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A Spatial Logistic Regression Model Based on
a Valid Skew-Gaussian Latent Field

Vahid Tadayon and Mohammad Mehdi Saber

Logistic regression is commonly used to estimate the association of one (or more)
independent variable(s) with a binary- dependent outcome. In many applications latent
sources are both spatially dependent and non-Gaussian; thus, it is desirable to exploit
both properties jointly. Spatial logistic regression is a well-established technique of
including spatial dependence in logistic regression models. In this paper, we develop
a spatial logistic regression model based on a valid skew-Gaussian random field. For
parameter estimation, we use a Monte Carlo extension of the EM algorithm along with
an approximation based on the standard logistic function. A simulation study is applied
in order to determine the performance of the proposed model and also to compare the
results with a recently introduced model with established efficiency. The identifiability
of the parameters is investigated as well. As an illustrative purpose, an application to the
Meuse heavy metals dataset is presented.

Supplementary materials accompanying this paper appear online.
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1. INTRODUCTION

Many practical studies in public health, ecology and many other disciplines rely on
binary spatial data. However, most of the conventional spatial analyses were designed to
address the problem of estimation/prediction based on continuous observations. In the case
of binary variables, for instance, diagnosis of groundwater pollution, there are only two
possible outcomes, present (denoted as 1) or absent (denoted as 0). The logistic regression
model is a well-known and well-documented methodology which is used in many contexts,
specifically, in the presence of spatial dependence, see for example, Lin and Clayton (2005),
Zhu et al. (2005), Xie et al. (2005), Tayyebi et al. (2010), Wu and Zhang (2013), Diggle and
Giorgi (2016).

In a spatial framework, Paciorek (2007) focused on a large binary dataset and compared
penalized likelihood andBayesianmodels based onfit, speed and ease of implementation.He
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also devised an effective Markov chain Monte Carlo (MCMC) sampling scheme to address
slowmixing of MCMC techniques in a generalized linear mixed model (GLMM). Zhu et al.
(2008) studied logistic regression analysis of binary lattice data using a spatial–temporal
autologistic regression model in a frequentist approach and used Monte Carlo maximum
likelihood estimators for parameter estimation.Tohandle computational and inferential chal-
lenges posed by high-dimensional binary spatial data, Chang et al. (2016) presented a novel
calibration method for computer models and applied a generalized principal component-
based dimension reduction method. Sengupta et al. (2016) used a reduced-rank spatial
random effects model to account for remote sensing datasets that can be massive in size and
non-stationary in space. They estimated the parameters using an expectation–maximization
(EM) algorithm. Nisa et al. (2019) focused on the estimation of propensity score as amethod
which is used to reduce bias due to confounding factors in the estimation of the treatment
impact on observational data. They incorporated a spatial logistic regressionmodel and used
an EM algorithm to handle maximum likelihood estimation. Hardouin (2019) presented a
variational method for parameter estimation in a logistic spatial regression since the expec-
tations in the E-step of the EM algorithm were not available in closed-from expressions.
Zhang et al. (2021) proposed a multivariate skew-elliptical link model for correlated binary
responses, which included the multivariate probit model as a special case.

Intrinsically, the inference of a logistic regression model involves a hidden unobserved
process, although in all aforementioned studies the hidden process has been treated as
a user-friendly Gaussian random field. Nevertheless, in a whole range of applications,
non-Gaussianity of the latent component arises explicitly from the existence of spa-
tial/spatiotemporal heterogeneities. Thus, some active efforts to seek departures from Gaus-
sianity called for some applicable strategies to handle some of the potential weaknesses
associated with the transformation methods. A review of the most recent studies on this
topic has been deemed by Tadayon and Torabi (2019) and Tadayon and Rasekh (2019).
Mahmoudian (2018) discussed that most of previous skewed spatial models were ill-defined
according to the consistency condition of the Kolmogorov existence theorem (Billingsley
2008) as their parametrization of the skewed distributions does not directly allow for an
extension to a spatial random field model. Using the multivariate skew-normal distribu-
tion of Sahu et al. (2003) (SSN) they proposed a valid random field model with a skew
structure to tackle non-Gaussian features and claimed that their random field is particularly
convenient for computation. In addition, Mahmoudian (2018) expressed that the induced
skewness under this family is not mixed with the spatial correlations.

To the best of our knowledge, the literature on modeling skewness in the case of binary
spatial data is very scarce (Hosseini et al. 2011; Afroughi 2015). This design is very useful
when our interest is to capture spatial dependence and avoid inefficient estimates by manip-
ulating the data. In this paper, we focus on implementing the valid flexible skew-Gaussian
random field introduced by Mahmoudian (2018) to address both spatial dependence and
(possible) skewness through a logistic regression model. The plan of the remainder of this
paper is as follows. The following section introduces our proposed spatial logistic regres-
sion model based on a valid skew-Gaussian random field and explains our methodology
of estimating the model parameters. An analysis of a synthetic data is described in Sect. 3.
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Section4 analyzes the Meuse heavy metals dataset as an application of our methodology.
Finally, the paper ends with some conclusions and final remarks (Sect. 5).

2. THE SPATIAL MODEL

Logistic regression is generally a kind of multiple regression model to analyze
the relationship between a binary outcome and independent variables. Let Z (S) =
(Z (s1) , . . . , Z (sn))T be an observable vector of spatially dependent binary variables at
locations S = (s1, . . . , sn)T. In a hierarchical setting, it is conventional to model Z (S)

as Bernoulli variables, whose means depend on an underlying spatial process Y (S) =
(Y (s1) , . . . Y (sn))T such that Z (si )s are conditionally independent, given the hidden pro-
cess Y (S). Like Tadayon and Torabi (2022), the specific hierarchical model we investigate
has the following representation

Z (s) |Y (s) ∼ Ber

(
p (s) = eY (s)

1 + eY (s)

)

Y (s) = x (s)T β + γW (s) + ε (s) , (1)

whereβ is a vector of k unknownparameterswith correspondingx (s)=(x1 (s) , . . . , xk (s))T

as a vector of known covariates that captures the large-scale spatial variation, γ is a scale
parameter,W (·) takes account of the non-Gaussian features through a valid skewed random
field in a latent mode. Finally, the white noise error ε (·) ∼ N

(
0, τ 2

)
is considered to be

independent of W (·). Evidently,

Pr [Z (s) = z |Y (s) = y ] = p(s)z[1 − p (s)]1−z

= 1

1 + exp {−y (2z − 1)} .

We consider W (S) = (W (s1) , . . . ,W (sn))T as the SSN process

W (·) ∼ SSNn

[
−
√

2

π
δ1n, H, δ In

]
, (2)

with the probability density function

f (w) = 2nφn

[
w;−

√
2

π
δ1n, H + δ2 In

]
�n

[
δ
(
H + δ2 In

)−1
(w +

√
2

π
δ1n); 0,	

]
,

mean 0 and covariance matrix H + (1 − 2/π) δ2 In , where w ∈ R
n , 	 = In −

δ2
[
H + δ2 In

]−1
, 1n denotes an n×1 vector of ones and In is the identitymatrix.φn (·;μ,
)

and �n (·;μ,
) represent the normal density and the normal cumulative distribution func-
tion of Nn (μ,
), respectively. The second term in the covariance matrix can be viewed
as a nugget effect in geostatistics. The exponential correlation function is chosen for the
entries of H such that Hi j = exp {− ‖h‖ /ψ} = exp

{−∥∥si − s j
∥∥/ψ}, whereψ is the range
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parameter. Therefore, the complete log likelihood function of η = (
β, γ, τ 2, δ, ψ

)T
is given

by

� (η) = −
∑
i

ln
(
1 + eY (si )

)
+
∑
i

Y (si ) Z (si )
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2τ 2
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+ ln�n

[
δ
(
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)−1
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√
2

π
δ1n); 0,	

]
, (3)

where |·| denotes the determinant. Since the likelihood function � (η) is analytically
intractable, one can use a natural extension of the EM algorithm that employs Monte
Carlo methods (MCEM algorithm) to estimate the model parameters η. In order to be
self-contained, we recall that the EM algorithm operates on the so-called Q-function where
at the t th E-step is defined by

Q
(
η
∣∣ηt ) = E

[
�
(
η
∣∣Z, ηt

)] =
∫

� (η) f
(
W, ε

∣∣Z, ηt
)
dWdε. (4)

The M-step is to maximize Q with respect to η to obtain ηt+1 = argmaxη∈
Q
(
η
∣∣ηt ),

where 
 is the parameter space. When the integral in equation (4) is analytically intractable
or very high dimensional theMCEM algorithm presents a modification of the EM algorithm
where the expectation in the E-step is computed numerically through Monte Carlo simula-
tion. By replacing the conditional expectations in (4) with the corresponding Monte Carlo
approximations, we can write

Q
(
η
∣∣ηt ) ≈ 1

M

M∑
m=1

�
(
ηt ;Z,W(m), ε(m)

)
,

and employ an optimization procedure to maximize Q
(
η
∣∣ηt ) with respect to η. These

steps are repeated until convergence conditions of the MCMC were satisfied through the
Gelman–Rubin convergence diagnostics (Gelman and Rubin 1992). At the t th iteration
of the MCEM algorithm, we need to calculate some conditional expectations of the form
of Ei

[
g (W, ε) |Z ], i ∈ {1, . . . , 7} for some function g of W and ε. These conditional

expectations that are shown in Equation (A1) of Appendix as an extended form of (4) may
not have explicit forms and need to be substituted by their Monte Carlo approximations.
We use the notation E

t
i (·) to show the corresponding approximation of the i th conditional

expectation Ei (·) whenever it does not have a closed form. E
t
i can be calculated based on

samples
{
W(m), ε(m)

}M
m=1 from the joint distribution fW,ε|Z,η as

E
t
i = M−1

∑M

m=1
gi
(
Z,W(m), ε(m); ηt

)
.
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For details regarding the updates of the model parameters through the M-step see the
Appendix in which a variational method is used to estimate the parameters. Generating
samples from the joint distribution fW,ε|Z,η requires a MCMC algorithm. To that end, we
explore the full conditional distributions as follows.

• ε |Z,W, η : According to the details of the variational method described in Appendix,
we can write

f (ε |Z,W, η ) ∝ exp

{
− 1

2τ 2
∑

i
ε2i +

∑
i
Ziεi − 1

2

∑
i
εi

−
∑

i
λ (θi )

(
ε2i + 2xTi βεi + 2γWiεi

)}
,

therefore, the full conditional distribution of εi s is approximately proportional to a
normal density as

εi |Z,W, η
d�N

[
Zi − 2λ (θi )

(
xTi β + γWi

)− 0.5

τ−2 + 2λ (θi )
,

1

τ−2 + 2λ (θi )

]
.

• W |Z, ε, η :With regard to the hierarchical representation of the SSNdistribution based
on a normal and a truncated normal distributions, we can rewriteW as

W |V = v ∼ Nn
[
μv, H

]
, μv = δ

(
v −

√
2

π
1n

)
,

where V ∼ Nn [0, In] I{Rn+} (V) and I{·} (·) denotes the indicator function. Therefore,

f (W |Z, ε , η) ∝ f (Z |W, ε , η) f (W |V, η ) f (V)

∝ exp

{
−1

2
γ
∑

i
Wi − γ 2

∑
i
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2
i − 2γ

∑
i
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− 2γ
∑

i
λ (θi ) εiWi + γ

∑
i
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}

× exp

{
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2
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v H
−1W
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.

One can synthesize the above terms to obtainW |Z,V, ε, η
d�Nn

[
μw|· , 
w|·

]
, where

μw|· = 
w|·
(
H−1μv − C

2

)
, 
w|· =

(
H−1 + D

)−1
,

inwhichC is an n×1 vectorwith elements ci =γ
(
1 + 4λ (θi ) xTi β + 4λ (θi ) εi − 2Zi

)
and D is a diagonal matrix as D = 2γ 2diag (λ (θ1) , . . . , λ (θn)).

• V |Z,W, ε, η :

f (V |Z,W, ε , η) ∝ f (W |V, η ) f (V)

∝ exp

{
−1

2

(
μT
v H

−1μv − 2μT
v H

−1W + VTV
)}

I{Rn+} (V) ,
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hence,V |Z,W, ε, η ∼ Nn

[

v|· (δH−1W −

√
2
π
H−11n),
v|·

]
I{Rn+} (V), where its

covariance matrix can be written as 
v|· = (δ2H−1 + In)
−1

.

3. ANALYSIS OF A SYNTHETIC DATASET

We now assess the performance of the proposed model using a synthetic dataset along
with making a comparison between our results and the one is resulted by applying the
model presented in Hardouin (2019). Thus, the contribution of this section is twofold. First,
the performance of the presented model is evaluated in estimating the parameters using
the response variable generated from model (1) (using algorithm 1), and then, the effect of
sample size (the number of spatial locations) onmodel performance is examined.Ultimately,
the results are compared with that of its competitor. All computations were performed using
the publicly available statistical software R.

To address our goals, we use algorithm 1 to generate spatially correlated binary data
Z (si ) with E [Z (si )] = p (si ) and ρ

[
Z (si ) , Z

(
s j
)] = Hi j = exp {− ‖h‖ /ψ}. We did

three distinct simulations, each withR = 500 generated datasets for three different sample
sizes as n = 200, 400 and 800 observations, respectively. For all three simulations, we
set M = 100. In each simulation study, the sites are uniformly distributed over the region
(0, 10)× (0, 10). The data were simulated from the model (1) with xi ∼ N (0, 1) where the
true values of the model parameters has been shown in Table 1 which also summarizes the
results. Notice that choosing ψ = 3.5 in each simulation yields the rough values 0.02 and
0.99 for exp {− ‖h‖ /ψ} as the approximations of themaximumandminimumdependencies
based on the presented exponential correlation function correspond to the smallest and
largest distances between the selected locations, respectively.

Table 1 specially reports the bias criterion for an arbitrary parameter, say ϑ , as

Bias
(
ϑ̂
)

= R−1
∑R

r=1

(
ϑ̂ (r) − ϑ

)

and also the empirical variance of each estimation as

MSE
(
ϑ̂
)

= R−1
∑R

r=1

(
ϑ̂ (r) − ϑ̄

)2
(5)

to assess the performance of the proposed methodology, where ϑ̄ = R−1∑R
r=1 ϑ̂ (r). It

is worthwhile mentioning that in Hardouin (2019)’s approach spatial variation is captured
through the term ε (·) with the same exponential correlation function, i.e., ε ∼ N (0, H∗),
where H∗

i j = τ 2 exp {− ‖h‖ /ψ}. Eventually, the resultant Akaike information criterion
(AIC) values were used to compare model performance. This benchmark, which is the
most popular criterion for model assessment in the literature, is calculated as AIC =
2[#model parameters − � ·

y,λ]. The AIC values corroborate better performance of the pro-
posed model compared to its competitor. Note that Table 1 compares parameter estimates
for the data generated from the proposed model with a misspecified model considered in
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Table 1. Bias value and the empirical variance (Evar) of the estimated parameters for the proposed and Hardouin
(2019)’s approaches based on three different simulations with n = 200, 400 and 800

Parameter True value Proposed model Hardouin’s model
Bias EVar Bias EVar

n = 200 β0 1.5 0.025 0.097 −0.837 1.657
β1 0.8 0.022 0.088 1.017 1.544
γ 0.5 −0.031 0.092 – –
δ 0.9 0.096 0.094 – –
τ2 0.4 −0.091 0.097 1.530 1.991
ψ 3.5 0.099 0.093 1.153 2.023
AIC 862.4 994.1
MCR 13.5% 32.8%

n = 400 β0 1.5 0.019 0.085 0.840 1.651
β1 0.8 −0.017 0.069 0.981 1.538
γ 0.5 0.02 0.078 – –
δ 0.9 −0.089 0.08 – –
τ2 0.4 0.081 0.082 1.147 1.993
ψ 3.5 −0.09 0.089 −1.148 2.004
AIC 841.3 980.7
MCR 11.7% 31.7%

n = 800 β0 1.5 −0.011 0.075 −0.710 1.624
β1 0.8 −0.01 0.06 0.932 1.517
γ 0.5 0.017 0.071 – –
δ 0.9 0.073 0.069 – –
τ2 0.4 −0.074 0.072 1.135 1.985
ψ 3.5 −0.85 0.081 1.132 1.976
AIC 840.6 971.1
MCR 10.4% 28.5%

AIC Akaike information criterion,MCR misclassification rate

Hardouin (2019), so it is expected that parameter estimates will be biased for the misspec-
ified model. To address this issue, we use the mean squared prediction error (MSPE) to
assess the performance of suggested strategy. In classification problems prediction error is
commonly defined as the probability of an incorrect classification, also called the misclas-
sification rate (MCR). To compute MCR, we randomly drop n/10 observations from each
simulation; then, MCR is calculated by MCR = (n/10)−1∑n/10

i=1 I
(
Ẑi 	= Zi

)
, where I (·)

is the indicator function that is equal to one when its input is true. The results which have
been reported as percentage in Table 1 represent lower MCRs for the suggested model and
also show that as the sample size increases MCRs decrease.

Algorithm 1 Generate spatially correlated skewed binary data Z (s) from model (1)
I. Generate V from Nn [0, In] I{Rn+

} (V),

II. Generate normally distributed and spatially correlated W |V = v ∼ Nn
[
μv, H

]
with

ρ
[
W (si ) |V ,W

(
s j
) |V ] = Hi j ,

III. Calculate Y (si ) = β0 + β1xi + γWi + εi and determine p (si ) = eY (si )/(1 + eY (si )),
IV. Generate Z (si ) from Ber (p (si )).
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Table 2. Bias value and the empirical variance (Evar) of the estimated parameters for the proposed model based
on a simulation with n = 800 and ψ = 0.1. MCR = misclassification rate

Parameter True value Bias EVar

n = 800 β0 1.5 0.012 0.075
β1 0.8 −0.013 0.062
γ 0.5 0.018 0.070
δ 0.9 −0.075 0.074
τ2 0.4 −0.077 0.066
ψ 0.1 0.079 0.079
MCR 10.4%

Table 3. Identifiability of two parameters τ2 and δ based on three different simulations with n = 200

δ True value 0.7 1 1.3
Bias value 0.092 −0.087 −0.09
Empirical variance 0.093 0.09 0.093

τ2 True value 0.3 0.5 0.8
Bias value −0.083 0.087 0.083
Empirical variance 0.091 0.090 0.090

To evaluate the performance of the proposed model in different scale of spatial depen-
dence, we did another simulation based on n = 800, however, in this case, we fixed all
parameters β0, β1, γ, δ and τ 2 the same as what considered before in Table 1 and only
altered ψ to ψ = 0.1 which allows the spatial dependency to vary from almost 0 to 0.5. We
are aware that in practical issues this value should be considered according to the autocor-
relation function relative to the size of the domain, however, it has been chosen to assess the
performance of the proposed model in the case of low spatial dependence. The results that
are presented in Table 2 could readily be compared with the corresponding part of Table 1.
Patently, the results substantiate stability in the performance (bias, the empirical variance
and MCR) of the proposed model in the case of low spatial dependence.

Finally, since the inference may be challenging in identifying the nugget effect compo-
nents (τ 2 and δ), here, we discuss to what extent information about these parameters can
be recovered from data. To assess identifiability of each of these parameters, say δ, three
datasets (of size 200) were generated from the proposed model with different values of δ

(and fixed values for other parameters, as described in Table 1). Then, the estimated values
were obtained. The same applies for inference on τ 2. Table 3 indicates that the data allow
for meaningful inference on the model’s nugget effect components.

4. APPLICATION: THE MEUSE HEAVY METALS DATA

In this section, we illustrate our proposed methodology using a well-known real dataset
in the literature on spatial statistics. TheMeuse dataset which has been documented in detail
by Rikken and Van Rijn (1993) and Burrough andMcDonnell (1998) and have been studied
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Figure 1. Study area, coordinates are in RDM, the Dutch topographical map coordinate system. The blue color
shows the Meuse River .

frequently in several geostatistical researches, comprise heavy metals measurements in the
topsoil in a flood plain along the Meuse River west of the municipality of Stein, Limburg,
the Netherlands. The dataset is available in the R package sp and can be loaded with the
data function as data(meuse). The measures consist of 155 soil samples collected in
an area of approximately 15m × 15m which were analyzed for their concentration of toxic
heavy metals (zinc, lead, copper, and cadmium) in ppm. Figure1 below depicts a schematic
description of the region and sampling locations.

We chose the binary variable lime as our response of interest Z and simultaneously in
order to find the most related covariates to our response, corrected AIC (AICC) introduced
by Hoeting et al. (2006) (for geostatistical model selection) was used. AICC is given by

AICC = 2

[
n

p + k + 1

n − p − k − 2
− � ·

y,λ

]
,

where, p shows the number of regression coefficients including an intercept term, k is the
number of parameters associated with the autocorrelation function and n is the number
of observed sites. Considering four variables zinc, lead, copper, and cadmium as potential
covariates, we investigated among all 24 − 1 feasible embedded models and ultimately, an
overall consideration (that are not presented here) resulted in a model with two covariates
lead and zinc. Although the simulation study showed that estimation of parameters does
not depend on initial values for parameters, we use estimates of ordinary GLM for initial
values of regression coefficients, i.e., β0 = −3.34, βlead = −0.03 and βzinc = 0.01. From
p(s) = eY (s)/

(
1 + eY (s)

)
and Equation (1) we can write

γW (s) + ε (s) � ln

(
Z̄

1 − Z̄

)
− x(s)Tβ,
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Figure 2. Left panel displays the histogram of V (s) with its kernel density estimate and right panels shows its
normal QQ-plot .
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Figure 3. The empirical semi-variogram of V (s).

where p̂ (s) = Z̄ = 0.284. Now, we define V (s) = γW (s) + ε (s) which is approxi-
mately given by V (s) = 2.422 + 0.038lead (s) − 0.017zinc (s). We can see that V (s) is
a member of the SSN family (2). The Q-Q plot and histogram of V (s) are demonstrated in
Fig. 2. As a result of simple exploratory data analysis, the histogram shows a non-Gaussian
feature, which confirms the suitability of implementing the proposedmodel based on above-
mentioned skew random field. The empirical semi-variogram of V (s) was plotted in Fig. 3.
The best model was exponential with parameters nugget effect = 1.07, sill = 6.60 and
range = 367.24. Table 4 displays the model parameter estimates and the corresponding
standard error for the proposed model and MCRs of both competitor models. The pre-
sented estimated-values/MCRs were calculated as the mean of estimated values/MCRs over
R = 20 runs of the program.
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Table 4. The estimated values and standard error of parameters based on the presented model. Misclassification
rate (MCR) has been presented for both competitor models

Parameter Estimated value Standard error

β0 −2.11 0.032
βlead −1.14 0.034
βzinc 0.86 0.031
γ 1.97 0.043
δ −2.02 0.040
τ2 1.36 0.041
ψ 335.17 0.52
MCR Proposed model 13.1%

Hardouin’s model 34.11%

5. CONCLUSION

The present study concentrated on implementing a valid flexible skew-Gaussian random
field based on the skew-normal family introduced bySahu et al. (2003) to capture both spatial
dependence and (possible) skewness through a logistic regression model. Declaring that
directly maximizing the likelihood function of observed data is intractable, a Monte Carlo
extension of EM algorithm was developed to compute the maximum likelihood estimate of
model parameters. Moreover, a simulation study was conducted to assess the performances
of the proposed model and also to investigate the effect of sample size on the results. Finally,
a real data application regarding the presence of lime in the topsoil along the Meuse River
was also analyzed in which, the concentration of toxic heavy metals zinc and lead were
considered as two covariates.

Overall, the proposed model added flexibility to the class of spatial logistic regression
models often considered in the literature to account for binary spatial data. It must be
mentioned that, in the spatial context, the asymptotic properties of parameter estimators
strongly depend on the asymptotic regime which is considered. Specifically, two regimes
can be considered, first, when the spatial domain is fixed and bounded and the density of
the sampling locations increases with n (the fixed/infill domain). Second, when the spatial
domain of observation is unbounded and it grows in size with the sample dimension n (the
increasing domain framework). Whereas under the latter regime the maximum likelihood
estimators are consistent and asymptotically normal, subject to some regularity conditions
(see, for example, Mardia and Marshall (1984)), under the former analogous results do
not hold and model parameters could not be consistently estimated. Besides this, in the
suggested approach, the latent factors are independent for each location which results in
satisfaction of mixing conditions. However, in the general case, replicates are required to
obtain consistent estimates even if the number of locations is large.

An astonishing extension of this work is to investigate how the variance process can
be allowed to depend on covariates which opens up an opportunity to interpret tail behav-
ior of the process as a function of known covariates. Another step forward is to let this
covariance-covariate dependence change in time. On the other hand, in the last decade, with
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the wide usage of mobile applications and Global Positioning System (GPS) devices as
well as the advancement of remote sensors which are accompanied with cheap data stor-
age/computational devices, many geo-referenced data are being collected. As a result, there
has been a growing enthusiasm for modeling spatial big data. The third interesting exten-
sion of this work is to scale the proposed model to big data. Moreover, in this study the
exponential correlation function was chosen, although this could affect the smoothness of
the process. One can choose a more flexible spatial correlation structure and compare the
results. We have planned to study these approaches in our future studies.

5.1. SUPPLEMENTARY MATERIAL

Supplementary materials contain R codes for simulations and real data application con-
ducted in this paper.
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APPENDIX

In what follows, we use the notation ϑi to show ϑ (si ). Equation (4) can be written as

Q
(
η
∣∣ηt ) = −

∑
i

E1

[
ln
{
1 + exp

(
xTi β + γWi + εi

)}∣∣∣Z]

+
∑
i

ZixTi β + γ
∑
i

Zi E2 [Wi |Z ] +
∑
i

Zi E3 [εi |Z ]

− 1

2τ 2
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2
ln π2τ 2
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WWT |Z

)}

−
√

2

π
δ1Tn

[
H + δ2 In

]−1
E6 [W |Z ] − 1

π
δ21Tn
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1n

+E7

[
ln�n

{
δ
(
H + δ2 In

)−1
(W +

√
2

π
δ1n); 0,	

}∣∣∣∣∣Z
]

, (A1)
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in which the fourth line has been derived from the properties xTAx = trace
(
xTAx

)
and

trace (AB) = trace (BA). A closer scrutiny shows, however, that one of the main prob-
lematic terms of (A1) is

∑
i E1

[
ln
(
1 + eYi

)∣∣Z]. Hardouin (2019) proposed a variational
method which is based on replacing this term by an initial approximation of the logistic
function κ (x) = ex/ (1 + ex ) = 1/

(
1 + e−x

)
which had been studied by Jaakkola and

Jordan (2000) as

ln κ (x) ≥ ln κ (θ) + x − θ

2
− λ (θ)

(
x2 − θ2

)
, λ (θ) = κ (θ) − 1/2

2θ
.

This variational lower bound involves the model parameters and the so-called variational
parameter θ . Let 
 = (θ1, . . . , θn)

T, we apply this lower bound to −∑i ln
(
1 + eYi

) =∑
i ln κ (−Yi ) as the first term of (3). Therefore,

−
∑

i
ln
(
1 + eYi

)
≥
∑

i
[ln κ (θi ) − θi

2
+ θ2i λ (θi )]

−1

2

[∑
i
xTi β + γWi + εi

]
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i
λ (θi )

[ (
xTi β

)2 + γ 2W 2
i + ε2i

+2γ xTi βWi + 2xTi βεi + 2γWiεi

]
. (A2)

The monotonicity of expectation implies that getting the (conditional) expectation of (A2)
(given Z) preserves the inequality. Now, we can write Q

(
η
∣∣ηt ) ≥ Q̃

(
η,


∣∣ηt ,
t
)
, where

Q̃ has been resulted by replacing the first termof Qwith the expectation of the right hand side
of (A2) given Z, which eliminates E1

[
ln (1 + exp {Yi })|Z

]
and incorporates E8

[
W 2

i |Z ]
and E9

[
ε2i |Z ] into inference. We then use a two-stage estimation procedure in theM-step,

where the first stage consists of maximizing Q̃
(
η,


∣∣ηt ,
t
)
with respect to the model

parameters for fixed 
 results in Q̃
(
ηt+1,


∣∣ηt ,
t
)
, and in the second stage, updated

variational parameters
t+1 is obtained by maximizing Q̃
(
ηt+1,


∣∣ηt ,
t
)
with respect to


. The updates of the model parameters are as follows. τ 2
t+1 = n−1

E
t
4, β

t+1 can be easily
obtained as a solution of the systems of linear equations
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