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A Bayesian Approach for Data-Driven
Dynamic Equation Discovery

Joshua S. North , Christopher K.Wikle, and Erin M. Schliep

Many real-world scientific and engineering processes are governed by complex non-
linear interactions, and differential equations are commonly used to explain the dynamics
of these complex systems. While the differential equations generally capture the dynam-
ics of the system, they impose a rigid modeling structure that assumes the dynamics of
the system are known. Even when some of the dynamical relationships are known, rarely
do we know the form of the governing equations. Learning these governing equations
can improve our understanding of the mechanisms driving the complex systems. Here,
we present a Bayesian data-driven approach to nonlinear dynamic equation discovery.
The Bayesian framework can accommodate measurement noise and missing data, which
are common in these systems, and accounts for model parameter uncertainty. We illus-
trate our method using simulated data as well as three real-world applications for which
dynamic equations are used to study real-world processes.

Supplementary materials accompanying this paper appear online.

Key Words: Dynamic discovery uncertainty quantification; Nonlinear dynamic equa-
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tial equations.

1. INTRODUCTION

Mathematicalmodeling usingmechanistic dynamic equations (DEs)—equations relating
the time derivative of a variable to a function of its current state—is a rich and diverse
field with many real-world applications. Dating back to at least the inference of equations
describing the motion of orbital bodies around the sun based on the positions of celestial
bodies (Legendre 1806; Gauss 1809), DEs have been used tomodel the evolution of complex
processes (e.g., the use of susceptible, infected, recovered models for epidemics) and have
become ubiquitous across virtually every area of science and engineering. Generally, the
DEs in a complex model are derived based on an understanding of the governing dynamics
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of the system of interest, sometimes termed mechanistic modeling, and like any model,
represent an approximation of the real-world dynamics.

Mechanistic modeling typically adopts a deterministic perspective of the system that
ignores observational uncertainty, implicitly assuming the specified dynamics adequately
represent the true system. Statisticians have embedded such DEs into hierarchical Bayesian
models to incorporate mechanistic information in a probabilistic framework that accounts
for uncertainty across data, process, and parameters (Berliner 1996; Royle et al. 1999;Wikle
et al. 2001). This approach, sometimes termed physical-statistical modeling (PSM), uses
specified mechanistic relationships to motivate the parameterization of statistical process
models (Berliner 2003; Kuhnert 2017). The key to this framework is that the scientific
process is assumed to be latent—i.e., it is not directly observed, yet the data are described
conditionally given this process. Bayesian inference then allows one to learn the latent
process dynamics and associated parameters given the data. This approach has been used to
study the complex dynamics in processes such as ocean surface winds (Wikle et al. 2001;
Milliff et al. 2011) and the spread of avian species (Wikle 2003; Hooten and Wikle 2008),
among others. Except in a few specialized cases, the DEs used to motivate these models are
fairly simple representations of the true underlying dynamics since the true process dynamics
are not known. Allowing parameters to be structured (spatial or temporally dependent)
processes themselves can make up for the approximate nature of the DEs and allow the
model to adapt to the data (e.g., see Cressie and Wikle 2011, for an overview). While these
models are able to adapt to the data, they do not provide additional insight into functional
form of the driving equations.

With the growing interest in “machine learning,” research has focused on methods that
can discover the actual governing equation(s) that define dynamic systems. The first major
breakthrough in recovering the governing system dynamics used symbolic regression (Bon-
gard and Lipson 2007; Schmidt and Lipson 2009), but due to scalability concerns, the focus
has since shifted to sparse identification and/or deep (neural network) modeling. The orig-
inal sparse identification approach, termed Sparse Identification of Nonlinear Dynamics
(SINDy; Brunton et al. 2016), is composed of the three distinct stages: numerical differen-
tiation and de-noising, specification of candidate functions (termed the “feature library”),
and sparse regression, which is generally performed using threshold-based regularization
with a penalty term (Zheng et al. 2019; Champion et al. 2020). Since its development, the
SINDy framework has been extended to partial differential equations (Rudy et al. 2017,
2019), stochastic processes (Boninsegna et al. 2018), and uncertainty quantification on the
parameters (Zhang and Lin 2018; Niven et al. 2020; Fasel et al. 2022; Hirsh et al. 2021).
SINDy has also been incorporated into a Python packagePySINDy for broad usage (de Silva
et al. 2020).

Deep learning approaches for dynamic discovery can be broadly grouped into two areas:
reproducing or generating the underlying dynamical behavior of the system (Raissi et al.
2017; Raissi and Karniadakis 2018; Raissi et al. 2019, 2020; Sun et al. 2019; Wu and Xiu
2020), or recovering the dynamic equations governing the system (Both et al. 2021; Xu et al.
2021; Long et al. 2017, 2019). In the first case, neural networks can be trained to approximate
the complex dynamics, producing a model that can generate realistic dynamical system
behavior. Here, we define “data-driven discovery” to be the discovery of the functional form
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of the dynamics governing the system, not just the generation of realistic dynamics from a
model trained with data. Deep models have also been successful at data-driven discovery,
particularly when neural networks have been used to as function approximators for the
library of possible relationships within a sparse regression approach (Both et al. 2021), in
combination with a genetic algorithm to learn the library (Xu et al. 2021), and differential
operators (Long et al. 2017, 2019).

Two long-standing challenges for data-driven discovery are properly accounting for
observational uncertainty (i.e., missing data and measurement noise) and parameter uncer-
tainty. It is more common to account for uncertainty in the parameters after the observed
data have been first been de-noised (Zhang and Lin 2018; Fasel et al. 2022; Hirsh et al.
2021; Niven et al. 2020). In these multi-step procedures, de-noising and differentiation are
preformed prior to the estimation procedure and the uncertainty associated with the de-
noising is not accounted for when estimating parameters. Specifically, having observed data
that is potentially corrupt with noise, the SINDy approach to approximating derivatives
using numerical differentiation and constructing a feature library is used. To quantify uncer-
tainty, either a Bayesian approach with a variable shrinkage prior placed on the coefficients
associated with the features (Zhang and Lin 2018; Hirsh et al. 2021; Niven et al. 2020 or
a bootstrap approach (Fasel et al. 2022) is used. While advantageous in that uncertainty
quantification is provided for the discovered system, the uncertainty is highly contrived and
completely dependent on the differentiation method employed. The uncertainty from the
observed data, which directly produces the feature library and all derivatives, is completely
ignored. Approaches have been developed to jointly account for uncertainty in the observed
data and parameters (Galioto and Gorodetsky 2020; Yang et al. 2020), but these either
require the functional form of the system to be known, require derivatives be computed
numerically, which can lead to numerical instabilities, or do not account for missing data.

To address these limitations, we present a Bayesian hierarchical modeling approach
for data-driven discovery of dynamics that explicitly accounts for observational error and
parameter uncertainty. The first significant contribution of this work is that unlike other data-
driven discovery methods presented in the literature, we decompose the problem in terms
of a multilevel (hierarchical) model with specific model components for data, process, and
parameters that are linked probabilistically. The data model accounts for the observation
error (measurement and missingness) given the true, but unobserved, latent process. The
dynamic system is modeled in the process level of the hierarchical model and is assumed
to be latent. In the Bayesian framework, parameters are assumed to be random variables
and assigned prior distributions. This ensures that the uncertainty in the model parameters
propagates through the model and is accounted for in the identified dynamic process.

The second major contribution is that we explicitly account for the dependence between
the dynamic process and its derivative by modeling them jointly using a basis expansion
with a common set of basis coefficients. This has additional benefits in that, given the basis
expansions, the derivatives can be computed analytically. This eliminates the multi-step
procedure, the need to pre-filter (de-noise) the observed data, and the need for numerical
approximations of the derivatives.

The thirdmajor contribution is the specification of sparsity in two differentmodel compo-
nents of the multilevel model. This favors a flexible, yet parsimonious, system of detected
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dynamic equations. Following the sparse identification approaches, we include a feature
library and assign sparsity-inducing prior distributions on the parameters to identify impor-
tant components of the system from the library.

We demonstrate the advantages of our method on data generated from the classic non-
linear chaotic Lorenz-63 (Lorenz 1963) system with varying levels of measurement noise
and missing data. In the supplementary material we also apply our method on a Suscepti-
ble, Infected, Removed (SIR) epidemic model, the Lotka-Volterra (predator–prey) system, a
coupled pendulum, and we compare our results with those obtained from the SINDy Python
package PySINDy (de Silva et al. 2020). The simulations show that our approach is robust
to measurement noise and missing data, able to learn the dynamics of complex dynami-
cal systems, and provides formal uncertainty quantification on parameter estimates and the
confidence of the discovered dynamics. Lastly, we apply our method to three real-world
applications: the historic Hare-Lynx predator–prey system, a motion tracked pendulum, and
Pacific sea surface temperature. In the first two applications, our estimates are consistent
with the known dynamics of the system. In the third, we show that the our estimates of the
dynamics can be used to predict future states of the system.

The remainder of this article is organized as follows. In Sect. 2 we give background on
the general dynamical system, state how we make inference on the derivative of the system,
and present the Bayesian hierarchical model. In Sect. 3 we describe parameter estimation
and discuss modeling choices. In Sect. 4 we test our method on multiple simulated data sets
and perform inference on three real-world data sets. Section 5 concludes the paper.

2. BAYESIAN DYNAMIC EQUATION DISCOVERY

Here,wepropose ageneral hierarchicalmodel formaking inferenceonnonlinear dynamic
systems. Analogous to the observation and statemodel in state-spacemodeling of time series
(e.g., Shumway and Stoffer 2017), we consider the dynamic process to be latent and the
observed data to be a noisy realization of the “true” underlying process. As is customary
in hierarchical modeling, we specify the three components of the model, namely the data
model, the process model, and the parameter models in the sections below. In Sect. 2.1 we
motivate the dynamic systems and describe in detail the components of the latent process.
Section 2.2 describes how we use basis functions to approximate the latent process and
obtain derivatives of the system.We specify the data model in Sect. 2.3 and specify the prior
distributions in Sect. 2.4.

2.1. DYNAMIC SYSTEM

Consider the ordinary differential equation (ODE) dynamic system

d(J )

dt (J )
u(t) = ut (J ) (t) = M(ut (0) (t),ut (1) (t), ...,ut (J−1) (t)), (2.1)

where the vector u(t) ∈ R
N denotes the realization of the system at time t , the function

M(·) represents the (potentially nonlinear) evolution function, and ut ( j) (t), j = 0, ..., J
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represents the j th derivative of u(t). Equations of the form of Eqn. 2.1 are often used to
model processes in biology, ecology, climatology, epidemiology, economics, meteorology,
pharmacodynamics, and geological sciences, among others.

For illustration, we consider mechanistic systems that only have a few relevant terms that
govern the dynamics (e.g., the pendulum equations, Lorenz attractor, Lotka-Volterra model;
Higham et al. 2016) so the function space of M(·) will be sparse. We can reparameterize
Eqn. 2.1 to be intrinsically linear (in parameters) as

ut (J ) (t) = Mf(ut (0) (t),ut (1) (t), ...,ut (J−1) (t)), (2.2)

where M is a N × D sparse matrix of coefficients and f(·) is a vector-valued nonlinear
transformation function of length D. The inputs of the function f(·) contain arguments that
potentially relate to the dynamic system (i.e., more than just the lower-order terms of the
system). That is, the functions fi (·), i = 1, ..., D are any functions that potentially represent
Eqn. 2.1 (e.g., polynomials, sinusoids, interactions). Crucially, these functions are chosen
based on an educated understanding of the general properties of system in question (e.g.,
diffusion, advection, growth), with the hope that all the correct terms in the “true” system
are included. Thus, D can be quite large and depending on the number of hypothesized
functions chosen, Eqn. 2.2 has the potential to be drastically over-parameterized. As such,
a method to induce sparseness inM will be required.

As an example, consider the Lotka-Volterra system (Lotka 1920),

dx

dt
= αx − βxy

dy

dt
= δxy − γ y,

where u(t) ≡ [x(t), y(t)], x is the number of prey, y is the number of predators, α is the prey
population growth rate, β is the rate of predation, δ is the predator population growth, and
γ is the death rate of the predator population. In terms of Eqn. 2.2, this can be represented
as

ut (t) =
(

α 0 −β

0 −γ δ

) ⎛
⎜⎝ xt

yt

xt yt

⎞
⎟⎠ .

However, because we generally do not know f(u(t)) = [x(t), y(t), x(t)y(t)]′, we specify
f(u(t)) in terms of possible solutions to the function (e.g., all polynomials up to the third
order, sinusoids, etc.). Then, by selecting against coefficients inM (i.e., identifying the terms
that should be zero) we recover the solution to the dynamic equation.

In real-world problems, Eqn. 2.2 does not hold exactly. Stochastic forcing could perturb
the system (e.g., weather systems, demographic stochasticity), or there could be error in
the model specification. We accommodate this unknown stochasticity including an additive
error term

ut (J ) (t) = Mf(ut (0) (t),ut (1) (t), ...,ut (J−1) (t)) + η(t), (2.3)
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where, for example, η(t)
i.i.d.∼ N (0,�U ) is a mean zero Gaussian process with vari-

ance/covariance matrix �U .

2.2. BASIS EXPANSION

Define the expansion of the nth element of u(t) as

u(t, n) =
∞∑

k=1

A(n, k)φ(t, k), n = 1, ..., N ,

where {φ(t, k) : k = 1, . . . ,∞} are basis function that are differentiable to (at least) order J
and defined at any time t , and {A(n, k) : k = 1, . . . ,∞} are the associated basis coefficients.
To reduce the dimension and transition to discretely observed time data, we keep the first
k = 1, . . . , pa terms and define φ(t, k) at finite times t = 1, . . . , T . Let U ≈ A�, where
U = {u(t)}t=1,...,T is an N ×T matrix,� is a pa ×T matrix of differentiable basis functions
where each column is given by φ(t) ≡ (φ(t, 1), . . . , φ(t, pa)), and A is the N × pa matrix
of basis coefficients with columns given by A(k) ≡ (A(1, k), . . . , A(N , k)). We can then
analytically obtain higher-order derivatives of the elements of U by taking derivatives of
the basis functions. Specifically, let Ut ( j) ≈ A�t ( j) , j = 0, . . . , J , where �t ( j) is a pa × T
matrix of the j th derivative of knownbasis functions {φt ( j) (t)} (e.g., the t th columnof�t ( j) is
φt ( j) (t) ≡ (φt ( j) (t, 1), . . . , φt ( j) (t, pa))). For time t ,ut ( j) (t) = Aφt ( j) (t)withφt ( j) (t) ∈ R

pa

and Eqn. 2.3 can be rewritten,

Aφt (J ) (t) = Mf(A,φt (0) (t), . . . ,φt (J−1) (t)) + ηt .

In summary, decomposing U using temporal basis function expansions accomplishes
two tasks. First, it enables inference on the derivative of the process, {ut ( j) (t)}, when only
the process, {ut (0) (t)}, is observed. Because Ut ( j) is decomposed in terms of A for j =
0, . . . , J , the estimate ofA is jointly informed by the system and the derivatives, allowing for
information to be shared between the system and the derivatives. Second, by keeping pa <<

T basis functions, the resulting reconstruction ofA�t (0) is smooth (Wang et al. 2016) (note,
this implies ηt now also includes truncation error). This is important because numerically
estimating the derivative (e.g., via a finite difference) when the dynamic process {ut ( j) (t)}
is noisy can amplify the noise of the higher-order terms in the system (e.g., {ut ( j) (t)} for
j = 1, . . . , J , Chartrand 2011). By taking derivatives analytically through basis functions,
the system is more robust to noise.

2.3. DATA MODEL

We assume v(t) is an observation of the latent process ut (0) (t) outlined in Sect. 2.2 with
unknown measurement uncertainty. We model v(t) using a generalization to the traditional
linear data error model that links the dynamics to the observed process (e.g., see Cressie
and Wikle 2011, Chapter 7). That is, we model

v(t) = H(t)ut (0) (t) + ε̃(t),
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where v(t) ∈ R
L(t) and H(t) is a L(t) × N matrix that maps the latent process to the

observed process and accounts for possible missing observations at time t . Uncertainty in

the observations of the process is captured by ε̃(t)
indep.∼ NL(t)(0, �̃V (t)), where �̃V (t) is

the variance/covariance matrix.
Missing data are common in applications. A benefit of the hierarchical model is that it

can easily accommodate missing data. Since the latent process is fully specified and missing
data are handled at the data level, missing data do not impact the process model. We handle
scenarios withmissing data by allowing the dimension ofH(t) to vary in time. If there are no
missing data at time t , then L(t) = N andH(t) = IN .When one ormore system components
are missing data, then the row corresponding to the missing system component is removed.
For example, if we have a three-dimensional system, say u(t) = [a(t), b(t), c(t)] and the
observation component for b(t) is missing at time t , then

H(t) =
[
1 0 0
0 0 1

]
.

This representation can also accommodate situations where an entire system component
is not observed. Again, H(t) is chosen such that the latent system, of dimension N , can
map to the observation system of dimension L(t) < N (recall, H(t) is a L(t) × N matrix).
We then allow the process model to learn the missing dynamic process based purely on
the dependence that is present within the process model. However, as we will discuss in
more depth through the Lorenz attractor example in Sect. 4.1, there are limitations to the
extent of missing information that can be accommodated and care needs to be taken when
interpreting these cases.

2.4. PARAMETER MODEL

Combining the process and observation equations results in the first two levels of our
proposed Bayesian hierarchical model. As defined in Sect. 2.2 and 2.3, for discrete time
points t = 1, . . . , T , the first two layers of our general model are

v(t) = H(t)ut (0) (t) + ε̃(t) = H(t)Aφt (0) (t) + ε(t)

Aφt (J ) (t) = Mf(A,φt (0) (t), . . . ,φt (J−1) (t)) + η(t),
(2.4)

where ε(t)
indep.∼ NL(t)(0,�V (t)) and �V (t) is the L(t) × L(t) measurement error covari-

ance matrix where L(t) is the dimension at time t (Fig. 1). For clarity, we present the details
the model parameters in Table 1. Our goal is to make inference on the unknown parameters
M,A,�U , and�V , whereM defines the nonlinear dynamic equation,A defines the smooth
latent process, �U captures the error dependencies within the dynamic equation, and �V

captures the measurement uncertainty associated with the observed process. To complete
our Bayesian hierarchical model, we define the following priors.

As mentioned in Sect. 2.1, M has the potential to be over-parameterized. To induce
sparsity into our estimate of M, we use the stochastic search variable selection (SSVS,
George and McCulloch 1993) prior. Specifically,



A Bayesian Approach for Data- Driven... 735

Figure 1. ADatamodel relating the observedmeasurementsV to the latent dynamic processUt(0) and accounting
for measurement error ε̃. Note, we do not include H in our pictorial representation of the equation and the error
is not to scale. B Basis representation of the dynamic process where Ut(0) ≈ A�t(0) and ε now accounts for
the approximation uncertainty. C Process model where the derivative of the dynamic process A�t(0) is related
to the product of the parameter coefficient matrix M and the library of function f(·) plus model uncertainty η. D
The recovered equation which is computed from M after the model parameters have been estimated. E Resulting
dynamic equation mean (a) and equation uncertainty (b) which are computed fromM after the model parameters
have been estimated.

Table 1. List of symbols used in the Bayesian hierarchical model

Model Symbol Description Dimension

Variable
Data v(t) Observed data L(t) × 1
Data H(t) Mapping matrix L(t) × N
Data ε(t) Data uncertainty distribution L(t) × 1
Data �V (t) Measurement error covariance matrix L(t) × L(t)
Process ut(0)(t) Dynamic process N × 1

Process A Basis coefficients N × pa
Process φt( j) (t) j th order basis function at time t pa × 1
Process M Dynamic evolution matrix N × D
Process f(·) Feature library N × 1
Process η Process uncertainty distribution N × 1
Process �U Dynamic equation error covariance matrix N × N

Dimension
T Number of observed time points 1
L(t) Dimension of observation vector at time t 1
N Dimension of latent process (dynamic system) 1
D Number of library functions 1
pa Number of basis functions 1
J Highest order derivative in the dynamic system 1
Indices
t Time interval, t = 1, . . . , T 1
j Order of the derivative, j = 1, . . . , J 1
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vec(M) ∼ NN D(0,�M ),

�M = diag(γ
(c1)
1 , . . . , γ

(cN D)
N D ),

where γ
(cl )
l = v1 if cl = 1 and γ

(cl )
l = v0 if cl = 0. The latent variable, cl , is the inclusion

indicator, and the posterior of cl specifies the probability of inclusion for any parameter in
M. The hyperpriors v0 and v1 are chosen such that v0 is small (e.g., v0 = 10−6) and v1 is
large (e.g., v1 = 104). Whereas any method to induce sparsity inM can be used, we choose
SSVS because it provides the inclusion probabilities and has been shown to work well in
nonlinear dynamic models (Wikle and Holan 2011).

Within the SSVS prior, ν0 and ν1 determine how parsimonious the selected model will
be. This is due to the ratio

pl = π [m(l)|cl = 1, ·]
π [m(l)|cl = 1, ·] + (1 − π)[m(l)|cl = 0]

form ≡ vec(M) and l = 1, . . . , N D, which determines the inclusion probability for m(l),
where [m(l)|·] denotes the distribution of m(l) given all relevant parameters. George and
McCulloch (1993), George and McCulloch (1997), and George et al. (2008) discuss the
specification of ν0, ν1 in detail, and we summarize some of the key points here. One should
choose ν0 and ν1 such that if cl = 0, m(l) can safely be replaced with zero, and if cl = 1,
m(l) is then a nonzero estimate that should be included with some probability pl . However,
in practice we do not know which values of m should or should not be included. As a
general rule, we found ν0 = 10−6 and ν1 = 104 work well for most of the simulations we
present. However, when models have small parameter values (e.g., see the SIR example in
supplementary material S1.1), we find smaller values, such as ν0 = 10−8 and ν1 = 102, are
needed.

Both �V (t) and �U have the potential to have small parameter values, and inference
using traditional conjugate inverse Gamma/Wishart priors is overly sensitive to the choice of
hyperpriors when estimates are small (Gelman 2006). Instead, we use the conjugate Half-t
prior proposed by Huang and Wand (2013) for covariance estimation, which imposes less
prior information and does not have as strong of influence on small estimates.

We restrict the measurement error to be diagonally structured (although this restriction
can be removed ifwarranted) since it is often assumed thatmeasurement noise is independent
(Cressie and Wikle 2011). Let �V (t) = H(t)diag(σ 2(1), . . . , σ 2(N ))H(t)′, where each
diagonal element, σ 2(1), . . . , σ 2(N ), is assigned a conjugate Half-t(2, 10−5) prior. In order
to account for system dependence within the multivariate latent process error, we model
�U as a full rank matrix, which enables us to borrow strength across systems and improve
model performance. We assign the matrix Half-t(νk, Bk) prior to �U with νk = 2, Bk =
10−5, k = 1, . . . , N .

Last, we specify the Bayesian elastic net prior (Li and Lin 2010) on A. Specifically, our
prior is

π(A) ∝ exp{−λ1‖A‖1 − λ2‖A‖22},
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where λ1, λ2 are penalty parameters. We use the elastic net prior to help regularize the basis
coefficients and select against unneeded basis functions. It is possible to specify hyperpriors
for the two penalty terms, but we find inference is not overly sensitive to the choice of
penalty parameters and fix them to a small value (e.g., 0.1 or 0.01).

3. ALGORITHM ANDMCMC

There are five full-conditional distributions of interest, [M|·], [�V |·], [�U |·], [A|·], and
[c|·] (see supplementary text S3 for the details of the distributions) when performingMCMC
inference for thismodel. The four componentsM,�V ,�U , and c are updated using classical
Bayesianmethods, andA is updated using a stochastic gradient approach.Within the general
MCMC procedure, there are implementation details that warrant a more detailed discussion.
Additionally, because the framework we present is general, some modeling choices are
problem specific. We discuss how to address these challenges Sect. 3.1.

3.1. BASIS ESTIMATION

The basis coefficients pose an estimation challenge because they are embedded in the
nonlinear function f(·) and since f(·) is problem specific, it needs to be specified generally
to accommodate different problems. In principle, an Expectation-Maximization (EM) or
Metropolis-Hastings (MH) algorithm could be used to estimate A, but they require f(·) to
be known and convergence with either of these methods is slow in our setting. Instead, we
use an adapted version of SGD with a constant learning rate (SGDCL; Mandt et al. 2016),
which has been shown to scale well.

As with SGD, SGDCL relies on the gradient of a loss function and a learning rate. For
SGDCL, the loss function is the negative log posterior for our parameters of interest, A.
Here, the loss function for a single time is

L(t) = − log([v(t)|H(t),A, φt (0) (t),�V (t)][A, φt (J ) (t)|M,A, φt (0) (t), . . . ,φt (J−1) (t),�U ])
+ 1

T

(
λ1‖A‖1 + λ2‖A‖22

)
.

The gradient of the loss function is dependent on ∂
∂Af(A,φt (0) , . . . ,φt (J−1) ), which we

generically denote as
.
Ft , and the gradient of L(t), ∂L(t)

∂A = ∇AL(t), is

∇AL(t) = −H(t)�−1
V (t)v(t)φt (0) (t)

′ + H(t)′�−1
V (t)H(t)Aφt (0) (t)φt (0) (t)

′

+ �−1
U Aφt (J ) (t)φt (J ) (t)′ − �−1

U Mf(t)φt (J ) (t)′ − φt (J ) (t)′A′�−1
U M

.
F(t)

+ f(t)′M′�−1
U M

.
F(t) + 1

N
(λ1sign(A) + 2λ2A) .

SGDCL methods replace the true gradient with the stochastic estimate,

∇̂LZ (t) = 1

Z
∑
t∈Z

∇AL(t),
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where Z ⊂ {1, . . . , T } is a random subset of the observations, called a mini-batch, and |Z|
is the cardinality of the set. Within the context of a MCMC algorithm, the 
th update of A
is given by

A(
) = A(
−1) − κ∇̂LZ(
) (A(
−1)), (3.1)

where Z(
) denotes a random minibatch specific to the 
 update and κ is the learning rate.
Mandt et al. (2016) show how to select the constant κ , or a preconditioning matrix (i.e.,
replace κ with a matrixK), to match the stationary distribution to the posterior. In practice,
we find κ is problem dependent. If there is a lot of observation noise in the data, an adaptive
approach may provide the best results. Specifically, an upper bound is specified for the
learning rate. Then, during the burn-in process, the learning rate decreases at equal intervals
from this initial value to a specified lower bound. After burn-in, the learning rate stays fixed
at the specified lower bound throughout the sampling algorithm. If there is minimal to no
noise, then a fixed small value for κ for the entirety of the sampler works best.

The final challenge to estimating A is computing
.
F(t). Because f(·) is problem specific,.

F(t) is also problem specific and needs to be obtained generally. To overcome this issue,
we use automatic differentiation (AD). AD has become increasingly popular, especially
with the increasing interest in deep models, and allows one to analytically compute the
derivative of f(·). There are many different libraries and programs that perform AD, and for
our implementation we use the ForwardDiff (Revels et al. 2016) package in Julia (Bezanson
et al. 2017).

Note that we need to estimate the latent process Ut (0) , and all subsequent derivatives
Ut (J ) for j = 1, . . . , J in the model. Without using a basis expansion approach, estimating
each of these processes requires an O(T ) calculation.With the basis expansion, this reduces
the computational burden to O(pa) for each process. We further reduce the computation
required using the SGDCL to O(|Z|), where |Z| << pa << T .

3.2. CHOICE OF FUNCTIONAL LIBRARY

Choosing the potential solutions (the function library f(·)) generally requires some extra
thought. Ideally, the functions are chosen based on a general mechanistic understanding
of the system (e.g., diffusion, advection, growth). However, this is not always possible. In
general, most ordinary differential equations are functions of polynomials and interactions
(e.g., Lorenz attractor, van der Pol oscillator, Lotka-Volterra model; Higham et al. 2016).
Because of this, we default to a using a library of polynomial functions and interactionswhen
a physical understanding of the system is not applicable. While there are scenarios where
more terms need to be included in the library (e.g., sinusoidal terms), using polynomials
and interactions as a default library covers a wide range of potential systems.

3.3. CHOICE OF BASIS FUNCTIONS

The choice of basis functions has the potential to affect the model fit. Ramsay and
Silverman (2005,Chapter 3) provide a discussion on how to choose basis functions based
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on the “shape” of the data, and we will summarize some key points here. For our method
we consider two basis function classes, the B-spline and Fourier basis, with the B-spline
being a local basis function and Fourier a global basis function. While we only discuss the
B-spline and Fourier basis, other basis functions could be chosen. The Fourier basis is best
suited for periodic data with no strong local features and where the curvature of the function
is the same order everywhere. In contrast, the B-spline basis works best with nonperiodic
functions that may or may not have strong local features. With respect to differentiation, the
Fourier basis is infinitely differentiable, and them-order B-spline basis is differentiable up to
order m − 1. However, Fourier series suffer from a ringing effect (Hewitt and Hewitt 1979),
andwe find the effect is worsenedwhen derivatives greater than the first order are considered
or there are local regions with little curvature. This issue makes the Fourier series less useful
in practice. B-splines do not suffer from the ringing effect, making them better suited for
higher-order dynamic systems. The amount of noise in the data also impacts the choice of
basis. For both local and global basis functions, enough basis functions need to be included
so the estimated solution curve is flexible, the dynamics are captured, and the posterior latent
space is properly explored, but not so many such that unnecessary noise is captured (see
examples below for relation of number of basis functions to number of observations). In
general, we found the B-spline basis resulted in the best model performance and use them
for all of our simulations and examples.

4. SIMULATIONS AND EXAMPLES

We simulate data from the classical Lorenz-63 system (Lorenz 1963) with varying levels
of measurement noise and missing data to demonstrate the ability of our methodology to
recover nonlinear equations. Then, we apply our approach to three real-world data sets—the
historic Hare-Lynx system, amotion tracked pendulum, and Pacific sea surface temperature.
Details on parameter estimation andmodel fitting are included in supplementarymaterial S1
and S2.We also apply our methodology to a Susceptible, Infected, Removed (SIR) epidemic
model, the Lotka-Volterra (predator–prey) system, a coupled pendulum, and compare our
results with those obtained from the SINDy Python package PySINDy (de Silva et al. 2020)
in supplementary material S1.

We simulate measurement noise in the Lorenz attractor by adding mean zero Gaussian
errors to the state vector; specifically v(t) = u(t) + ε(t), where v(t) is the simulated data,
ε(t) ∼ N (0, ζ IL(t)) is the additive noise, and ζ is the variance. For all simulations and
real-world examples, we obtain 10000 posterior samples and discard the first 5000 as burn-
in. Convergence of model parameters was assessed visually via trace plots, with no issues
detected.

4.1. LORENZ-63

The Lorenz-63 attractor is a classic chaotic nonlinear dynamical system originally pro-
posed to represent a simplified atmospheric system (Lorenz 1963). This system consists of
the three nonlinear ODEs
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dx

dt
= 10(y − x); dy

dt
= x(28 − z) − y; dz

dt
= xy − 8

3
z, (4.1)

where x is proportional to the convection rate, y is proportional to the temperature difference
in ascending and descending currents, and z is proportional to the vertical temperature
distortion. We consider four scenarios: (A) no measurement noise (ζ = 0), (B) moderate
measurement noise (ζ = 1) and 5% of the data missing at random, (C) large measurement
noise (ζ = 10), and (D) missing the xt component of the attractor (i.e., the xt time series
is not included as data). For scenarios A-C, our library of potential solutions consists of all
polynomials up to the third order with all possible interactions. We discuss the library for
scenario D below.

The 95% credible intervals for the identified system for each scenario are shown in Table
2. As is expected, when there is no measurement error (scenario A), we correctly identify
the true system and the credible intervals cover the true values. When there is moderate
measurement error in addition to 5% missing observations, (scenario B), we do fail to
identify one component of the dy system, and one parameter of the dz system does not
have a credible interval that captures the true value. However, no extra terms in the library
are identified as significant based on the 99% inclusion probability threshold. With large
noise (scenario C), we identify the same model components as in scenario B except fewer
parameters are significant based on their credible intervals containing 0. Scenarios B and
C highlight the benefit of the statistical approach. As more noise and/or missing data are
introduced, uncertainty estimates in the model parameters increase yet key components of
the system are still identified without the inclusion of extraneous terms.

Scenario D assumes the xt component is completely missing, which, to the best of
our knowledge, precludes the use of other dynamic discovery approaches. In this case,
we consider all polynomials up to the second order with all possible interactions (i.e., we
removed the third-order polynomials). In practice, this is akin to having prior knowledge of
the systemwhere amissing component results in less data available to discover the dynamics
of the system. In scenario D, we correctly identify six of the seven terms (Table 2) and do
not include any extraneous terms. That is, we are able to infer xt and learn the correct
components driving the relationships based solely on the data from yt and zt and quantify
the uncertainty associated with our recovered equations (see supplementary material S1.4
for more detail).

4.2. HARE AND LYNX POPULATION DYNAMICS

The historic Canadian lynx and snowshoe hare data were originally recorded by the
Hudson’s Bay Company and documents the population dynamics between the two species
from 1845 to 1939 Elton and Nicholson (1942). This classic predator–prey system has a
cycle of approximately 10 years Bulmer (1974). There is some debate in the literature as
to whether the Lotka-Volterra equations accurately represent the Hare-Lynx system Zhang
et al. (2007) or whether another trophic level is needed accurately capture the dynamics
of the system Krebs et al. (2001). Therefore, we specify our library of potential functions
to include polynomials up to the third order with all possible interactions, noting that the
typical predator–prey system of equations is contained within this set.
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Table 3. Posterior 95% credible intervals and identified equations for the Hare-Lynx data (top) and the motion
tracked pendulum (bottom). Parameters with credible intervals that do not cover zero are shown in bold

System Estimated equation

Hare-Lynx
dh/dt = (3.530,8.426)h + (−0.400,−0.144)hl
dl/dt = (−7.655, −4.796)l + (0.124,0.210)hl

Motion tracked pendulum d2θ /dt 2 = (−1.360, −1.354)sin(θ) + (−0.014, −0.009)ω

The 95% credible intervals for the identified system are shown in the top row of Table
3. We see the recovered solution has the same components as a Lotka-Volterra system,
each of which is significant, suggesting predator–prey interactions provide a reasonable
representation of these data.

4.3. MOTION TRACKED PENDULUM

Motion tracked data for a pendulum (accessed via the supplementary material of Schmidt
and Lipson 2009) consists of the angle of the pendulum from vertical at time t . In this
scenario, basic principles of physics suggest a solution to the system follows the theoretical
equation d2θ/dt2 = −(g/ l) sin(θ) − (b/m)ω, where θ is the angle from vertical and ω is
the derivative of θ . Using physics to inform our library of potential functions, we include
the following components:

[θ, sin(θ), cos(θ), θ/ sin(θ), θ/ cos(θ), ω, ω2, ω sin(θ), ω cos(θ), sin(ω), cos(ω)].

The posterior mean and 95% credible intervals for the selected terms are shown in the
bottom row of Table 3. While we do not know the actual parameter values for the true
system, the terms identified as significant agree with the theoretical equation of the system.
Thus, our framework can accommodate higher-order systems and more complex libraries
consisting of the system state and its derivatives.

4.4. SEA SURFACE TEMPERATURE

The transitions from El Niño (anomalous warming) to La Niña (anomalous cooling) in
the tropical Pacific ocean are known as the El Niño–Southern Oscillation (ENSO) cycle and
occurs quasi-periodically every 3–5 years Philander (1990). ENSO influences atmospheric
and ecological systems globally and governmental agencies and industries rely on accurate
forecasts of the event to make management decisions. Using publicly available sea surface
temperature data from the IRI/LDEO Climate Data Library and originally produced by
the National Ocean and Atmospheric Administration (NOAA) (Huang et al. 2017),1 we
recover implicit dynamics of the ENSO system. The data consist of monthly sea surface
temperature (SST) anomalies from January 1926 to November 2021 and include multiple

1http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.ERSST/.version5/.anom/.

http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.ERSST/.version5/.anom/


A Bayesian Approach for Data- Driven... 743

Figure 2. A SST as the ENSO shifts into El Niño (warming phase) shown in two-month increments. From top to
bottom, the left column is the SST to March, May, and July 2015 and the right column is the SST for September,
November, January 2015–2016. B Predictions of the Niño 3.4 Index for the 1997–98 ENSO event showing the
true (blue), posterior predicted mean (red), and 95% highest posterior credible intervals (red bands).C Predictions
of the Niño 3.4 Index for the 2015-2016 ENSO event showing the true (blue), posterior predicted mean (red),
and 95% highest posterior credible intervals (red bands). Note—(B) and (C) are on different scales (Color figure
online).

ENSO cycles. We focus on two of the more recent events, the 1997–1998 and 2015–2016
ENSO cycles.We subset the data to include all time points leading up to each of these ENSO
cycles—that is, January 1926 to March 1997 and January 1926 to February 2015, which we
label ENSO-97 and ENSO-15, respectively. ENSO-97 and ENSO-15 are each decomposed
using empirical orthogonal functions (EOFs) Cressie and Wikle (2011), where the first ten
temporal principal component time series associated with the EOFs are treated as data and
used to learn the dynamics.

In this application, we know that we are not considering all possible mechanisms driving
SST (e.g., those associated with atmospheric winds, subsurface temperatures). Motivated by
the success of statistical models in long-lead forecasting of ENSO (Barnston et al. 1999; van
Oldenborgh et al. 2005), our focus is on estimating the system and using it to forecast SST
forward in time. As is customary in such applications, we use the average SST in the Niño
3.4 region (5S - 5N, 120W - 70W) to summarize the intensity of an El Niño event. Using the
ENSO-97 and ENSO-15 data leading up to the 1997 and 2015 El Niño events, respectively,
we learn the dynamics and generate a 12-month forecast of the SST for each event. For
both ENSO-97 and ENSO-15, our library of potential functions are all polynomials up to
the second order with all possible interactions (see supplementary material S2.3 for more
detail). We then compute the mean and highest posterior density (HPD) interval of the Niño
3.4 Index for each forecast and compare to the truth (Fig. 2). For both ENSO events, we
capture the parabolic increase and decrease in the Niño 3.4 Index with the point-wise HPD
intervals covering the true Niño 3.4 Index for all but one forecast.
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5. CONCLUSION

We have proposed a Bayesian hierarchical method to learn complex nonlinear dynamic
equations using a data-driven approach. Our proposed method is robust to measurement
noise and missing data, and can accommodate situations where a component is completely
unobserved. The statistical approach to dynamic equation discovery is our most significant
contribution, where we provide uncertainty quantification and inclusion probabilities to the
terms in the library. This is possible because of the Bayesian hierarchical model that is
composed of three components: a data model accounting for the uncertainty in the observed
data, a process model learning the nonlinear dynamics in a latent space, and parameter mod-
els. Additionally, we are able to bypass the need for numerical differentiation by expanding
our latent process in terms of basis functions. As a whole, our proposed hierarchical model
overcomes the limitations of the multi-step procedure and provides a complete statistical
framework to the dynamic equation discovery problem.

Our Bayesian approach to dynamic discovery relies on full posterior inference for uncer-
tainty quantification. A known limitation of MCMCmethods for Bayesian model inference
is that computation can become expensive with large data sets. Compared to the determin-
istic dynamic discovery approaches that can make inference on hundreds of thousands of
data points, our approach targets data sets that are smaller (on the order of thousands of data
points). This can be considered a strength of our approach since recovering the dynamics of
systemswith small data sets is problematicwithmany deterministic approaches. Ourmethod
can be applied to larger data sets, but to implement the approach may require additional
computational efficiencies which may be the target of future research.

We see two clear extensions to our research. The most beneficial extensions relate to
the specification of the feature library. Currently, the method is limited in that it is unable
to identify an important function if the function is not included in the library. A library-
free approach, which removes the potential bias associated with the specification of the
library, would result in a truly data-driven approach. Additionally, allowing for time-varying
parameters will increase the number of real-world applications for which the method can
be applied. Most apparent are extensions to the SIR class of models where government
intervention, variant strains, and other factors could be accounted for in the model. Another
extension would be to impose restricts on different components of the system through
the library. For example, when the environment may impact the population but not vice
versa. Allowing this unidirectional forcing is beneficial from a physical viewpoint because
it restricts the method from considering potential solutions that are not possible. Last, the
work can be extended to include partial differential equations. This would allow for the
discovery of nonlinear dynamic spatial processes with uncertainty quantification.
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