to which the host species mixes on the
landscape. It allows practitioners of wildlife health to consider how such structures affect
sample sizes requirements for diseases that are heterogeneously distributed across large
landscapes. We acknowledge, however, that there is a need for additional refinements to
better hone ourmodel to the diagnostic test and host. For example, to incorporate uncertainty
about the accuracy of the test we could generalize the model by putting a prior distribution
on the sensitivity. Other modifications could include modeling host-specific factors such as
sex, age, season, or cluster sizes by developing a beta-binomial generalized linear model that
allows both the prevalence and correlation parameters to vary as a function of covariates
(see e.g., Yee 2015). Such a model would require multiple independent counts, perhaps
from spatially distinct areas within a population, and would potentially be much more
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informative about the correlation parameter. More generally, one might consider allowing
for correlation between clusters by modeling the locations at which animals were sampled
as a marked spatial point process (Cressie 1993), with the marks being 0/1 indicators of
disease status.

More can be done to hone the model to specific disease systems. For example, in our
case study we did not address the epidemiological process required for a deer to incur CWD
then transmit the disease to others within its social group, nor the ways CWD can transmit
between social groups when clusters overlap in home range or individuals mix differently
outside of the fall season. One could further argue that depending on the state of the outbreak
when certain animals test positive for CWD, professionals may not bother to validate those
results, lending the need for an adaptive handling of sensitivity. Indeed, natural next steps in
the development of this model are to explicitly accommodate such complications to better
mesh the model with specific challenges faced in practice.

While one can argue the details of system complications ad infinitum, such focus thwarts
our ability to discover key patterns that span systems of interest now. For example, a key
take away from this theoretical work is that (high) positive correlation between the disease
statuses of individuals in a population decreases the effective population size. As a conse-
quence, the SR sample size required to estimate prevalence to any desired level of accuracy
can actually be lower. Taking this to an extreme, if the population is perfectly correlated,
then the individuals are either all disease negative or all positive, and a sample size of one
is sufficient to infer disease status at the population scale. However, other (perhaps more
realistic) sampling schemes, such as HH sampling (Belsare et al. 2020), have the opposite
effect in the presence of within cluster correlation by increasing the probability of sampling
multiple times from the same clusters, thereby decreasing the effective sample size.

Sampling wildlife populations to detect diseases of interest is nontrivial and requires
coordinated efforts in time and space. It is typically not possible or practical to implement
optimal sampling design elements, and host animals along with infected individuals are
rarely, if ever, distributed randomly throughout a landscape. While baseline sample sizes to
detect wildlife diseases at prescribed prevalence and confidence levels are available (Cannon
and Roe 1982), they do not account for the biological realities of how the host and infected
animals are distributed in space and how disease spreads between individuals. This work
provides a way of addressing these issues using a relatively simple, and computationally
tractable, Bayesian model, and provides new insight on how practitioners of wildlife health
can more appropriately sample given the shared characteristic of clustering across free-
ranging wildlife taxa.
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APPENDIX

A.1

Suppose that Y ∼ BetaB(N , α, β). Then

1. Ys ∼ BetaB(n, α, β); and

2. the conditional distribution of Y−s given Ys = ys is given by

P(Y−s = y−s |Ys = ys;α, β) =
(

N − n

y−s

)
Be(y + α, N − y + β)

Be(ys + α, n − ys + β)
.

where y = ys + y−s . That is, Y−s |Ys, α, β ∼ BetaB(N − n, ys + α, n − ys + β).

Proof. Recall that, if Y |P ∼ B(N , P) and P ∼ Beta(α, β), then Y ∼ BetaB(N , α, β).
But, if Y |P ∼ B(N , P) then, given P , Ys and Y−s are conditionally independent binomials,
with Ys |P ∼ B(n, P) and Y−s ∼ B(N − n, P). Hence, the marginal distribution of Ys is
BetaB(n, α, β) and the conditional distribution of Y−s given Ys is the joint

P(Ys = ys, Y−s = y−s |α, β) =
∫ 1

0

(
n

ys

)
pys (1 − p)n−ys

(
N − n

y−s

)
py−s (1 − p)N−n−y−s

pα−1(1 − p)β−1

Be(α, β)
dp

=
(

n

ys

)(
N − n

y−s

)
Be(y + α, N − y + β)

Be(α, β)

divided by the beta binomial marginal distribution for Ys . 	


A.2

The moment generating function (mgf) of Y ∼ Beta(N , π, ρ) is given by

my(t) = 2F1(−N , α, α + β, 1 − et ) = 1 +
N∑

k=1

(−1)k
(

N

k

)
(α)k

(α + β)k
(1 − et )k

where α and β are related to π and ρ via the transformation (2) and (α)k = ∏k−1
i=0 (α + i)

if k > 0 (Johnson et al. 2005, Chapter 6). Hence, the moment generating function of Y/N
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is mY (t/N ). Using the approximation, 1 − et/N ≈ −t/N , for large N we obtain

mY (t/N ) = 1 +
N∑

k=1

(α)k

(α + β)k

tk

k!
k∏

i=1

N − k + i

N

which converges to

1 +
N∑

k=1

(α)k

(α + β)k

tk

k!

as N → ∞, the latter being the moment generating function of a Beta(α, β) distribution.
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