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Spatiotemporal Exposure Prediction with
Penalized Regression

Nathan A. Ryder and Joshua P. Keller

Exposure to ambient air pollution is a global health burden, and assessing its rela-
tionships to health effects requires predicting concentrations of ambient pollution over
time and space. We propose a spatiotemporal penalized regression model that provides
high predictive accuracy and greater computation speed than competing approaches.
This model uses overfitting and time-smoothing penalties to provide accurate predic-
tions when there are large amounts of temporal missingness in the data. When compared
to spatial-only and spatiotemporal universal kriging models in simulations, our model
performs similarly under most conditions and can outperform the others when temporal
missingness in the data is high. As the number of spatial locations in a data set increases,
the computation time of our penalized regressionmodel ismore scalable than either of the
comparedmethods.Wedemonstrate ourmodel using total particulatemattermass (PM2.5
and PM10) and using sulfate and silicon component concentrations. For total mass, our
model has lower cross-validated RMSE than the spatial-only universal kriging method,
but not the spatiotemporal version. For the component concentrations, which are less fre-
quently observed, ourmodel outperforms both of the other approaches, showing 15%and
13% improvements over the spatiotemporal universal krigingmethod for sulfate and sili-
con. The computational speed of ourmodel also allows for the use of nonparametric boot-
strap formeasurement error correction, a valuable tool in two-stage health effectsmodels.

Supplementary materials accompanying this paper appear online.

Key Words: Particulate matter; Sulfate; Silicon; Air pollution; Universal kriging;
Shrinkage estimation.

1. INTRODUCTION

Long- and short-term exposures to total particulate matter (PM) are causally related
to adverse respiratory and cardiovascular health outcomes (U.S. Environmental Protection
Agency 2019), and PM contributes to 4.7% of disability-adjusted life years (DALYs) in
all ages (95% uncertainty interval 3.8–5.5) (Murray et al. 2020). PM is categorized by
size, typically into ranges 10 μm or 2.5 μm and smaller, denoted as PM10 and PM2.5,
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respectively. PM is itself a mixture of many different components, such as nitrates, sulfates,
organic matter, metals, and soil dust. The health effects of each component can vary, with
sulfate (SO2−

4 ) identified as one that is associated with respiratory and cardiovascular health
effects (U.S. Environmental Protection Agency 2019).

Epidemiological studies investigating relationships between air pollution and adverse
health outcomes rely on the prediction of ambient PM concentrations for subjects across
space and/or time. PM is subject to widespread regulatory monitoring in many countries,
and these measurements can be used to develop prediction models. In the USA, regulatory
monitors are often placed preferentially in urban centers or near known sources and vary in
both method and frequency of measurements. PM and its components, which are measured
at a subset of monitors, are subject to seasonal trends that can lead to large and highly
variable measurements in some regions of the USA, making accurate predictions of ambient
concentrations challenging. Other characteristics that can make predicting concentrations
difficult include: differences in instrument tolerances or protocols, extreme events such as
wildfires or dust storms, and the overall size of the data set. Thus, predicting a spatiotemporal
exposure surface requires efficient use of both spatial and temporal information and can
benefit from computationally efficientmethods. The structure ofmonitoring data for specific
components is similar to total PM, although components are often measured with more
sparsity in space and time.

There are a variety of spatial or spatiotemporalmodels thatmay be used to predict ambient
pollutant concentrations. These include land-use regression (Beelen et al. 2013; Hoek et al.
2008), universal kriging (Sampsonet al. 2013;Xuet al. 2019), penalized regression (Paciorek
et al. 2009; Bergen and Szpiro 2015; Keet et al. 2018), Gaussian processes (GP) (Datta et al.
2016; Pati et al. 2011), Gaussian Markov random fields with stochastic partial differential
equations (INLA-SPDE) (Cameletti et al. 2013), quantile methods (Reich et al. 2011),
spectral approaches (Reich et al. 2014), convolutional neural networks (Di et al. 2016), and
models using deterministic atmospheric chemistry simulation output (Berrocal et al. 2010,
2012;Wang et al. 2016) and satellite measurements (Young et al. 2016; Berrocal et al. 2020).
Different modeling approaches can also be combined into ensemble models (Di et al. 2020,
2019).

In a review of spatiotemporal exposure modeling approaches, Berrocal et al. (2020)
compared the performance of common methods using daily PM2.5 measurements across
the USA. They found that universal kriging (UK), when fit separately to each day of data,
outperformed all other testedmodels, including neural networks, random forests, and inverse
distance weighting. The density of PM2.5 monitoring is sufficient that a large number of
observations are available each day, allowing the empirical best linear unbiased predic-
tor from a kriging model to perform well (Schabenberger and Gotway 2004). However,
fitting UK separately on each day of measurements ignores temporal information, which
provides an opportunity for improvement. A spatiotemporal model developed by Lindström
et al. (2014) extends universal kriging by combining a smooth temporal trend with spa-
tially varying coefficients. This more flexible and complex model is implemented in the
SpatioTemporal package in R.

One weakness of more complicated models is poor scaling in computation time. For
both UK and the SpatioTemporal (ST) model, the computational burden lies in an
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iterative optimization technique to estimate covariance parameters (e.g., sill or range). High
computation time can prohibit the use of bootstrap-based predictive variance estimates or
measurement error corrections. These bootstrap approaches can capture uncertainty from
monitoring site selection in addition to the uncertainty from parameter estimation that is
found in prediction variances (Szpiro and Paciorek 2013; Bergen et al. 2016;Keller and Peng
2019). In this paper, we propose a penalized regression model that penalizes overfitting and
smooths over predictions at adjacent time points. The proposed model is computationally
fast and thereby feasible for bootstrapping while also providing accurate predictions over
time and space.

Our motivation for fitting a spatiotemporal surface comes from ambient air pollution
exposures, so we approach model description and performance with respect to this applica-
tion, but the method could be applied to other contexts. In Sect. 2, we introduce our model
and its methods of fitting. In Sect. 3, we evaluate the method in a set of simulations under a
variety of conditions and compare against the predictive accuracy of UK and ST. In Sect. 4,
we apply the method to daily measurements of total PM2.5, total PM10, sulfate, and silicon
concentrations from 2017, and in Sect. 5, we provide a discussion.

2. MODEL

We propose a penalized regression model where, in addition to the typical overfitting
penalty, there is a penalty that smooths over adjacent time points. By smoothing temporally,
our method can take advantage of data from the previous and following days where spatial-
onlymethods cannot. Furthermore, unlike the SpatioTemporalmodel, this penalization
approach does not require the assumption of a specific smooth time trend or temporal
covariance function. With our approach, we aim to match or improve on the predictive
accuracy of other common methods while being computationally faster.

2.1. PENALIZED REGRESSION MODEL

The objective function for our model is:

minimize
βt∈Rp for 1≤t≤T

n∑

i=1

T∑

t=1

Ii t
(
xit − r�

i t βt

)2 +
T∑
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i(t−1)βt−1). (1)

The first term in (1) is quadratic loss and uses the indicator value Ii t to only include time
points (t) and locations (i)where xit exists, e.g., where an ambient air pollutant concentration
wasmeasured. There are n total unique sites (locations) and T total dates (time points) where
we could have observed xit . The vector ri t contains p spatiotemporal covariates (Sect. 2.2)
for date t and site i , including an intercept, while βt is a p-vector of model coefficients
for each date. We center and scale the covariates in ri t by time point. The second term,
g1, discourages overfitting, and may be an L2, L1, or Elastic Net penalty. We use an L2
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penalty here, i.e., g1(λ1,βt ) = β�
t �1βt , where �1 is a p× p diagonal matrix comprised of

only the values λ1 and 0. This matrix allows penalization of all or specific model predictors
using the value λ1 and always excludes the intercept from penalization. See Appendix in
Supplementary Material for specific construction.

The third term in (1) is g2(r�
i t βt , r�

i(t−1)βt−1) = (r�
i t βt − r�

i(t−1)βt−1)
2. This term

smooths over predictions that are adjacent in time by penalizing their differences and makes
ourmodel similar to trend fitting or fused lasso (Petersen andWitten 2019). Every prediction
is smoothed to its immediate temporal neighbors, even if the observation at that time and
place is missing. When λ2 > 0, our model must predict using information across consecu-
tive time points, but without the complication of spatiotemporal interaction and increased
parameterization.

To make a spatiotemporal exposure surface, we must be able to predict exposure
levels at any location and on any day in the spatiotemporal domain. The vector β̂ =
(̂β�

1 , β̂�
2 , . . . , β̂�

T )� that minimizes the objective function (1) includes p model coeffi-
cients for every date in the temporal domain. We can then predict an exposure level at any
date and at any location for which we have the same covariate information used to fit the
model, and can aggregate the resulting predictions to any desired spatial unit.

2.2. SPATIAL AND TEMPORAL COVARIATES

All spatial information for the model is provided through a set of spatial predictors
included in ri t . For the sake of flexibility and simplicity, we use thin plate regression splines
(TPRS) (Wood 2003). By fitting TPRS to site locations, we have a set of predictors that
can vary in quantity through specification of degrees of freedom, i.e., the number of basis
functions produced, and do not require manual tuning of knot placement. TPRS are also
scaleable to a large number of site locations and provide covariate values at any location we
want to predict. With this predictive flexibility comes the cost of the extra parameterization
and computation time of adding a possibly large set of predictors to the model. We can
also provide spatiotemporal covariates to the model. For our analysis of ambient pollutant
concentrations in Sect. 4, we use just atmospheric chemicalmodel output andmeteorological
data, but other variables such as land-use measures could be included if desired.

2.3. PARAMETER ESTIMATION

We rewrite the objective function (1) in matrix notation for simplicity:

min
β

[
(x − Robsβ)�(x − Robsβ) + β��1β + λ2β

�R�D�DRβ
]
. (2)

The first sum in Eq. (2) is standard least squares loss which we write as the inner product
of the difference in predicted and observed exposure vectors. To do this, we combine the
covariate vectors (ri t ) for every observed time point at a site i in a row-wise manner to create
a block-diagonal matrix. The n resulting block-diagonal matrices are stacked to form the
matrix Robs (see Appendix in Supplementary Material). Then the vector Robsβ is the set
of fitted values. The second sum in (2) is an L2 penalty on the full coefficient vector β. We
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create a set of T �1 matrices (as in Equation (1)) and stack them to form the block-diagonal
matrix �1.

To allow the temporal smoothing of predictions at unobserved date and site combinations,
a “full” Rmatrix canbemadeby including covariate values for all site anddate combinations,
instead of for just those that were observed. The third sum in (2) is then written as the inner
product of the vector DRβ, where D is a diagonal block matrix and each of its n blocks
is a first-order difference matrix. Every row in a block of the D matrix contains just zeroes
and the pair of values -1 or 1 where the vector Rβ contains two predictions “adjacent”
in time. The specific arrangements of all objects listed here are provided in Appendix in
Supplementary Material.

When using an L2 penalty for the overfitting term in the objective from Eq. (2), a closed-
form solution for β exists. Since the matrix R�

obsRobs + �1 + λ2R�D�DR is positive
definite for sufficiently large λ1 and λ2, we can find its inverse to produce:

β̂ =
(
R�
obsRobs + �1 + λ2R�D�DR

)−1
R�
obsx. (3)

The closed-formsolution is fast to computewhen taking advantageof the sparseness of the
matrices R, Robs , and D. If instead of theL2 penalty,we use a non-convex overfitting penalty,
or if we were to add further penalty terms, the optimization problem may no longer have a
closed-form solution. A general optimization strategy, such as alternating direction method
of multipliers (ADMM) (Boyd et al. 2010) is then required, which increases computational
cost.

2.4. SELECTION OF PENALTY VALUES

We select the penalty parameters λ1 and λ2 using tenfold cross-validation (CV), which
provides an estimate of out-of-sample root mean square error (RMSE). When cross-
validating to select λ1 and λ2, we can use a coarse grid, e.g., every combination of 5
values for each penalty a factor of 102 apart. If a basin in the cross-validated RMSE val-
ues is identified, we can resume the search on a finer grid, e.g., combinations of values a
factor of 10 apart, and repeat until we converge upon an approximately optimal fit. Using
all combinations of values for the two penalties is comprehensive but slow. The alternative
is to select λ1 first, by setting λ2 = 0 and choosing the λ1 value that provides the lowest
cross-validated RMSE. Then we repeat the process for values of λ2 while setting λ1 to
the previously selected value. This sequential method of selecting the two penalties sacri-
fices some predictive accuracy if the chosen values differ from what is selected by jointly
searching over every combination of values, but it requires considerably fewer model fits.
In Sect. 4, we find that the two methods select the same set of penalty values when modeling
ambient PM2.5 concentrations.
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3. SIMULATION

3.1. SETUP

For a variety of simulated data conditions, we compare our method to universal kriging
and the SpatioTemporalmodel. Since the motivating application for our method is PM
and its components, we create data sets with some characteristics matching the concen-
trations modeled in Sect. 4. Specifically, the simulated data have periodic (every three or
six days) measurement by some proportion of “monitoring sites” and are correlated with a
spatiotemporal observed covariate.

We simulate exposure data spatially over a [0, 1] × [0, 1] square using a 64× 64 grid of
points and temporally over a set of 60 time points. The model for simulated mean exposures
at any grid points s and time point t is

μ(s, t) = μ0(s, t) + Z1(s, t) + Z2(s, t), (4)

where μ0(s, t) is a baseline spatiotemporal surface that is considered an observed covari-
ate, and is unchanged for every simulated sample. All three spatiotemporal surfaces
μ0(s, t), Z1(s, t), and Z2(s, t) are Gaussian processes generated with a Gneiting-style
non-separable spatiotemporal covariance function (Gneiting 2002). We use the R package
RandomFields to simulate the processes using the specific covariance structure

C(h, u) = 1

(ψ(u) + 1)
φ

(
h

(ψ(u) + 1)1/2

)
, (5)

for spatial distance h and change in time u (Schlather et al. 2015). We use an exponential
covariance function forφ(), with a range and sill both equal to 1 (i.e.,φ(w) = e−w). Forψ(),
we use fractionalBrownianmotion, a generalized randomwalk that depends on aHurst index
(H). Setting 1/2 < H < 1 produces walks with positive correlation between increments,
while for 0 < H < 1/2 increments are negatively correlated and the trend will alternate
more often in shorter time spans. We generate μ0(s, t) using H = 0.25, allowing for some
day-to-day fluctuation, and fixH= 0.95 for Z1(s, t), resulting in amore consistent long-term
trend. The Hurst index for Z2(s, t) we vary across simulations to be H = 0.5 (standard
Brownian motion with independent increments) or H = 0.05 (high daily fluctuation).

From the 4096 grid points, we randomly select 500 training and 1000 testing locations
as “monitors” and assign them simulated mean values for each of the 60 time points. To
represent measurement error in the training set, we add the error term εt ∼ N (0, Iσ 2)

to each set of “monitor locations” for each time point. Thus, the training data follow the
model Y(s, t) = μ(s, t) + εt . To evaluate predictive accuracy, we compare each model’s
predictions for the testing data with the “true” simulated mean values μ(s, t) at the testing
data time locations.

We simulate while adjusting three settings: the error standard deviation (σ = 0.5 or 1.5),
the temporal relation of Z2(s, t) (H = 0.5 or 0.05), and the amount of temporal missingness
in the training data. As previously mentioned, some AQSmonitors record values every third
or every sixth day. These monitors generally follow synchronized schedules, so that each
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monitor observed every third day will record a measurements on the same schedule, leaving
periods when only monitors on a daily schedule are observed. We then control the daily
missingness in our training data by the proportion of monitoring locations that are observed
daily, every third, or every sixth day, each matching the schedule of others in its scheme. For
the sake of comparison, we perform another simulation study using the same proportions
of sites by observation frequency, but stagger the observation schedules so that on any
given day there may be sites that record daily, every third day, and every sixth day. In this
alternative set of simulations, we repeat all settings adjustments as in the original, so that
the only difference is that the non-daily schedules of monitoring sites are evenly distributed
across their possible starting dates. We report the results of this secondary simulation study
in Figure S1 of Supplementary Material.

Under eachdistinct set of data conditions,we take 100different seeded samples of training
and testing data. The testing data are predicted from the training data using our model from
Equation (1),UK, andST. Eachmodel uses the spatiotemporal covariateμ0(s, t), unchanged
from sample to sample, as a predictor. To fit our penalized regression model, the number
of TPRS basis functions used as additional spatial covariates is selected via tenfold cross-
validation from the possible values 5, 10, 20, 50, 100, or 175. The penalities λ1 and λ2 are
also chosen via tenfold CV from the sets of possible values 0.1, 1, 10, 50, 100, 200, 300,
400, 500, and 0.001, 0.01, 0.1, 1, 10, 50, 100, respectively. Here we select λ1 first before
selecting λ2, as mentioned in Sect. 2.4. We use UK per Berrocal et al. (2020), with a median
set of exponential covariance parameter values from maximum likelihood fits at each time
point. The SpatioTemporalmodel we fit with a single basis function and an exponential
covariance structure with nugget for both the β-fields and the residual process ν (Lindström
et al. 2014).

3.2. RESULTS

We report the root mean square error (RMSE) values for each set of 100 simulated
samples and fits as boxplots in Fig. 1. There are results for the three tested models: penalized
regression, universal kriging, and SpatioTemporal, as well as for penalized regression
with only the L2 penalty (λ2 = 0), which is exactly ridge regression. We provide exact
median RMSE values and squared correlations between predictions and observations (R2)
in Table S1 in Supplementary Material.

Our model provides lower or matching RMSE values to universal kriging (UK) and ridge
regression (denoted by λ2 = 0) in every scenario, demonstrating good general predictive
accuracy for a spatiotemporal model and the usefulness of the time-smoothing penalty λ2.
The SpatioTemporal (ST) model produces the lowest RMSE values of all models in
each of the data scenarios except those when all locations are only observed every third or
every sixth day, where instead our penalized regression model outperforms all others. When
none of the monitors are observed daily, our penalized regression model will disregard the
completely missing dates and fit every third day as if it were daily (see Sect. 5 for discussion
on interpolation in this scenario). Here we see that despite requiring greater than forty times
the computation time (see Sect. 3.3), the ST model is more affected than our penalized
smoother when there are time points without any observations. If monitors on an every third
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Figure 1. Boxplots of RMSE values from each model on 100 replicate samples for each simulation scenario.
In order, the boxplots correspond to universal kriging (UK), our penalized regression model without its temporal
smoothing penalty (λ2 = 0), our model with the penalty (PR), and the SpatioTemporal (ST) model. Note that
H is the Hurst index for Z2(s, t), which results in a more variable temporal trend as H approaches zero, and that
σ is the standard deviation of non-spatial error added to the training data. The selected monitoring locations are
observed daily, every third day, or every sixth day, according to the proportions listed on the x-axis.

day and every sixth day schedule are measured in a staggered fashion, i.e., each day had
some monitors of each frequency (daily, every third, and every sixth) and every date has a
similar number of observations, then we do not see our model gain a predictive advantage
over ST (see Supplementary Material Figure S1 for the “staggered” simulation results). So
it is when dates are completely unobserved that our model is able to outperform ST.

The results in Fig. 1 highlight additional trends across different simulation settings. As
non-spatial error (σ ) increases, the fit of each model worsens. Similarly, more fluctuation
from day to day (H = 0.05) reduces predictive accuracy for every model, and it should be
noted that the ridge regression fits (λ2 = 0) lose more accuracy than our model with its
time-smoothing penalty (λ2 > 0). UK and both penalized regression models have larger
error when monitors are observed in all three frequencies (daily, every third day, and every
sixth day) than if every monitor is observed only every third or sixth day. Since UK is a
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Figure 2. Median computation times from 10 replicate simulated data sets with increasing numbers of monitoring
locations. For the “PR CV + Fit” time, we used the penalized regression model to select over penalty values and
number of TPRS basis functions, and then fit the resulting best model (“PR Fit”). The universal kriging fitting time
includes estimation of covariance parameters (“UK Cov + Fit”).

spatial-only model and fit onto the data from each day separately, having some days with
only a few measured locations can pose a serious issue for prediction.

3.3. COMPUTATION TIMES

In Eq. (3), we see that a sparse pT x pT matrix must be inverted to estimate β. To use
UK, we must first invert an nT by nT matrix (or T n x n matrices) to estimate covariance
parameters. Thus, our model scales better in computation time than UK with increasing site
locationsn. Figure2 showsmedian computation times for sets of 10 replicate samples of each
specified size (Ntrain = 500, 1000, 1500, or 2000) and compares our penalized regression
model with UK. These values are also reported in Table S2 in Supplementary Material.
Each of the fits was computed on the RMACC Summit Supercomputer, with a Intel Xeon
E5-2680 v3 processor at 2.50 GHz, using a memory cap of 50 GB of RAM.We see in Fig. 2
that the need for cross-validating over penalty values and amounts of TPRS basis functions
slows our model down to a speed similar to UK for some smaller sample sizes. However,
as Ntrain increases, our method is faster. We include the median computation times for the
onetime fit of sample training data that occurs after selecting penalty values and the number
of TPRS basis functions to include as predictors. When using nonparametric bootstrap to
correct measurement error, we would reuse the same model predictors and penalty values
so that only a single fit would be run on each resampling, which would require much less
time than refitting the UK model.

The SpatioTemporal model uses an optimization algorithm to produce maximum
likelihood estimates for its parameters in both space and time,which takes considerable time.
The median computation time of the ST model to fit the sample sets with Ntrain = 500 is
3.02h (181.2min) and is 91.44h (5,486.5min) when Ntrain = 2000. Thus, if resources are
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Figure 3. Average logged concentrations in 2017 of PM2.5, PM10, sulfate, and silicon at monitoring site locations
in the Eastern United States.

limited and the number of training site locations is high, ST becomes infeasible when the
other models would not.

4. ANALYSIS OF AMBIENT AIR QUALITY

4.1. MONITORING DATA

We demonstrate our method from Sect. 2 by predicting daily ambient total PM2.5, total
PM10, sulfate (SO

2−
4 ), and silicon (Si) concentrations for the eastern portion of the contigu-
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ous United States in 2017 (Fig. 3). By including only the Eastern United States, we limit
our analysis to monitors that are spatially dense and a region with a similar set of ambient
pollution sources. Sulfate is a component of PM that is by itself associated with respiratory
and cardiovascular health effects, while silicon is a component that is less studied (U.S.
Environmental Protection Agency 2019). Both species are observed less frequently than
total PM, and by different methods of measurement. We use Air Quality Systemmonitoring
data obtained September 18, 2019, to provide observed daily measurements of PM2.5 and
PM10 with temporal and geographical metadata. Similarly, we use AQS monitoring data
obtained October 16, 2019 for concentrations of sulfate and silicon at the PM2.5 size. In
addition, we use total PM2.5 concentrations (obtained June 22, 2021) as well as sulfate and
silicon PM2.5 concentrations (obtained January 14, 2022) from a different monitoring net-
work, the Interagency Monitoring of Protected Visual Environments (IMPROVE) program
(Malm et al. 1994). The locations measured by IMPROVE are largely rural, while the AQS
data come from mostly urban areas.

Nearly all sulfate and silicon concentrations are observed on every third or every sixth
day. Total PM2.5 and PM10 are measured by some monitors more often than every three
days. See Table 1 for the distribution of monitoring sites for each pollutant that record values
one-sixth of the year or less or between one-sixth and one-third of the year. Figure S2 in
Supplementary Material depicts the by-date monitoring frequency for each pollutant.

4.2. SPATIOTEMPORAL PREDICTORS

Wefit the data using ourmodel fromEq. (3) with TPRS aswell as exactly one or two other
types of predictors. The Community Multiscale Air Quality Modeling System (CMAQ) is a
mathematical model that uses atmospheric dispersion and emissions to estimate air quality
levels, providing a rich though uncalibrated spatiotemporal predictor for our model (Reff,
A. et al. 2020). The EPA provides daily predictions of PM2.5 from CMAQ on a 12km grid
across the USA. We use data acquired June 30, 2020, and match each monitor site with the
closest grid centroid. For an additional spatiotemporal predictor, we use a grid of estimated
3-hour average surface temperature values from the North American Regional Reanalysis
(NARR) obtained on July 9, 2021 (Mesinger et al. 2006). We again match each monitoring
site location to the closest grid point and estimate daily average temperature values for each
site.

4.3. DATA FILTERING AND TRANSFORMATION

Before estimating a spatiotemporal surface, we preprocess both the PM2.5 and PM10

concentration data in the following ways. We use only the federal reference method (FRM)
monitors, which use 24-hour gravimetric measurements (i.e., based on weighing mass accu-
mulated on a filter) and are the basis of assessing compliance with the National Ambient
Air Quality Standards. We remove concentrations of value zero, which are likely invalid
measurements. If monitors are collocated, we remove all but one measurement per day at
that site. We keep the measurement with the lowest “parameter occurrence code,” which
should be the earliest registered monitor at that site. Finally, to account for the skewedness
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of PM concentrations, we natural-log-transform the observed concentrations and CMAQ
values. See Table 1 for the summary statistics of the log-transformed PM2.5 and PM10 data
and Fig. 3 for their average log-transformed concentrations by monitor location in 2017.

Similar filtering is performed on the sulfate and silicon concentrations, although the com-
ponents aremeasuredwith different approaches. The sulfate concentrations aremeasured via
ion chromatography or pulsed fluorescence, while all silicon concentrations are calculated
using X-ray fluorescence. As with PM, we remove the values at zero, natural-log-transform
all concentrations, and use only one measurement at a site per day, with preference to the
older or non-IMPROVE monitors. We replace negative values (21 sulfate and 78 silicon
measurements) with the lowest observed positive value before being log-transformed. See
Table 1 and Fig. 3 for summary statistics and the average spatial distribution over 2017.

4.4. MODEL FITS

To predict each pollutant, we fit the model from Equation (1) with daily average tem-
peratures and TPRS basis functions as predictors. To predict PM2.5, we use logged CMAQ
values as an additional predictor. Since CMAQ is itself a multisource, deterministic estimate
of PM2.5, which we have transformed to the same scale as our observations, we exclude its
coefficients from the overfitting penalization �1. In contrast, we penalize the temperature
and TPRS coefficients because we expect them to explain variation in pollution levels, but
they are not direct predictions of pollution levels. As described in Sect. 2.4, we fix λ2 = 0
and select the penalty λ1 by lowest cross-validated RMSE, then select a λ2 value with λ1

fixed at the previously chosen value. Reusing this penalty selection process, we calculate
cross-validated RMSE with each amount of TPRS basis functions from a chosen set of
values (e.g., 100, 200, or 300 for PM2.5). Our best model fit is the predictor and penalty set
with lowest overall cross-validated RMSE. In the case of PM2.5, we verify the accuracy of
selecting penalties one at a time by also fitting models for every combination of λ1 and λ2

values (e.g., all combinations of the values 0.01, 0.1, 1, 10, and 100) and find that the same
penalties are selected by either method. To compare with our model, we also fit UK and the
ST model with tenfold cross-validation, using the same procedures as in Sect. 3.

4.5. RESULTS

After selection through tenfold CV on the PM2.5 data, the model from Equation (3) is
fit with 200 TPRS basis functions and the penalty values of λ1 = 30 and λ2 = 0.01. Our
penalized regression approach is matched by UK and outperformed by ST when estimating
PM2.5. Table 2 shows that the cross-validated RMSE over all dates and sites for our model
(2.184 μg/m3) lies between that of UK (2.389 μg/m3) and ST (1.973 μg/m3). For UK, the
cross-validated RMSE over the yearly average predictions and observations for every site
is lower than ST or penalized regression (0.875 μg/m3 vs. 0.899 and 0.917, respectively).
The UKmethod likely performs well on an annual average due to its excellent use of spatial
structure but blindness to temporal structure. We can see similar behavior in Table 3, where
we report summary statistics for daily cross-validated RMSE across all sites. UK has a lower
daily CV RMSE on average than our model, but median daily CV RMSE for UK is higher
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than for penalized regression. The SpatioTemporalmodel has lower mean and median
daily CV RMSE than the other two models.

For PM10, we select with cross-validation 50 TPRS basis functions and the penalty values
λ1 = 15 and λ2 = 0.5. The ST model has lower overall CV RMSE (9.275 μg/m3) than our
model (9.569μg/m3) and UK (13.503μg/m3), but our penalized regressionmodel produces
the lowest annual average cross-validated RMSE (4.375 μg/m3 vs. 4.446 for ST and 4.746
for UK). The ST model also has the lowest daily average and median CV RMSE values of
any model for PM10. Our model has lower overall, annual average, daily mean, and daily
median cross-validated RMSE values than universal kriging (Tables 2 and 3). From Fig. 3,
we see that the PM10 data have fewer observations and fewer unique locations than PM2.5.
There are 40 days of the year having two or fewer observed concentrations, which are not
predicted by any model due to the lack of data. See Sect. 5 for a discussion of possible
interpolation work-arounds for this issue. With fewer observed sites each day and greater
variance (Table 1), UK may not have enough spatial information on each day to outperform
our model.

On the sulfate concentrations, we choose via cross-validation 45 TPRS basis functions
and the penalty values λ1 = 15 and λ2 = 0.001. Our penalized regression model demon-
strates the best predictive accuracy in overall cross-validated RMSE (0.456μg/m3 vs. 0.535
for ST and 0.771 for UK), annual average CV RMSE (0.193 μg/m3 vs. 0.223 for ST and
0.279 for UK), and both the daily average and daily median. (Tables 2 and 3). Table 1
shows that nearly all monitors that measure sulfate and silicon record concentrations every
third day or less frequently. So in Table 3, we see that only 173 days of 2017 are being
predicted on by our model and ST. UK predicts on 124 days of the year since it requires that
a cross-validation fold contain at least two observations on a given date to create a distance
matrix and estimate covariance parameters. The temporal missingness in sulfate leads to
the same outcome as in Sect. 3, where our penalized smoother is able to retain the greater
accuracy than its competitors. Figure S3 in SupplementaryMaterial depicts the observations
and predictions over time for sulfate concentrations at four randomly chosen monitoring
sites. In East Baton Rouge, LA, where observed concentrations are more variable than at
the other sites shown, our model fits more closely than the ST model. It may be that the
smooth time trend applied to the ST model makes following highly variable observations
difficult.

For the silicon concentrations, we cross-validate and select 55 TPRS basis functions with
the penalties λ1 = 5 and λ2 = 0.001. Similar to sulfate, our model performs well under
temporal missingness, producing the lowest overall CV RMSE (0.119 μg/m3 vs. 0.137 for
ST and 0.138 for UK) and lowest annual average CV RMSE (0.038 μg/m3 vs. 0.047 for
ST and 0.041 for UK) (Table 2). In daily CV RMSE, the average of our model lies above
UK and below ST, while the median of our model is higher than both that of ST and of UK
(Table 3).
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Table 2. Cross-validated RMSE and R2 values across all dates and sites (“Overall”) and from by-site annual
average predictions and observations (“Annual Average”)

Overall Annual Average

Pollutant Model RMSE R2 RMSE R2

PM2.5 PR 2.184 0.731 0.917 0.629
ST 1.973 0.780 0.899 0.634
UK 2.389 0.677 0.875 0.651

PM10 PR 9.569 0.311 4.375 0.260
ST 9.275 0.350 4.446 0.235
UK 13.503 0.009 4.746 0.130

SO2−
4 PR 0.456 0.530 0.193 0.627

ST 0.535 0.373 0.223 0.592
UK 0.771 0.057 0.279 0.434

Si PR 0.119 0.455 0.038 0.508
ST 0.137 0.308 0.047 0.309
UK 0.138 0.308 0.041 0.472

We fit penalized regression (PR) per Eq. (3) using daily average temperature values and some number of TPRS
basis functions (see Sect. 4.5) as predictors. For PM2.5, we also added logged CMAQ values as predictors

Table 3. Summary statistics for daily cross-validated RMSE values across all monitoring sites

Pollutant Model T Mean SD Min Q1 Median Q3 Max

PM2.5 PR 365 2.339 0.912 1.076 1.719 2.145 2.740 7.166
ST 365 2.117 0.838 0.951 1.572 1.951 2.43 6.2
UK 365 2.329 0.844 1.021 1.776 2.187 2.588 6.249

PM10 PR 325 11.768 8.463 1.641 6.380 9.234 15.029 59.477
ST 325 11.211 8.162 1.072 6.354 8.974 13.088 57.135
UK 325 15.380 8.248 2.215 10.239 13.127 18.169 61.267

SO2−
4 PR 173 0.420 0.279 0.069 0.264 0.374 0.519 3.007

ST 173 0.464 0.269 0.102 0.316 0.420 0.523 2.760
UK 124 0.712 0.287 0.163 0.533 0.676 0.845 1.942

Si PR 122 0.079 0.085 0.012 0.030 0.049 0.087 0.441
ST 122 0.084 0.106 0.010 0.026 0.046 0.087 0.502
UK 122 0.076 0.088 0.009 0.026 0.044 0.080 0.464

We fit penalized regression (PR) per Eq. (3) using daily average temperature values and some number of TPRS
basis functions (see Sect. 4.5) as predictors. For PM2.5 we also added logged CMAQ values as predictors

5. DISCUSSION

Wehave presented a penalized regressionmodel for spatiotemporal prediction that penal-
izes overfitting and smooths over predictions at adjacent time points. Using spatiotemporal
covariates and TPRS basis functions as predictors, we predict daily values anywhere on a
spatial domain. In Sect. 3, we demonstrate in simulations that our smoothingmethod solving
Equation (1) can outperform day-by-day universal kriging under a variety of data conditions
and outperform the SpatioTemporal model when observations are less frequent than
daily. When the data increase in spatial locations, we see that our model is faster than the
each day application of UK while the ST model is more than forty times slower than either.



Spatiotemporal Exposure Prediction with Penalized Regression 275

In Sect. 4, we find that our model performs with cross-validated predictive accuracy close
to that of day-by-day UK and worse than that of the ST model on total PM2.5 and PM10

concentrations. But on sulfate and silicon concentrations, our penalized regression model
achieves the best accuracy of the models in all but two metrics, where it performs similarly.

Our model proposed in Equation (1) has spatiotemporal predictive accuracy for PM2.5

concentrations that is on par with UK, a method shown to be more accurate than the several
other approaches tested in Berrocal et al. (2020). Since UK is an excellent spatial model,
it is difficult to outperform when, for each time point, there is a nearly spatially complete
set of observations with a strong spatial signal. In Sect. 3, both increasing non-spatial error
(lowering the signal-to-noise ratio) and increasing daily fluctuation in the latent Gaussian
processes (H = 0.05) in our simulations results in a larger drop in accuracy for UK than for
our model. When concentrations are observed less frequently at some sites, as in the case of
PM10, sulfate, and silicon, there are dates when only a few measurements are available and
UK drops in accuracy behind our model. For sulfate and silicon, our model is more accurate
than themore complex and computationally expensiveSpatioTemporalmodel, showing
that we have developed a useful prediction method for less studied ambient air pollutants.

In both the simulations (Sect. 3) and the ambient concentrations analysis (Sect. 4), our
model provides predictions only on dates where at least one measurement is observed.
If a time point t∗ is never observed in the data, there will be no p-vector of coefficients
βt∗ estimated via Equation (3). Furthermore, our model is treating any two dates with no
observations between them as “adjacent in time.” In the case of the silicon concentrations in
Sect. 4, all monitoring sites recorded measurements every third day, so our model penalized
the differences between predictions three days apart, ignoring the two days in between them.
We can define any interval of time in our data as “adjacency” by altering the matrix D so
that values at a desired amount of time apart are differenced. To obtain predictions for a date
that is never observed, we may use some form of interpolation, such as simply averaging
between predictions at each site before and after the missing date. Alternatively, we could
average the coefficients βt∗−1 and βt∗+1 and use the interpolated β̂t∗ to predict values over
the unobserved date.

The selection of penalty values and predictor sets for our model is time-consuming and
can require manual tuning. In our simulations and applications to observed ambient con-
centrations, we use a faster sequential method described in Sect. 2.4 to select penalty values
and repeat for each set of TPRS basis functions. This sequential method only requires the
manual input of candidate value sets for the penalties and amounts of TPRS basis functions.
After the penalties and number of TPRS basis functions for our model are chosen, to pre-
dict a spatiotemporal surface we need to calculate the inverse of a sparse pT x pT matrix
only once. To perform measurement error correction with nonparametric bootstrapping, we
may reuse the same chosen penalty values and TPRS basis functions on each bootstrapped
sample, making the computation very feasible. This is important because a nonparamet-
ric bootstrap measurement error correction can account for site selection, in addition to
parameter estimation.

Extensions to the model, such as predicting multiple pollutants at once, may be possible
through clever application of new penalty terms. However, if a non-convex penalty is used,
the closed-form solution fromEquation (3)would no longer apply. Generalized optimization
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techniques, such as ADMM (Boyd et al. 2010) should be able to utilize the sparse structure
of the matrices and produce an accurate β estimate relatively fast, but not as fast as Equation
(3).

The penalized regression model proposed in this study showed spatiotemporal pre-
dictive ability that is competitive with both universal kriging applied daily and the
SpatioTemporalmodel. When the data are missing observations for whole time points,
our model achieves better predictive accuracy than either of the other models. The proposed
model is also unlike more complicated counterparts in that it can be used with bootstrap-
based measurement error correction for epidemiological health effects models.

6. DATE SOURCES, CODE, AND ACKNOWLEDGEMENTS

The Air Quality System data used in this study is publicly available from the
Environmental Protection Agency website: https://www.epa.gov/outdoor-air-quality-data/
download-daily-data. Similarly, the IMPROVE observations can be accessed at the website:
http://vista.cira.colostate.edu/Improve/.R code for the simulations and ambient air pollution
analysis is available through the publisher.

IMPROVE is a collaborative association of state, tribal, and federal agencies, and inter-
national partners. The US Environmental Protection Agency is the primary funding source,
with contracting and research support from the National Park Service. The Air Quality
Group at the University of California, Davis, is the central analytical laboratory, with ion
analysis provided by Research Triangle Institute, and carbon analysis provided by Desert
Research Institute.
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