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As spatial datasets are becoming increasingly large and unwieldy, exact inference
on spatial models becomes computationally prohibitive. Various approximation meth-
ods have been proposed to reduce the computational burden. Although comprehensive
reviews on these approximation methods exist, comparisons of their performances are
limited to small and medium sizes of datasets for a few selected methods. To achieve a
comprehensive comparison comprising as many methods as possible, we organized the
Competition on Spatial Statistics for Large Datasets. This competition had the follow-
ing novel features: (1) we generated synthetic datasets with the ExaGeoStat software
so that the number of generated realizations ranged from 100 thousand to 1 million; (2)
we systematically designed the data-generating models to represent spatial processes
with a wide range of statistical properties for both Gaussian and non-Gaussian cases;
(3) the competition tasks included both estimation and prediction, and the results were
assessed by multiple criteria; and (4) we have made all the datasets and competition
results publicly available to serve as a benchmark for other approximation methods. In
this paper, we disclose all the competition details and results along with some analysis
of the competition outcomes.

Key Words: Gaussian processes; Matérn covariance function; Parameter estimation;
Prediction; Tukey g-and-/ random fields.

1. INTRODUCTION

With the development of better observing techniques and advanced computing devices,
it has become easier and more common to obtain large spatial datasets. Therefore, statistical
inference in spatial statistics has become computationally challenging. For decades, various
approximation methods have been proposed to model and analyze large-scale spatial data
when the exact computation is infeasible. However, in the literature, the performance of
the statistical inference using those proposed approximation methods has generally been
assessed with small and medium datasets only, for which the exact solution can be obtained.
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However, for large real-world datasets, the exact computation is no longer feasible. The
inference with approximation methods is typically validated empirically or via prediction
accuracy with the fitted model.

Motivated by the challenge to compare the statistical and computational efficiency of
different approximation methods, several pioneering works were triggered. Englund (1990)
performed a very early research investigating the inference performance from different spa-
tial models. The study used the Walker Lake dataset (Srivastava 1987) in two areas with tens
of thousands of data points, and they observed considerable variability in the interpolation
results from the different spatial models. Bradley et al. (2016) reviewed various spatial pre-
dictors, including both deterministic and stochastic approaches, and applied them to satellite
measurements of CO,. Datasets of three different sizes were studied (the largest one com-
prised tens of thousands of observations), and the assessment of the different methods relied
on the prediction error. Heaton et al. (2019) mainly focused on the Gaussian Process (GP)
and proposed a competition in which research groups used their selected approximation
methods of GP or other model-free algorithmic approaches to make predictions for both
a simulated and real-world dataset. Both datasets consisted of 150,000 realizations. The
covariance of the simulated data from GP was known and disclosed to the competition par-
ticipants; the real-world data consisted of land surface temperatures measured by satellites
for which the true underlying covariance was unknown. The performance was examined
based on the prediction error or the predictive distribution. Wikle et al. (2017) discussed
the design of a common task framework to compare different methods. In addition, they
developed a website so that researchers could upload their prediction scripts to the website
server for the NASA OCO-2 data, and then the associated prediction performance would
be published on the website leaderboard.

Inspired by these works, we organized a competition, the Competition on Spatial Statistics
for Large Datasets (https://cemse.kaust.edu.sa/stsds/2021-kaust-competition-spatial-stat
istics-large-datasets), to involve more recent methodologies and overcome weaknesses
existing in previous studies. Compared to previous competitions or comparison works,
our competition has the following key features:

e We were able to generate synthetic spatial datasets where we know the true process
with size on a much larger scale, ranging from 100 thousand to 1 million realizations,
thanks to the ExaGeoStat (Abdulah et al. 2018a) software (https://github.com/ecrc/
exageostat). With the simulated large datasets, we could better understand the statistical
efficiency of different methods.

e The datasets were simulated from various spatial models, including both Gaussian
and non-Gaussian process models. For GP models, the datasets were simulated with
Matérn covariance functions for a selected set of parameters, representing a wide
range of statistical properties of the spatial random field. The non-Gaussian spatial
datasets were generated by Tukey g-and-h random fields (Xu and Genton 2017),
which generalize GP to account for skewness and heavy tails.

e The competition tasks included both estimation and prediction. It is insightful to exam-
ine the extent of departure of a model inferred by GP approximation methods from the
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truth. One sub-competition focused on assessing the model misspecification, where
we used as criteria the Mean Loss of Efficiency (MLOE) and Mean Misspecification
of the Mean Square Error (MMOM), both proposed by Hong et al. (2021). For sub-
competitions focusing on predictions, the Root Mean Square Error (RMSE) was used
to evaluate the prediction accuracy.

e We shared all the prepared datasets and competition results in a public repository.
Future approximation methods for large spatial datasets can use these datasets as
benchmark data and compare their performance with existing methods. In addition,
we also posted the model parameter estimate results and predictions with exact com-
putation by ExaGeoStat, which can be referenced as exact inference results.

The competition was launched on November 23, 2020, and attracted 29 research teams
worldwide to register. These registered teams included active researchers in the spatial
statistics community. The competition ended on February 1,2021, and 21 teams successfully
submitted their results; see Table S1 in the Supplementary Material for details about the
teams that submitted their results.

The rest of the paper is organized as follows: In Sect. 2, we provide an overview of
the competition. In Sect. 3, we briefly discuss the methods used in the competition by the
participating teams. In Sect. 4, we show details of the competition results with some analysis.
In Sect. 5, we conclude and give final remarks.

2. OVERVIEW OF THE COMPETITION

In this section, we give a brief overview of the ExaGeoStat software framework and how
it was used to generate the datasets in this competition as well as a detailed description of
the four sub-competitions, which focused on either the model inference of a zero-mean GP
or the spatial prediction.

2.1. ExaGeoStat SOFTWARE IN THE COMPETITION PREPARATION

The heart of this competition was ExaGeoStat, a C-based high-performance software
for geospatial statistics in climate and environment modeling (Abdulah et al. 2018a). Exa-
GeoStat provides a High-Performance Computing (HPC)-tailored framework that is able
to maximize the utilization of cutting-edge parallel hardware architectures with the aid of
state-of-the-art high-performance dense linear algebra libraries. Thus, this software is able
to tackle the scaling limitations of the Maximum Likelihood Estimation (MLE) and predic-
tion operations, i.e., O (n*) memory complexity and O (n3) computation complexity, where
n represents the number of spatial locations.

Figure 1 illustrates the set of software libraries that ExaGeoStat relies upon to enable
its HPC capabilities. The MLE optimization is performed using the NLOPT optimization
library (Johnson 2014), which aims to maximize the likelihood function by using different
sets of statistical model parameters based on the given covariance function. Furthermore,
to perform the underlying linear matrix operations, ExaGeoStat relies on state-of-the-art
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high-performance linear algebra libraries, specifically, Chameleon (CHAMELEON 2021)
and HiCMA (HICMA 2021). These are tile-based high-performance linear algebra libraries
that rely on task-parallel programming models instead of the less efficient block-based
algorithms. The HiCMA library is the hierarchical approximation version of the Chameleon
dense library.

Generally, the tile-based algorithms split a given matrix into a set of tiles to perform the
required matrix operations and maximize utilization of the underlying hardware resources.
The numerical algorithm is translated into a Directed Acyclic Graph (DAG), where the nodes
represent tasks and the edges represent data dependencies (e.g., read, write, and read-write)
where runtime systems, e.g., StarPU and PaRSEC, can be used to schedule the DAG tasks
across different hardware resources, ensuring that the data dependencies rules predefined
by the user are not violated. More detail about task-based MLE operations and ExaGeoStat
can be found in Abdulah et al. (2018a), Abdulah et al. (2018b) and Abdulah et al. (2019).

The ExaGeoStat software has three main components: a synthetic data generator, a mod-
eling tool, and a predictor. The synthetic data generator provides a reference set of synthetic
measurements and locations, which generates test cases of prescribed size for standardized
comparisons with other methods. This tool facilitates the quality assessment of any proposed
approximation method across a wide range of datasets with different features. The model-
ing tool can compute the MLE function through computation methods that vary from exact
to approximate (see Fig. 1). The ExaGeoStat predictor aims to predict a set of unknown
measurements at new spatial locations. In Abdulah et al. (2019), the capabilities of ExaGeo-
Star were exported to the R environment (R Core Team 2019) through the ExaGeoStatR
package. With ExaGeoStatR, large-scale Gaussian calculations in R are now possible by
mitigating its memory and computing limitations. The ExaGeoStatR package provides the
same functionality of the ExaGeoStat software through a set of R functions that abstract
the underlying hardware architecture to a set of input-parameters.

In the following sections, we elaborate on the set of synthetic datasets that were used
in this competition and generated using the ExaGeoStat data generator. The datasets were
generated with different true parameters and dataset sizes. We also used the ExaGeoStat
modeling and predictor tools to provide exact estimations and predictions of the given
Gaussian datasets as benchmarks for the solutions submitted by the participants.
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2.2. DATASETS USED IN THE COMPETITION

First, we generated 16 datasets, denoted by Dataset G1 — G16, from different zero-mean
stationary isotropic GP Z(s) at one million locations in the unit square [0, 1] x [0, 1] with
ExaGeoStat. The Matérn covariance was used:

. 22 Isi —sjll\v . (lisi — sl 2
cov{Z(s;). Z(s))} = o m(T> KV(T)JFI Liey. ()

1—v

where cov{ Z(s;), Z(s ) } is the Matérn covariance between realizations of Z(-) at locations
s; and s, K,(-) is the modified Bessel function of the second kind of order v, I'(-) is
the Gamma function, and 1 is the indicator function. The four parameters determining the
covariance structure are: the partial sill o2, the range 8 > 0, the smoothness v > 0, and the
nugget 72,

The covariance setup of Datasets G1-G8 is given in Table 1, which also shows the
effective range (the distance beyond which the covariance drops below 5%) for each dataset
covariance. The partial sill parameter controls the common variability and can be easily
scaled. Therefore, we did not vary it but fixed it as o2 = 1.5. We chose three values, 2.3,
1.5, and 0.6, to consider different smoothness scenarios from smooth to rough. With the
selected smoothness parameter, we also varied the range parameter such that the resulting
effective range matched 0.1, 0.3, and 0.8 for weak, medium, and strong dependence. We did
not include the long-range and smoothest case because we found that it leads to numerical
instability issues due to the covariance matrix near-singularity problem. Datasets G9-G16
have the same covariance structures as Dataset G1-G8, respectively, except that all the
nugget parameters are (.27, indicating a 18% noise-to-signal ratio (see Table 1). Thus,
Datasets G1-G16 cover a broad variety of covariance properties.

To account for non-Gaussian datasets, we used the Tukey g-and-Z random fields (Xu
and Genton 2017), which generalize GP to account for skewness and heavy tails. More
precisely, for the generated GP Z(s), the Tukey g-and-# random process 7 (s) was defined
by marginal transformation at each location s as follows:

T)=¢(+wx

exp (§Z(s)) — 1 X exp <h22(s)>
— . ;

Table 1. Covariance setup for Datasets G1-G16

2

Dataset o B v T Effective range
G1/G9 1.5 0.017526 23 0 (for G1), 0.27 (for G9) 0.1
G2/G10 1.5 0.021080 1.5 0 (for G2), 0.27 (for G10) 0.1
G3/G11 1.5 0.030933 0.6 0 (for G3), 0.27 (for G11) 0.1
G4/G12 1.5 0.052579 2.3 0 (for G4), 0.27 (for G12) 0.3
G5/G13 1.5 0.063240 1.5 0 (for G5), 0.27 (for G13) 0.3
G6/G14 1.5 0.092798 0.6 0 (for G6), 0.27 (for G14) 0.3
G7/G15 1.5 0.168639 1.5 0 (for G7), 0.27 (for G15) 0.8

G8/G16 1.5 0.247462 0.6 0 (for G8), 0.27 (for G16) 0.8
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Table 2. Parameters used to generate datasets NG1 and NG2

Dataset & [0} g h o2 B v 2
NG1 1 2 0.2 0.2 1 0.1 1 0
NG2 1 2 0.5 0.3 1 0.1 1 0

where £ and w are the location and scale parameters, respectively, g controls the skewness,
and 4 > 0 determines the tail-heaviness. We chose two sets of values g and & to consider
random processes with medium and strong departure from GP. The parameters used to
generate the two non-Gaussian datasets, denoted by Datasets NG1 and NG2, are summarized
in Table 2.

2.3. DETAILS OF SUB-COMPETITIONS

The first sub-competition (Sub-competition 1a) was about examining the ability of dif-
ferent methods to infer the correct GP model on a moderately large dataset. We chose 90,000
realizations in each of Datasets G1-G16 and asked the participating teams to estimate the
four parameters o2, B >0,v>0,and 72. The metrics used to evaluate the performances are
MLOE and MMOM (Hong et al. 2021) across different datasets. MLOE characterizes the
average loss of prediction efficiency when the approximated model is used for predictions
instead of the true model. MMOM characterizes the average misspecification of the mean
square error when calculated under the approximated model. Details of MLOE and MMOM
are given in Section S3 in the Supplementary Material.

The second sub-competition (Sub-competition 1b) was about assessing spatial prediction
performance on a moderately large dataset generated from a GP model. For each of Datasets
G1-G16, we gave 10,000 new locations to participating teams and asked them to predict
over these locations conditional on the 90,000 realizations provided in Sub-competition 1a.
RMSE was used to evaluate the prediction accuracy.

The third sub-competition (Sub-competition 2a) focused on prediction for non-Gaussian
data, where we asked participating teams to predict over 10,000 new locations conditional
on 90,000 realizations for each of Datasets NG1 and NG2.

The fourth sub-competition (Sub-competition 2b) was about modeling much larger
datasets. One Gaussian dataset (Dataset G5) and one non-Gaussian dataset (Dataset NG1)
were chosen. We increased the conditional data size to a very large number, 900,000, and
the participating teams needed to predict over 100,000 new locations.

A summary of the four sub-competitions is given in Table 3. The teams could choose to
participate in one or more sub-competitions, and we used separate rankings for each of the
four sub-competitions because each sub-competition had its own emphasis. We also allowed
and encouraged participating teams to have more than one submission if they used different
methods to solve the given problems. The participating teams were not informed whether
the data were Gaussian or not in Sub-competitions 2a and 2b.
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Table 3. Summary of the four sub-competitions

Sub-competition Task True data model Metric Data size
la GP estimation GP MLOE & MMOM 90,000
1b prediction GP RMSE predict 10,000
conditional on
90,000
2a prediction non-GP  (Tukey RMSE predict 10,000
g-and-h) conditional on
90,000
2b prediction GP & non-GP RMSE predict 100,000
(Tukey g-and-h) conditional on
900,000

Ideally, we would have replicates of the datasets for each setting to better assess the
methods. However, the problems proposed here in this competition were of very big size;
therefore, replications of the model inference and prediction would require too many com-
putational resources for the participating teams. For this practical reason, we used only one
dataset for each setting.

It is also noteworthy that the final ranks were computed based on the determined rule
in the competition, which was that we applied equal weights to the rank rather than the
assessing metric in each dataset (discussed in detail in Sect. 2.4). This means that if one
team had an extremely poor estimation or prediction for one dataset, a good performance
in another dataset would still be able to compensate. However, had the submissions been
assessed using a different rule, such as the mean of all metrics across different datasets, then
the final ranking of submissions may be different.

2.4. ASSESSMENT

We assessed and assigned the rank for each team in each sub-competition as follows.
In Sub-competition 1a, we let K (12) denote the total number of different submissions for

Sub-competition la, and Pyj1, Priz, k =1, ..., K19 i — 1,...,16, denote the absolute
MLOE and absolute MMOM from submission k for dataset i, respectively. Then, for each
dataset i and metric j = 1,2, we sorted Py;j, k =1,..., K (1a) jp ascending order and

assigned rank R,(;?) to each submission (the averaged rank was used for ties). The final score

16
for submission k in Sub-competition 1a was calculated as S,Ela) = (R,({:T) + R,S-;)), and

i=1
the final rank was assigned by sorting S,(Cla) in ascending order (the averaged rank was used
for ties).

For Sub-competitions 1b, 2a, 2b, we let K (emp) denote the total number of different
submissions for Sub-competition cmp (i.e., cmp = 1b, 2a, or 2b) and let the RMSE from
submission k for dataset i be denoted by RMSE;CCimP),k =1,...,K€P ; =1, ... 16when

cmp = 1bandi = 1, 2 when cmp = 2a or 2b. For each dataset i, we sorted RMSE;;mp), k=
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1,..., Kmp) jn ascending order and assigned rank R,Smp ) to each submission (the averaged
rank was used for ties). The final score for submission k£ in Sub-competition cmp was
calculated as Slgcmp) =y R,Smp) when cmp = 1b and S,icmp) =7, R,({fmp) when
cmp = 2a or 2b, and the final rank was assigned by sorting Slgcmp) in ascending order (the
averaged rank was used for ties).

2.5. RESULTS

The full competition results for each submission are given in Table S2 in the Supplemen-
tary Material. Many approximation methods were used, and we provide a brief summary
of them in Sect. 3. To highlight the top performers, the top three submissions in each sub-
competition (four submissions in Sub-competition 2a due to a tie among three teams for the
second place) are as follows, with the best scoring team listed first:

e Sub-competition la: [1] SpatStat-Fans, [2] GpGp, [3] RESSTE(CL/krig)
e Sub-competition 1b: [1] RESSTE(CL/krig), [2] HCHISS, [3] Chile-Team

e Sub-competition 2a: [1] RESSTE(Tukey-g-h-trans-GPGP), [3] GpGp(quick), [3]
HMatrix, [3] RESSTE (nonpara-trans-GPGP)

e Sub-competition 2b: [2] RESSTE(nonpara-trans-GPGP), [2] RESSTE(Tukey-g-h-
trans-GPGP), [2] Tohoku-University

Besides the competition submissions, we also used ExaGeoStat to see the rank of the
exact computations in Sub-competitions la and 1b. The augmented top lists for Sub-
competitions la and 1b are shown in Table 4, where “ExaGeoStat(estimated-model)” in
Sub-competition la means that we used ExaGeoStat to estimate the Matérn covariance
parameters by maximizing the full likelihood with exact computation; in Sub-competition
1b, it means that we used the associated estimated model to make predictions with exact
computation. “ExaGeoStat(true-model)” in Sub-competition 1b means that the prediction
was made using the true model with exact computation by ExaGeoStat.

Table 4. Results for Sub-competitions 1a and 1b with submissions from ExaGeoStat

Sub-competition Submission Score Rank
la ExaGeoStat(estimated-model) 154 1
la SpatStat-Fans 156 2
la GpGp 186 3
la RESSTE(CL/krig) 229 4
1b ExaGeoStat(true-model) 72 1
1b RESSTE(CL/krig) 78 2
1b ExaGeoStat(estimated-model) 79 3
1b HCHISS 93 4
1b Chile-Team 113 5
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We observe that ExaGeoStat(estimated-model) managed to find the closest model to
the truth in Sub-competition la, but the prediction performance is slightly worse than
RESSTE(CL/krig) in Sub-competition 1b. This suggests that using a model closer to the
truth does not guarantee a more accurate point-prediction performance for a given realiza-
tion. However, ExaGeoStat(estimated-model) should yield the best predictions on average
among other approximation methods over multiple realizations of a spatial process. When
the true parameter values were used for prediction (ExaGeoStat(true-model)), the score
reduced from 79 to 72, the best achieved in Sub-competition 1b.

3. OVERVIEW OF METHODS USED IN THE COMPETITION

In this section, we do not intend to provide an exhaustive literature review of existing
approximation methods. Instead, we briefly discuss the methods used by participants in the
competition. A detailed literature review can be found in Sun et al. (2012) and Heaton et al.
(2019).

e Composite likelihood methods approximate the joint likelihood as a weighted product
of a collection of component likelihoods (Varin et al. 2011). For example, Vecchia’s
approximation framework uses a series of conditional likelihoods where the condi-
tioning sets are chosen sparsely (Vecchia 1988). Pairwise likelihood methods take the
likelihoods of each pair of observations as the component likelihoods (Varin 2008).
Therefore, each component in the composite likelihood can be obtained with fewer
computations. Teams Among-Stats, Chile-Team, ExtStat, GpGp, HCHISS, RESSTE,
etc., submitted results with composite likelihood approximation methods.

e Low-rank approximation methods generally project the entire random process to a
certain low-dimensional space and use the low-rank representation as a surrogate to
approximate the original process. For example, predictive processes (Banerjee et al.
2008) place knots in the spatial domain, and the expectation of the original process
conditional on the realizations on the knots is used as the substitute. Fixed rank krig-
ing (Cressie and Johannesson 2008) uses a small number of basis functions to represent
the process so that the precision matrix can be obtained by inversion of a matrix with
a much smaller dimension. Teams utilizing low-rank approximation methods in the
competition are ExtStat, UOW, etc.

e Another direction is approximating the covariance or the precision matrix with
sparse structure so that the computation becomes feasible. Covariance tapering (Fur-
rer et al. 2006; Kaufman et al. 2008) multiplies a correlation function with compact
support to the original covariance function so that the correlation of distant locations
is shrunk to zero, and sparsity is induced in the covariance matrix. For the precision
matrix, the Gaussian Markov random fields naturally yield a sparse structure in the
precision matrix (Rue et al. 2009). Team ExtStat submitted results using this technique.

o Combinations or extensions of different approaches are also possible. Hierarchical
matrix methods (Litvinenko et al. 2019) apply the hierarchical matrix approximation
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format to the covariance matrix. Then, the off-diagonal blocks of the covariance matrix
are represented with low ranks so that the covariance matrix can be inverted with
a lower computational cost. Team HMatrix submitted results by this approach. A
full-scale approximation of covariance functions (Sang and Huang 2012) combines
covariance tapering and predictive process models to account for small- and large-
scale spatial dependence at the same time. Team SpatStat-Fans used this method.
Multiresolution approximation (Katzfuss 2017) is an extension of predictive processes
or the full-scale approximation, where basis functions with a hierarchical structure are
used to capture spatial dependence at different scales. Teams Colorado-School-of-
Mines and GPvecchia had submissions with this method. Nearest-Neighbor Gaussian
Processes (Datta et al. 2016) extend the Vecchia approximation to a process-based
model so that the parameters are estimated and predictions are made with a unifying
framework. Teams ExtStat and NNGP applied this approach in their submissions.

Here, we provide brief descriptions and settings for the top teams in the competition.

For the GP model inference problem in Sub-competition 1a, SpatStat-Fans applied the
smoothed full-scale approximation method where the entire domain is partitioned into 10 x
10 regular rectangular blocks, and the knot set is on a 20 x 20 grid. GpGp subsampled 30,000
observations and then used Vecchia’s approximation conditional on 30 nearest neighbors by
the R package GpGp (Guinness et al. 2021). RESSTE(CL/krig) used composite likelihoods
to find the optimal covariance parameter estimates.

For the GP prediction problem in Sub-competition 1b, RESSTE(CL/krig) used plug-in
kriging predictors with the inferred parameters by composite likelihoods. HCHISS used
kriging conditional on 1,000 nearest neighbors with covariance parameters estimated by
Vecchia’s approximation. Chile-Team used kriging conditional on 800 nearest neighbors
with covariance parameters estimated by Gaussian conditional pairwise likelihood.

For the non-Gaussian or very large prediction problem, RESSTE(Tukey-g-h-trans-
GPGP) and RESSTE(nonpara-trans-GPGP) in Sub-competitions 2a and 2b applied the
Tukey g-and-h transformation and a nonparametric transformation so that the transformed
data are approximately Gaussian, respectively, and then used the R package GpGp for
Gaussian predictions. HMatrix in Sub-competition 2a used hierarchical matrix approxima-
tion for the covariance matrix with accuracy 10~%. GpGp(quick) in Sub-competition 2a used
the “matern_nonstat_var” covariance function in the R package GpGp, where 50 basis func-
tions were used to represent the spatially varying covariance function and the covariance
parameters were estimated by 10,000 random samples with 20 conditional neighbors; then,
the prediction was carried out by kriging with 30 conditional neighbors. Tohoku-University
in Sub-competition 2b used covariance tapering in which the Matérn covariance function
of the GP was applied with parameters estimated by cross-validation.

More details of the methods used by the top teams in each sub-competition will be
provided by the discussants of the paper.



590 H. HUANG ET AL.

4. COMPETITION RESULT ANALYSIS

In this section, we provide more details about the competition results. Figure 2 illustrates
the parameter estimates submitted by all the teams in Sub-competition 1a as well as ExaGeo-
Stat with exact computation for comparison. We highlight the results of ExaGeoStat and the
top three performers in Sub-competitions 1a (SpatStat-Fans, GpGp, RESSTE(CL/krig)) and
1b (RESSTE(CL/krig), HCHISS, Chile-Team). Note that the submission RESSTE(CL/krig)
was among the top three in both sub-competitions. All submissions except HCHISS suc-
ceeded in estimating the nugget parameters very precisely. We observe that the parameter
estimation was generally more difficult when the process was smoother (larger smoothness
parameter) and had stronger dependence (larger effective range). In such cases, the partial
sill and range parameter estimates from different submissions differed the most. For com-
parison purposes, we also show the model inference results of submissions HCHISS and
Chile-Team, which ranked the second and third in Sub-competition 1b, respectively. How-
ever, we notice that their model estimates were not as good as SpatStat-Fans, GpGp, and
RESSTE(CL/krig). Even though ExaGeoStat had the most accurate estimate overall, we
note that for datasets G15 and G16, ExaGeoStat with exact computation tended to overesti-
mate the partial sill and range. SpatStat-Fans and RESSTE(CL/krig) showed patterns similar
to the exact computation results, but the estimates obtained by GpGp were more accurate
and closer to the truth. Figure S1 in the Supplementary Material illustrates the absolute
MLOE and MMOM, where we observe that GpGp indeed had smaller absolute MLOE and
MMOM for datasets G15 and G16. The likelihood values at the estimated parameters can
also be used for comparison. We used ExaGeoStat to calculate the exact loglikelihood when
the parameter estimates from the submissions were plugged in. Figure S2 in the Supple-
mentary Material depicts the loglikelihood from the submissions minus the loglikelihood
with the true parameters. For those methods that had a smaller loglikelihood, such as Chile-
Team and HCHISS, it means that they failed to find the maximizers of the likelihood due
to approximation. Those with higher values, such as ExaGeoStat and SpatStat-Fans, may
have obtained the optimal estimates for the given dataset.

Figure 3 shows the RMSE from different submissions for each dataset in Sub-competition
1b. We highlight the same submissions as we discussed before for Sub-competition 1a,
including the top three submissions in Sub-competitions 1b and la. In addition, we used
ExaGeoStat to make predictions with exact computation using the true parameters and the
estimates by ExaGeoStat in Sub-competition la, and the corresponding RMSEs are also
given and highlighted. In the top panel of Fig. 3, we use boxplots to summarize the over-
all prediction performance for different datasets. Because the RMSE from the top teams
in Sub-competitions la and 1b cannot be differentiated well using the boxplot scale, we
also show their RMSE with bar charts in the bottom panels of Fig. 3 for better compar-
isons among these top teams. We observe that the RMSE was generally larger when the
nugget existed because the data had a higher level of noise. It is noteworthy that the top
performers in Sub-competition 1a, SpatStat-Fans and GpGp, succeeded in finding excellent
parameter estimates. However, their better-inferred models did not lead to better overall
predictions compared to the other highlighted submissions. One possible reason is that their
approximation was inadequate in kriging, even though the underlying model they used was
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Figure 3. Boxplots of RMSE from all submissions in each dataset in Sub-competition 1b. ExaGeoStat predictions
with the true parameters and estimated parameters by ExaGeoStat in Sub-competition 1a are also given. In the
legend, the highlighted submissions are listed in order of their rank in Sub-competition 1b. RMSE from the top
teams in Sub-competitions 1a and 1b is highlighted and shown in the bar charts. Datasets G9—G16 share the same
covariance structure as G1-G8, respectively, except with a nugget.

more accurate. In fact, GpGp only used 50 nearest neighbors as the conditional set for each
prediction, whereas HCHISS used 1000 nearest points. This demonstrates that both the
model inference and the number of neighbors considered are important for local kriging
predictions; it is difficult to tell to what extent the number of neighbors matters.

The RMSE summary in Sub-competitions 2a and 2b is given in Figures S3 and S4 in
the Supplementary Material, respectively, where we highlight the top teams in both sub-
competitions. The top performers include the application of the Tukey g-and-4 transforma-
tion and nonparametric transformations to GPs as well as other local kriging predictions
based on inferred (nonstationary) GP models.
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S. DISCUSSION

In this competition, we created and released a set of benchmark data with different
designs. We knew the true parameters used to generate the datasets as well as the exact
maximum likelihood estimates by ExaGeoStat, which can be used to investigate future
proposed methods. For practical reasons, we only selected and used subsets of the generated
GP datasets in this competition. The full datasets with one million spatial locations are
publicly available on https://doi.org/10.2578 1/KAUST-8VP2V for ease of use in future
research. Future approximation methods can use this repository as a tool to assess their
performance against the submissions from the different participating teams and the exact
inference using ExaGeoStat in this competition (a detailed summary of the exact maximum
likelihood estimates by ExaGeoStat in Sub-competition 1a is also given in Table S3 in the
Supplementary Material).

We did not compare the computational time in this competition because the participat-
ing teams modeled the data on their own machines, and the execution time is not directly
comparable. However, we summarize the execution time from all submissions for making
predictions in Sub-competitions 1b, 2a, and 2b in Figure S5 in the Supplementary Mate-
rial. The median time for making 10,000 predictions conditional on 90,000 observations
was around 60 seconds for Gaussian data (in Sub-competition 1b) and 430 seconds for
non-Gaussian data (in Sub-competition 2a). For a larger dataset in Sub-competition 2b,
the median time for making 100,000 predictions conditional on 900,000 observations was
around 2700 seconds.

We also note that replicates of the datasets with the same setting were ideally needed
to better assess different methods from a statistical point of view. However, the datasets
used in this competition were already quite large, making it infeasible for many teams to
perform inference and prediction with many replicates. To make the competition workable
for most participating teams, we only used one replicate in each setup. Nevertheless, the
wide variety of covariance setups we considered provided a fair comparison for large spatial
data modeling.

For decades, the big spatial data problem has been an active research area due to the
challenges caused by the ubiquity of large spatial datasets, which often contain millions of
observations, such as remote sensing climate data or numerical model outputs. The “big
data” research field has been advanced by the size of the spatial data in real applications.
In addition to developing efficient and accurate methods for larger spatial datasets, recent
research has been focused on multivariate spatial and spatio-temporal data, where the data
size can be magnified significantly. The prediction problem will then include both spatial
interpolation and temporal forecasting for single or multiple variables. Providing a unified
framework for understanding the performance of existing approximation methods is much
more challenging in simulation and assessment but crucial for suggesting future research
directions.
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