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Discussion on “Competition on Spatial
Statistics for Large Datasets”

Denis ALLARD®, Lucia CLAROTTO, Thomas OPITZ, and Thomas ROMARY

We discuss the methods and results of the RESSTE team in the competition on spa-
tial statistics for large datasets. In the first sub-competition, we implemented block
approaches both for the estimation of the covariance parameters and for prediction using
ordinary kriging. In the second sub-competition, a two-stage procedure was adopted.
In the first stage, the marginal distribution is estimated neglecting spatial dependence,
either according to the flexible Tuckey g and / distribution or nonparametrically. In
the second stage, estimation of the covariance parameters and prediction are performed
using Kriging. Vecchias’s approximation implemented in the GpGp package proved to
be very efficient. We then make some propositions for future competitions.

Key Words: Composite likelihood; Block likelihood; Block approach; Tuckey g and 4;
Vecchia’s approximation.

1. INTRODUCTION

We congratulate the authors for organizing such a great and challenging competition. Our
team brings together researchers from two French groups that have long-standing collabo-
rations: the BioSP research unit at INRAE and the Geostatistics team at Mines ParisTech
(formerly known as Ecole des Mines de Paris). They both belong to the RESSTE network!
funded by INRAE. RESSTE organizes scientific animation around models, methods and
algorithms for spatiotemporal data, and it fosters collaborations between statisticians and
other scientists sharing interest in spatial and spatiotemporal data. Forced to be physically
distant due to the Covid-19 sanitary crisis, we set up an efficient working environment
with the help of collaborative online platforms for code, text and vivid discussions. We
were thus able to contribute to all sub-competitions, including with multiple submissions
for sub-competition 2. We enjoyed very much participating to this exercise. In addition to
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congratulate Huang, Sameh, Ying, Hatem, David and Marc for the excellent organization,
we sincerely wish to thank them for the nice moments it brought to the four of us.

2. COMPETITION 1: BLOCK APPROACHES FOR GAUSSIAN
PROCESSES

Data are known to have been generated from a Gaussian process with Matérn covariance
function. Maximum likelihood (ML) would thus be the most efficient estimation method,
and conditional expectation, also referred to as Kriging, is optimal for prediction. However,
due to the size of the dataset, neither full ML nor unique neighborhood Kriging can be
achieved, at the exception of ExaGeoStat. Efficient approximations must be sought. Here,
we have opted for block approaches that satisfy the following principles: (i) in each block,
estimation (ML) or prediction (Kriging) is optimal; (ii) blocks should be as large as possible
while taking into account computational issues; (iii) blocks are assumed to be independent
among each other. The approximation lies entirely in point (iii), and it is easy to understand
that (ii) is the key for achieving good performances. What “large” means has slightly different
meaning for estimation and for prediction. As regards estimation, some parameters control
local properties, while others are global. Therefore, blocks for estimation need to have a large
spatial extent. For plug-in Kriging, only local information is necessary. Prediction blocks
are thus local, containing as many data points as possible. Details are provided below.

2.1. ESTIMATION

First, a rough estimation of the parameters was performed on each dataset with weighted
least squares fits for experimental variograms using the package RGeostats. These esti-
mates, from which an approximate effective range ER = B/120 was computed, allowed
us to gain a general picture of the experimental design similar to that shown in Table 1 in
Huang et al. (2021). In particular, £ R was clearly close to the size of the domain for some
datasets.

In a second stage, estimation of the parameters was performed using a maximum com-
posite block-likelihood (BL) method. Blocks are characterized by their size (number of data
points, Np), shape and location of the data within the blocks. Nugget (r> > 0) and smooth-
ness (v > 0) are local parameters, whilst range (8 > 0) and sill (02 > 0) are non-local.
When 72 = 0, Zhang (2004) showed that the only quantity that can be efficiently estimated
in an in-fill asymptotic framework is o2 ~2". Efficient estimation of all parameters thus
requires a “large domain” framework that allows sampling small distances for estimating 7>
and v, and intermediate to large distances with respect to E R for estimating 8 and o%. In each
block, the sub-sample must be built so as to sample all distances from 0 to a multiple of the
practical range. Data separated by a distance larger than 2 to 3 times the practical range are
useless for estimating nugget, regularity and range parameters and can be excluded. Here,
blocks were disks with a radius setto 1.5E R, centered on a regular B x B grid covering the
domain. Np points were then sampled at random within each disk with a weight decreasing
linearly from the center (where it is equal to 1) to the edge of the disk (where it is equal to 0).
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After some experiments, the final setting was B = 15 and Np = 500. For datasets G4/G12,
when the smoothness parameter is large, the covariance matrix was seen as singular in R; in
these cases, Np was set to 400. The function n1bmin was used for minimizing the nega-
tive log-BL. Initial values for the optimization were given by the WLS estimates of the first
stage. Since blocks are random, this operation is repeated 5 times for each dataset. For each
parameter, the average of the estimates was computed. This average is the final estimate.

2.2. PREDICTION

A “local unique neighborhood” technique is adopted, in which Kriging is performed at
all locations belonging to the same block using a common neighborhood. To this end, a
K x K regular grid is defined on the domain, and one Kriging system is built for each mesh
of that grid, hereafter referred to as target block. The neighborhood of a given target block
is a disk of radius 1.5+/2/K, so that all data belonging to the 3 x 3 meshes surrounding the
center of the target block are part of the Kriging system. Smaller K yields higher precision
but is computationally more demanding. Larger K leads to smaller neighborhood and lower
precision. Computing time decreases rapidly as K increases, roughly at a K ~* rate. A good
trade-off between performance and speed was obtained with K = 31. The average number
of training data per Kriging system was therefore around 1200.

2.3. DISCUSSION

Overall these block approaches performed relatively well, ranking fourth and second
in sub-competitions la and 1b, respectively. It is noticeable that in sub-competition 1b the
plug-in block Kriging described above was only outperformed by ExaGeoStat using the true
model, whereas ExaGeoStat with the estimated parameters performed slightly less well. As
expected, we experienced some difficulties for the simultaneous estimation of 8, v and
o2 for smooth GPs with large effective range, i.e., when v > 0.6 and ER > 0.1. G4 is
particularly poorly estimated, with simultaneous underestimation of the sill (6> = 1.2092)
and underestimation of the range (B = 0.0486), resulting in a high MMOM and RMSE—
even though MLOE is relatively small. Estimating v when the regularity is high in the
presence of a nugget is very challenging (G12, G13 and G15), as can be seen in Figures 2
and S1. In these cases, the poor estimation translated into high RMSE:s for plug-in Kriging.

3. COMPETITION 2: TRANS-GAUSSIAN MODELS

In this competition, the generating mechanism of the data was supposed to be unknown.
Therefore, we first explored marginal distributions of the data using tools such as boxplots
and histograms to check if a Gaussian model for the marginal distributions makes sense. If
not, we followed the well-established statistical practice of using a marginally transformed
Gaussian model. This approach, among which the Box—Cox transformation is the most
popular representative, allows accommodating data features such as heavier-than-Gaussian
tails or asymmetry of upper and lower tails.
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Table 1. Mean, minimal and maximal value of the datasets of competition 2

Dataset Min Mean Max
2al —7.1426 1.5141 36.0287
2a2 —7.3185 2.2249 126.789
2bl —3.2676 0.0652 4.1168
2b2 —7.2361 1.504 37.1778
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Figure 1. Histograms of the datasets of competition 2 with superimposed Gaussian density when adequate .

3.1. EXPLORATION OF THE DATA

The first step of the solution to sub-competitions 2a and 2b is related to the exploratory
analysis of the dataset. Some statistical quantities such as the mean, the minimum and
maximum values (Table 1) were computed along with the histograms for each of the four
datasets (Fig. 1a). It is clearly visible that only one of the four datasets (2b1) could be
considered as marginally Gaussian distributed. The histograms of the other three datasets
(2al, 2a2, 2b2) present heavy tails toward high values. This fact is highlighted also by the
maximal values of the datasets, which are extremely far from the mean if compared to
the corresponding minimum values, showing asymmetry of tails. These insights suggest
that the non-Gaussian datasets could be transformed to Gaussian models before applying
geostatistical inference and prediction. Various types of transformations were inspected as
reported in the next section.

3.2. TRANSFORMED MARGINS
3.2.1. Tukey g and & Transform

A flexible parametric marginal transform of Gaussian variables was proposed by
J.W. Tukey and is known as the g and % distribution (Jorge and Boris 1984). It has been



608 D. ALLARD ET AL.

recently studied for spatial Gaussian fields by Xu and Genton (2017). Tukey g and /4 trans-
formation function is strictly monotonic and defined as follows:

é(exp(gx) — Dexp (hx?/2), g #0,

xeR, h>, geR. (D)
X exp (hx2/2), g =0,

tg,h(x) = {

Given a standard Gaussian variable W, the Tukey g and A distribution is constructed as

Z = Bo+ Bitg.n(W),

with parameters to control location (8p), scale (81), asymmetry (g) and tail heaviness (h).

No external predictor variables were provided for the dataset, and visually we could
not detect any other trends or anisotropies in the data. Therefore, we used a stationary and
isotropic Tukey g and & random field model, which is obtained by applying the transfor-
mation (1) to a standard Gaussian random field with the Matérn covariance. We estimated
the four parameters for each of the fields through the independence likelihood (neglecting
spatial dependence) using the R library OpVaR; histograms of data after the inverse trans-
formation to the standard Gaussian margins are shown in Figure 1b and correspond well to
the superposed standard Gaussian density.

3.2.2. Nonparametric Transform

The estimation of the parameters of the Tukey g and 4 transform relies on an approximate
parameter estimation procedure described below, which may conduct to underestimation or
overestimation of the transformation parameters. Therefore, we also investigated the use of
simple nonparametric transforms, namely a log transform for datasets 2al and 2b2 and a
log-log transform for dataset 2a2. Their adequacy was checked by a visual inspection of the
histograms of the transformed data (not represented here), in particular their symmetry.

3.3. ESTIMATION AND PREDICTION

Joint estimation of marginal and dependence parameters can be useful to allow for trans-
fer of information between the models for margins and dependence, and for very accurate
assessment of uncertainty in estimates. However, two-step approaches with separate estima-
tion of marginal parameters, followed by marginal transformation to the standard Gaussian
scale and estimation of the Gaussian correlation function, have the advantage of being more
robust. In particular, they allow for the combination of different estimation techniques for
margins and dependence. We here adopt two-step approaches. In the first step, which is
common to two of our three approaches, we implement two substeps: (1) estimation of
the marginal parameters S, f1, g, h using the independence likelihood (i.e., by neglecting
spatial dependence); (2) marginal transformation to the standard Gaussian scale using the
parameters estimated in substep 1. In the last approach, we used a nonparametric transform.
The following two subsections detail estimation after transformation of data to the standard
Gaussian margins.
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3.3.1. Bootstrap Approach

This approach is designed to run fast with moderate computing resources, such as those
available on a personal computer. We proceed as follows using the pretransformed data:

1. Bootstrap estimations (25 samples) of Matérn correlation parameters using marginally
pretransformed data: subsampling (without replacement) of 500 observations, and
estimation of the scale and shape parameters of the Matérn correlation function.

2. The final estimated Matérn correlation parameters are set to the median of the boot-
strap estimates.

3. Simple Kriging prediction is performed on the standard Gaussian scale by using k
nearest neighbors of observed locations around the location to predict.

4. Standard Gaussian predictions are transformed back to the original scale by using
the direct Tukey g and / transformation in (1) with parameters estimated in Step 1.

We have used validation data to choose among several values k = 25, 50, 100 of nearest
neighbors in Step 5. The implementation was realized using the R library CompRandF1d
for estimation of covariance parameters and Kriging.

3.3.2. GpGp

Vecchia approximations are a particular case of composite likelihood methods. They
can also provide an approximation of the parent Gaussian process (Katzfuss and Guinness
2021). The computations are based on the Cholesky factor of the inverse covariance matrix
that can be computed explicitly and that is sparse by construction. Therefore, they allow for
numerically efficient inference and prediction. The package GpGp proposes an implemen-
tation of a Vecchia approximation that uses an elaborate way to order and group the data
into conditionally independent blocks (Guinness 2018). It also provides an implementation
of the Fisher scoring algorithm for the ML estimation of the parameters (Guinness 2021).
We have used this package for parameter estimation and prediction for marginally pretrans-
formed data in datasets 2al, 2a2 and 2b2, or directly for dataset 2b1. Then, the predictions
were transformed back into their original scale. The only parameter to be set is the number
of neighbors to be considered in the groups for estimation and prediction. It has been set by
trial and error regarding the prediction performances on out-of-sample validation data.

3.4. VALIDATION

After transformation of the marginals (either through a nonparametric approach or
through Tukey g and k), two parameters had to be set for the Vecchia approximation
approach: the number of neighbors in the estimation step, 7., and the number of neigh-
bors in the prediction step, n,. A holdout validation method was used to define the best n,
and n,. Each time 70000 (resp. 700000) data were selected as training points in the datasets
of sub-competition 2a (resp. 2b), and RMSE was computed over the 20000 (resp. 200000)
remaining points. The values of n, and n, leading to the best RMSE were n, = 50 for
datasets in 2a, n, = 30 for datasets in 2b and n,, = 100 for all datasets. In the bootstrap
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Table 2. Submissions of the RESSTE team for competition 2

Submission Margins (except 2b1) Estimation+Prediction Rank 2a Rank 2b
Tukey-g-h-trans-bootstrap Tukey g-h Bootstrap (3.3.1) 5 6
Tukey-g-h-trans-GPGP Tukey g-h GpGp (3.3.2) 1 1 (ties)
nonpara-trans-GPGP Non-parametric GpGp (3.3.2) 2 (ties) 1 (ties)

approach (Sect. 3.3.1), the size of the nearest neighbor Kriging neighborhood was set to 25
(Table 2).

3.5. DISCUSSION

Several methods were initially considered to treat the datasets of sub-competitions 2a
and 2b, coming either from more classical geostatistical analyses or from machine learning
techniques. Data-based methods such as random forests and neural networks, even when
the spatial coordinates were combined with the addition of local features (mean/min/max
values computed on K nearest neighbors), led to meager results in prediction.

Regarding competition 2, the type of point prediction to use depends on the score to be
optimized. The conditional mean is known to minimize mean-squared error (MSE), and it
corresponds to Kriging predictions. However, when marginal transformations are involved,
the transformed conditional mean prediction is not equal to the conditional mean on the
transformed scale. When the target is to minimize mean absolute errors, then conditional
medians provide optimal predictions. With Gaussian data, conditional means and medians
coincide. To compute conditional medians, we can simply transform data to the Gaussian
scale, predict on the Gaussian scale, and then transform back to the original data scale.
In competition 2, the target score was MSE. Due to very small prediction variances on
the Gaussian scale, we found only very small differences between conditional median and
conditional mean predictions on the non-Gaussian marginal scale of the original data. In
some approaches (e.g., the bootstrap approach), we have therefore submitted marginally
transformed Gaussian Kriging predictions.

4. FUTURE DIRECTIONS

This competition has explored different methods for the estimation of the parameters, and
for the prediction (Kriging), of Gaussian and Tukey g and % trans-Gaussian random fields.
Among these methods, several have achieved very good performance, as shown in Huang
et al. (2021). More challenging setups than classical point data could also be considered,
such as preferential sampling or the addition of location errors. An interesting question is
whether the methods described in this paper would be efficient on gridded data, or whether
grid-specific approaches would perform better. In particular, the case of gap filling (large
areas without observations) could also be investigated.
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Future competitions could also consider more challenging types of trans-Gaussian models
arising in the analysis of agricultural, biological and environmental data, such as zero-inflated
data, count data and other discrete data, or compositional data. Non-Gaussian margins arising
from non (trans-)Gaussian random fields such as skew-Gaussian, skew-elliptical or max-
stable random fields could also be considered.

Another very interesting extension would be to increase the dimensionality of the data by
considering multivariate random fields, spatiotemporal random fields, or both. In different
communities, such as machine learning, sensitivity analysis and uncertainty quantification,
Gaussian processes are used in high-dimensional spaces. Testing the methods that have
been developed successfully in spatial statistics to the problems faced by these communities
offers interesting perspectives.

To provide a more realistic setting of real data analyses, future comparisons of prediction
methods could also explore nonstationary settings with trend functions that may depend on
external predictors, and with nonstationary covariance functions.
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