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Continuous-Time Discrete-State Modeling for
Deep Whale Dives

Joshua Hewitt , Robert S. Schick, and Alan E. Gelfand

Understanding unexposed/baseline behavior of marine mammals is required to assess
the effects of increasing levels of anthropogenic noise exposure in the marine environ-
ment. However, quantifying variation in the baseline behavior of whales is challenging
due to the fact that they spend much of their time at depth, and therefore, their diving
behavior is not directly observable. Data collection employs tags asmeasurement devices
to record vertical movement. We focus here on satellite tags, which have the advantage
of collection over a time window of weeks. The type of data we analyze here suffers
the disadvantage of being in the form of depths attached to an arbitrarily created set of
depth bins and being sparse in time. We provide a multi-stage generative model for deep
dives using a continuous-time discrete-spaceMarkov chain. Then, we build a likelihood,
incorporating dive-specific random effects, in order to fit this model to a set of satellite
tag records, each consisting of a temporally misaligned collection of deep dives with
sparse binned depths for each dive. Through simulation, we demonstrate the ability to
recover true model parameters. With real satellite tag records, we validate the model out
of sample and also provide inference regarding stage behavior, inter-tag record behavior,
dive duration, and maximum dive depth.

Supplementary materials accompanying this paper appear online.

Key Words: Hierarchical model; Markov chain Monte Carlo; Markov process;
Misalignment; Model validation; Satellite tags.

1. INTRODUCTION

Marine mammals are difficult animals to study due to the proportion of time they spend
underwater. Beaked whales, in particular, are cryptic since they only spend a small portion
of their time at or near the surface. They are deep-diving creatures that can dive to extreme
depths for long periods of time (Tyack et al. 2006; Shearer et al. 2019). These deep dives
are presumed to have a foraging purpose (Johnson et al. 2006), yet little is known about
the underlying behavioral and physiological processes of these dives. To better study these
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dives, scientists have used on-animal tags that have revolutionized the collection of data
from marine mammals.

Various bio-telemetry devices are used to learn about the physiology of diving behavior.
The basic principle is to attach a device onto the back of an animal in order to measure
and record features of this behavior. Different devices have been employed, each with
their own costs and benefits. Satellite tags are useful for studying movement of the ani-
mal in the x–y plane and the diving behavior in the z dimension over long periods of
time, e.g., weeks to months. However, these tags, when deployed on the animals, have
limited transmission bandwidth, so the data are typically downgraded, summarized, or dis-
cretized prior to transmission. This results in data that have coarse temporal resolution
(Quick et al. 2019). In particular, we obtain depth data recorded every 5min and summa-
rized in discrete depth bins (Wildlife Computers Manual - https://static.wildlifecomputers.
com/SPLASH10-TDR10-User-Guide.pdf, last accessed 8 January, 2020). Following data
collection, the challenge from an applied ecology standpoint is to use these data to make
inference on the underlying dive processes and to estimate the endogenous and exogenous
covariates that drive state persistence and transition.

The need to develop such process-driven behavioral models that can explain these coarse
dive data motivates our study. Here we propose a model to infer about the latent diving
behavior of beaked whales using such tags. Our model is a continuous-time discrete-space
model (CTDS), which is inspired by, but quite different from, modeling work developed
and applied to movements of terrestrial (Hanks et al. 2015) and marine mammals (Wilson
et al. 2018).

Because an observation in the satellite tag dive data is collected every five minutes and
only in the form of a depth bin, inference from such data is inherently limited. So, what is the
scientific understanding we can obtain from such data? We are able to learn about baseline
behavior with regard to times in three different dive stages; we are able to learn about
velocities as well as directional behavior in each of these stages. We are able to learn about
the distribution of dive duration and maximum dive depth. Since we consider a collection
of satellite tags, we are able to learn about both mean behavior and inter-animal behavioral
variability. We also include the sex of the animal as a predictor to see if there are sex effects
with regard to the foregoing inference. Finally, all of this inference is with regard to baseline
behavior, i.e., in the absence of exposure to anthropogenic noise sources. In follow-on work,
inference will be brought to the important environmental issue of assessing the effects on
behavior from exposure to anthropogenic sound.

The novelty of our contribution is elaborated in the ensuing paragraphs. Our overall
intent is to propose a generative model for deep whale dives where the depth axis has been
partitioned into dive bins, creating a discrete state space for dive depths. We model time
continuously so that there is a discrete state associated with every time during a dive. We
characterize a deep dive into three well-identified stages (each of which is associated with
a distinct dive phase)—descent, foraging, and ascent—with a separate model specification
for each.We acknowledge that whale behavior during deep dives is complex, arguably more
complex than a three stage specification. However, with the sparse data that are collected
using satellite tags, it is not possible to extract more than three recognizable deep dive stages.
Moreover, we are modeling at the level of changes in depth bins, as fine as possible with
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our binned data. So our model captures the entire discrete-space behavior for a dive while
recognizing that such behavior will depend upon the three evident stages. In different words,
our stages are not latent, not hidden. It would not be possible to extend the parametrization
for movement within a dive to additional stages (i.e., to model sub-types of the descent,
foraging, and ascent stages) without explicitly specifying what stage the dive is in at all
observed time points prior to analysis.

We incorporate random times in stages, yielding a semi-Markov process according to
stage. That is, we adopt a homogeneous/stationary continuous-time Markov (jump) process
specification within each stage (Anderson 2012). Furthermore, we employ a set of satellite
tag records that are assumed to be exchangeable, introducing tag-specific random effects
for modeling inter-animal variation. The result is a demanding hierarchical model which is
elaborated in Sect. 3.

Our generative model provides start and end times in the surface bin (i.e., the depth
bin that contains zero depth). A complete realization of a dive is a sequence consisting of
a depth bin along with a duration in the bin, then a transition to a new bin followed by a
duration in that bin, etc., until the surface bin is returned to. However, there aremisalignment
issues between the model we propose and the data that are collected, as we detail in Sect. 3.
Figure 1 shows an example of the data collected, which reveal an incomplete record of a
dive; we only observe the dive depth at sparse time points. Furthermore, we do not observe
the exact start time of the dive; we only observe a zero depth bin at a time which provides
a neighborhood for the start of the dive. Similarly, we do not observe the exact end time of
a dive, and we also do not observe the exact duration of the dive or the exact times when
a bin was entered or when it was left. With coarse resolution for the observation times, the
effect of all of this misalignment can be consequential.

Misalignment, in some fashion, is at the root of all continuous-time discrete-space
(CTDS) model fitting. If we observed the process at the transition times, we could write
down the likelihood sequentially in terms of the stochastic specification for the process.
However, the likelihood under the model for the data we collect is more challenging since
it needs to account for all imaginable trajectories that pass through the entire observed set
of time-depth data. Fortunately, our proposed continuous-time Markov process, with its
associated infinitesimal generator, using matrix exponential forms, allows us to write down
the parametric likelihood, thus enabling model fitting.

Hanks et al. (2015), working in the x–y plane, have provided seminal work in CTDS
model fitting. In particular, they assign observations in continuous 2-dimensional space to
a set of raster cells to create their discrete space. Then, their model provides parameter esti-
mates for the covariates that drive both residence time in specific raster cells and transitions
to neighboring cells. Though the data analyzed by Hanks et al. (2015) are richer in time
than the dive data we analyze, they still have only partially observed movement tracks. To
create full realizations of the actualmovement paths, they offer an imputation-based solution
through realizations of an Ornstein–Uhlenbeck (O-U) process model (Johnson et al. 2008).
Recently, Scharf et al. (2017) discuss, more generally, approximate imputation distributions
(AIDs) as a broad approach to fitting animal movement models in either continuous or
discrete spaces.



Continuous- Time Discrete- State Modeling for Deep Whale Dives 183

This reveals an important distinction between imputation-based fitting and ours. Hanks
et al. (2015) observe locations in a continuous 2-dimensional space, which they can utilize
in their O-Umodel imputation. They use this to generate a catalogue of imputed trajectories
to domodel fitting and to develop their inference. By comparison, we only have binned data,
so we only imagine a binned generative model. As a result, we work with the infinitesimal
generator mentioned above, using matrix exponential forms, to develop a likelihood for
binned realizations. We do not generate imputed trajectories for model fitting; we avoid the
use of an AID.

We apply our model to discrete depth bin data, in fact to both simulated data and to the
satellite tag diving records of seven different Cuvier’s beaked whales (Ziphius cavirostris)
tagged off Cape Hatteras, NC (Southall et al. 2018). Our model has components to capture
times in stages, velocity, and directional parameters within each stage along with a potential
sex effect in these parameters. Further, we borrow strength through random effects across
the satellite tag replicates to better learn about these components and assess inter-individual
variability. We can also learn about total dive duration and maximum depth.

We model at the level of the dive, with each dive specific to its tag, and hence, to
its individual. We introduce dive-specific random effects to account for the substantial
variability across dives within a satellite tag record, as well as to capture the misalignment
between the observed data for a specific dive and the actual start and end times of the
dive. These random effects are in addition to the tag record random effects. We fit our
hierarchical model within a Bayesian framework, obtaining posterior samples of parameters
that enable posterior distributions for all parameters and all model components. Combined
with our adjustment for misalignment, we obtain posterior predictive distributions for the
total duration and maximum depth of potential dives.

We illustrate the performance of our approach using a single simulated tag record to
provide some sensitivity analysis of inference to the data sparsity in terms of the length
of the interval between observation times. Then, with real data, we obtain the foregoing
inference and also investigate out-of-sample model adequacy.

The format of the paper is as follows. In Sect. 2, we offer a descriptive summary of
the satellite tag records we analyze. In Sect. 3, we present the generative continuous-time
Markov chain model we employ as well as our approach to fitting it to the misaligned
observed data replicates. In Sect. 4, we present the results of a brief simulation study. In
Sect. 5, we present the results of fitting our model to the real data. We offer a summary and
potential future work in Sect. 6.

2. THE DATA

Wemodel data from sevenCuvier’s beakedwhales (Ziphius cavirostris), whichwere each
tagged once, offshore of Cape Hatteras, NC (Supplement, Table 1). Animals were tagged in
2019 using a SPLASH-10-292 tag fromWildlife Computers, Inc. (Redmond, WA). The tag
was programmed to record depth data every 5 min for a period of 2 weeks (Fig. 1). Though
the depth sensor on the tag is accurate to ±1m, the depth data are discretized into coarse
bins prior to transmission because bandwidth between the tag and the satellite is limited.
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Figure 1. Top panel shows two days of diving behavior from the 14-day dive record for ZcTag084, tagged off
Cape Hatteras, NC in May 2019. Gray shading denotes two dives depicted in bottom panel. Black dots show the
depth bin midpoints, and the vertical bars show the bin widths. Putative start and end times of the dive are shown
in the margin. Light gray line shows linear interpolation of the dive between observations .

For example, for a whale actually recorded at 1399m in the water column, the observation is
reported as the whale having been in a depth bin centered at 1422m, with a width of 266m
(Fig. 1).

Satellite tag data do not allow dive duration and maximum depth to be studied directly,
but the durations and maximum depths observed in the raw data—collected at 5-minute
intervals—still broadly characterize deep dives. Mean observed dive duration across all
7 whales was 62min. Mean maximum observed depth across these animals was 1213m.
While each tag recorded depths for 2 weeks, some animals’ dives were recorded following
a controlled exposure. We eliminated all post-exposure dives from the analysis, hence the
smaller number of dives for certain whales (Supplement, Table 1).

The satellite tags discretize the ocean’s water column into 16 depth bins, with the bin
widths increasing with depth. SPLASH-10-292 tags have been engineered to use the max-
imum depth within a sliding time window to adaptively define depth bins. The adaptation
minimizes discretization error, and the engineering decision allows the tags to be used on
a wide range of animals that span a wide range of diving behaviors. In the data we ana-
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lyze, a sliding time window updates depth bins every four hours. The shallowest bins are
typically 40m wide—e.g., 0–40m, 40–80m, and the deepest bins are typically over 350m
wide—e.g., 1642–2011m and 2011–2380m. The depth bins are fairly consistent across time
because Cuvier’s beaked whales exhibit extremely regular diving behavior; accordingly, we
map observations to a single, “canonical” set of depth bins as a data pre-processing step.
We select the set of 16 depth bins with the greatest maximum depth as our canonical depth
bins, and we assign each observation to the canonical depth bin that provides the greatest
overlap with the observed depth bin.

3. MODEL SPECIFICATION AND INFERENCE

In this section, first we formally specify a generative model for deep whale dives
(Sect. 3.1) and also present some illustrative dives under this model. Then, in Sect. 3.2,
we develop the likelihood for the actual recorded observations associated with a given deep
dive. Adopting a Bayesian framework for inference, in Sect. 3.3 we turn to model fitting
employing a collection of deep dives from a set of satellite tag records. The records are
assumed to be exchangeable, and the dives within a tag record are assumed to arise under
this model but are only partially observed, i.e., at sparse but regular times. We address the
misalignment issues described in the Introduction: unknown start time and end time for the
dive, and unknown times in stages for the dive. Finally, in Sect. 3.4, we turn to posterior
inference for model parameters along with posterior predictive dive simulation and its use
for model assessment.

3.1. MODEL SPECIFICATION

We start with a model for an actual (but unobservable) dive realization. For deep whale
dives, we propose a generative, continuous-time discrete-space (CTDS) model with latent
stages. CTDS models for terrestrial animal movement are discussed briefly in Introduc-
tion. They are continuous-time Markov chains (CTMCs): stochastic processes defined over
countable state spaces (Anderson 2012). Here, we define the states for our deep dive model
as a fixed set of depth bins that satellite tags use to partition ocean depths. Conceptually,
breakpoints D0 < D1 < · · · < DM define M depth bins, where D0 = 0 is the ocean
surface and DM is the maximum depth we model. We use the integers 1, . . . , M to label the
depth bins, calling [D�−1, D�) the �th depth bin and denoting its width by d� ≡ D� −D�−1.
Whales move between adjacent depth bins during a dive. The function �i j (t) labels which
of the M depth bins whale i ∈ {1, . . . , n} is in at time t > 0 from the start of the whale’s
j th dive.

Our model uses latent dive stages to describe movement across three distinct dive phases.
Weassumedeepdives begin in stage 1, a descent stage that starts at the surface, then transition
to stage 2, a foraging or bottom stage, and finish in stage 3, an ascent stage that ends at the
surface. The function si j (t) indicates which of the stages, {1, 2, 3}, whale i is in at time t > 0
from the start of the whale’s j th dive. The stage function si j (t) begins in the descent stage,
i.e., si j (0) = 1, and switches when the descent stage ends at time denoted by T (1)

i j > 0. The
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stage function switches again when the foraging stage ends at time denoted by T (2)
i j > T (1)

i j .

Letting T (3)
i j denote the time the ascent stage (and dive) ends, the duration of the dive is, in

fact, T (3)
i j . Since we do not know the exact start and end times of dives, we don’t observe

the true duration T (3)
i j . We also do not know T (1)

i j or T (2)
i j , but we anticipate them to be

dependent. In the next subsection, we accommodate these unknowns in the development of
the likelihood under the observed data for a given dive.

We model the stage progressions through a semi-Markov process, which generates deep
dive realizations that spend a realistic amount of time in each stage. Let ξ (1)

i j denote the time
in stage 1—the descent stage—for the i th satellite tag record’s j th deep dive. Similarly, let
ξ

(2)
i j denote the time in stage 2—the foraging stage. The associated stage transition times

are T (1)
i j = ξ

(1)
i j and T (2)

i j = T (1)
i j + ξ

(2)
i j . We use the bivariate distribution Gi , with positive

support, to jointly model (ξ
(1)
i j , ξ

(2)
i j ) for each of the i th whale’s dives. We offer a partly

empirical approach for prior specification of Gi in the next subsection. The time spent
ascending ξ

(3)
i j is determined as the time until arrival in the surface bin. It is completely

governed by the ascent stage specification, which (as with the other stages) provides speed
and movement between depth bins.

For a given stage within a given tag record, we assume a homogeneous CTMC char-
acterizes movement between depth bins. We specify these within-stage CTMCs via their
distribution for holding time in a bin and their distribution for depth bin transition. Sup-
pressing the tag index i and the dive index j for all of the parameters for the remainder of
this subsection, the generic holding time � > 0 is the duration of time a whale remains
in depth bin � ∈ {1, . . . , M} before transitioning to an adjacent depth bin �′ ≡ � ± 1 such
that �′ ∈ {1, . . . , M}. For a homogeneous CTMC, starting at say time t , � is exponentially
distributed with a rate that only depends on � and model parameters—the distribution does
not depend on time t or on previous transitions. Similarly, the transition distributions only
assign probabilities to �′ based on � and model parameters. This construction is typically
expressed as the distribution of the future given the depth at the present time, �(t), and again,
it does not depend on t . Because of our three stage specification, the distribution of � and
�(t) across an entire dive will depend upon the stage that time t is in. We use empirically
developed characteristics of deep dives to motivate our specifications for the within-stage
holding time and depth bin transition distributions.

The distribution for the holding time � in bin � is parameterized with respect to positive
stage-dependent speed parameters, λ(1), λ(2), λ(3), respectively, and the bin width d�:

�|�, s ∼ Exp
(
λ(s)/d�

)
, (1)

where s is the dive stage. That is, for any duration that begins in stage s and is in bin �, the
expected duration under (1) is E[�|�, s] = d�/λ

(s), proportional to the bin width d�. Such
proportionality implies that, for fixed speed parameters, wider depth bins tend to take more
time to transition through than narrower depth bins.

The depth bin transition distribution for � is parameterized with respect to stage-
dependent directional preference parameters, π(1), π(2), π(3) ∈ [0, 1]. Transitions can only
be made to an adjacent bin �′, as defined above, which ensures that dives follow a contigu-
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ous path through the discretized water column. If a whale is in one of the boundary depth
bins, i.e., � ∈ {1, M}, then the transition distribution places all of its mass on �′ = 2 or
�′ = M − 1, respectively. Additionally, transitions from � = 2 to �′ = 1 are only allowed in
stage 3, and this transition always ends a dive. In all other cases, the probability the whale
transitions from � to the next deepest bin �′ = � + 1 is modeled via

P
(
�′ = � + 1|�, s) = π(s), (2)

where, again, s is the dive stage. So, 1−π(s) defines the probability for transitioning instead
to the next shallowest bin �′ = � − 1. To be clear, π(s) applies to a transition that occurs at
any time t in stage s.

We treat the directional preference parameters π(1) and π(3) as unknown, but we assume
π(2) = 0.5.We expect π(1) > 0.5 so the transitionmodel (2) favors downwardmovement in
the descent stage. Similarly, we expect π(3) < 0.5 so the transition model (2) favors upward
movement in the ascent stage. We set π(2) = 0.5 in order not to introduce any directional
bias during the foraging stage.

As a result, provided with a start time, stage transition times, and model parameters, we
can straightforwardly generate dive realizations in a sequential fashion. Formally, a dive
realization assigns a depth bin and stage to all times t > 0 via Ỹ(t) = (s(t), �(t)). The
likelihood for the random function Ỹ(t) depends on the stage transition times of the dive,
T (1) and T (2), and the exact sequence of its depth bin transitions and times. Let a dive consist
of R total depth bin transitions, which occur at times τ0 < τ1 < · · · < τR . As described
above, a dive begins at time τ0 = 0 in the diving stage at the surface bin, i.e., Ỹ(τ0) = (1, 1).
Then, the dive transitions at time τ1 > 0 to the next bin �(τ1) after the holding time�0 = τ1.
The dive ends when the whale returns to the surface bin, and the r th holding time is the
duration �r ≡ τr+1 − τr .

Figure 2 shows realizations of dives under four different sets of parameter values for λ(s),

for s = 1, 2, 3, and π(1) and π(3). These parameter values resemble ranges that have been
seen in real deep dives associated with the given set of bins. Dive (A) is similar to dives seen
in data, with parameters θ (1) = (0.99, 1.25), θ (2) = (0.5, 0.6), and θ (3) = (0.05, 1), where
θ (s) = (π(s), λ(s)). Dive (B) has more variability than Dive (A) because it is simulated
with faster transition rates λ(1) = 2.5, λ(2) = 1.2, and λ(3) = 2. Dive (C) is longer than
Dive (A) because it is simulated with less extreme ascent and descent directional preference
parameters π(1) = 0.8 and π(3) = 0.2. Finally, dive (D) has the most variability because it
is simulated with both faster transition rates and less extreme directional preference in the
parameters θ (1) = (0.8, 2.5), θ (2) = (0.5, 1.2), and θ (3) = (0.2, 2). The simulations (A),
(B), and (D) have T (1) = 10min and T (2) = 25min, while simulation (C) has T (1) = 20min
and T (2) = 35min.

3.2. DATA AUGMENTATION LIKELIHOOD FOR OBSERVED DIVES

Again suppressing replicate and dive index, formally, for an individual dive, a realization
under the generative specification for each stage arises sequentially. Extending the notation
of the previous subsection,we denote the dive segment in stage s by Ỹ(s) ≡ { (�(τ

(s)
r ),�

(s)
r )},
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for r = 0, 1, 2, . . . , R(s). That is, stage s begins in bin �(τ
(s)
0 ) immediately when the

previous stage ends τ
(s)
0 = T (s−1), and we draw a �

(s)
0 ∼ [�(s)

0 |�(τ (s)
0 )]. Then, we are at

τ
(s)
1 = τ

(s)
0 +�

(s)
0 and we draw �(τ

(s)
1 ) given �(τ

(s)
0 ) followed by �

(s)
1 given by �(τ

(s)
1 ), etc.

The stage-s segment Ỹ(s) ends at time T (s), and its final depth bin is used to initialize the
next segment Ỹ(s+1).

A critical point emphasized in the Introduction is that we provide a continuous-time,
discrete bin model for a dive realization, Ỹ = (Ỹ(1), Ỹ(2), Ỹ(3)), but, we never observe Ỹ .
With remote telemetry devices, we observe a sequence of times t1 < t2 < · · · < tm with
associated labels {�(t j ) : j = 1, 2, . . . ,m}, which we denote by Y = {(tk, �(tk)) : k =
1, . . . ,m}.

In general,with telemetry data, the times t1, . . . , tm are offset from the start of the dive. So,
we cannot directly associate a likelihood with Y without first synchronizing the observation
times to corresponding true dive times. We let ε quantify the offset and introduce the dive-
aligned observation times t∗k = max(tk−ε, 0). The offset allows us to develop an augmented
data likelihood (VanDyk andMeng 2001). If the offset εwere known, then telemetry devices
would yield an aligned observation Y∗ = {(t∗k , �(t∗k )) : k = 1, . . . ,m}.

We use a scaled and shifted Beta distribution as the prior for the ε parameter associated
with eachmodeled dive; that is, we have a dive-specific randomoffset. Suppose the telemetry
device records depths every δ seconds. If �(t1) = 1, then the true start time for the dive must
fall within [t1−δ, t1+δ], i.e., the dive may have started before or after t1, so the appropriate
support for ε is [−δ, δ]. More precisely, the definition of t∗1 ensures the dive started after
t1 − δ. If �(t1) > 1, then the true start time for the dive must fall within [t1 − δ, t1], so ε < 0,
and the prior should be updated accordingly. Through the same observation process, the end
of each dive is also only observed with some uncertainty. So, we introduce and define the
end dive offset as ψ and, similarly, assign support for ψ to also be [−δ, δ] for dives where
we observe the final surface state, i.e., �(tR) = 1.

We condition on the unknown stage transition times T (1) and T (2) in addition to the
offsets ε and ψ to derive an augmented data likelihood for the observed dive record Y . Let
� = {θ (1), θ (2), θ (3)} be the collection of stage-dependent parameters θ (s) = (π(s), λ(s)).
CTMC theory enables us to write down the density (distribution) using bracket notation,
[Y∗|�, T (1), T (2), ε, ψ], hence the likelihood, L(�, T (1), T (2), ε, ψ;Y). With the priors,
[(T (1), T (2))|G], [�], [ε] and [ψ], we have a full, augmented model specification.

In order to provide [Y∗|�, T (1), T (2), ε, ψ], we digress briefly to remind the reader of
some properties we need under a first-order continuous-time homogeneous Markov process
with a finite number of discrete states. Formally, such a process is defined as a stochastic
process with right-continuous, piecewise constant paths. In our notation, for any pair of
times t and t ′ and any pair of states � and �′, the process is defined through a stationary
transition function P(t ′ − t)�,�′ , which governs the evolution of the process via

P(�(t ′) = �′|�(t) = �, {�(u), u < t}) ≡ P(t ′ − t)�,�′ . (3)

CTMC distribution theory combines the holding time and depth bin transition distribu-
tions (1) and (2) to induce the transition function P(t ′−t)�,�′ from an infinitesimal generator
matrix. The infinitesimal generator matrix A(s) ∈ R

M×M for stage s combines the stage
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parameters such that, for � ∈ {2, 3, .., M − 1},

A(s)
�,�′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−λ(s)/d� if �′ = �

π(s)λ(s)/d� if �′ = � + 1
(1 − π(s))λ(s)/d� if �′ = � − 1
0 otherwise

.

As for � = 1, for stage 1, A(1)
11 = −λ(1)/d1 and A(1)

12 = λ(1)/d1. For stages 2 and 3, there
is no probability of transitioning into or out of � = 1, respectively. As for � = M , for all
stages, A(1)

MM = −λ(s)/dM and A(s)
M,M−1 = λ(s)/dM .

For arbitrary depth bins �(t), �(t ′) ∈ {1, . . . , M} and times 0 < t < t ′, the within-
stage transition function P(s)(t ′ − t)�,�′ defines the within-stage transition probability via
P

(
�(t ′) = �′|�(t) = �, s

) = P(s)(t ′ − t)�,�′ , where P(s)(t ′ − t)�,�′ is the (�, �′) entry of the
exponential transition matrix,

P(s)(t ′ − t) = e(t ′−t)A(s)
. (4)

The exponential transition matrix is the convergent series e(t ′−t)A(s) = ∑∞
k=0((t

′ −
t)A(s))k/k!, which can be computed up to desired numerical precision via numerical linear
algebra methods (Al-Mohy and Higham 2010).

As a result, we have the full conditional distribution [Y∗|�, T (1), T (2), ε, ψ] because
conditioning on T (1) and T (2) is equivalent to conditioning on the stage function s(t) at all
times t > 0. The Markov property for CTMCs simplifies the full conditional via

[Y∗|�, T (1), T (2), ε, ψ]

=
m∏

k=1

[�(t∗k )|�(t∗k−1), . . . , �(t
∗
1 ),�, T (1), T (2), ε, ψ]

=
m∏

k=1

[�(t∗k )|�(t∗k−1),�, T (1), T (2), ε, ψ].

(5)

From above, the transition probability associated with �(t∗k−1) to �(t∗k ), i.e., [�(t∗k )|�(t∗k−1),

�, T (1), T (2), ε, ψ] can be written down explicitly using (4), but the transition probability
depends on where t∗k−1 and t∗k fall relative to T (1) and T (2). Since the transition matrix
P(s)(t ′ − t) allows P(s)(t ′ − t)k,k > 0, this probability can be a product of terms.

3.3. MODEL FITTING

We fit the CTDS dive model to a set of n satellite tags, with tag i providing ni dives,
i.e., our data are Y = (Y1, . . . ,Yn) with Y i consisting of the partially observed deep dives
{Y i

j : j = 1, 2, . . . , ni }. We treat the dives as conditionally independent given parameters
�i for tag i and the dive-specific random effects (start time, end time, and times in stages).
That is, we assume that the deep dives for animal i share a common �i because the dives
tend to have similar descent/ascent rates, duration, and maximum depth, but we allow �i

to vary across i .
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The tag-specific parameters �i = (θ
(1)
i , θ

(2)
i , θ

(3)
i ), where θ

(s)
i is comprised of param-

eters for vertical speeds and for directional preferences according to stage are modeled as
random effects. Specifically, for vertical speeds, we take logλ(s)

i = α
(s)
i,0 + α

(s)
1 sexi with

sex = 0 if adult male, =1 otherwise. So, we allow sex to affect speed in each stage. In
addition, we introduce tag-specific random effects within stage through the prior distri-
bution α

(s)
i,0 ∼ N (α

(s)
0 , σ

2(s)
α ) with α

(s)
0 ∼ N (μ

(s)
α , 104). The random effects specification

introduces customary hierarchical centering to improve Gibbs sampling behavior (Gelfand
et al. 1996). However, we specify common directional preferences for all animals, i.e.,
π

(s)
i = π(s), because, for the present application, the descent and ascent parameters required

to capture deep diving behavior are so extreme (i.e., close to 1 and 0, respectively) that there
is no consequential between-animal variation to model (as well as no sex effect). We use
Beta distributions as priors for the directional persistence parameters π(1) ∼ Beta(5, 2) and
π(3) ∼ Beta(2, 5). The hierarchical centering for speed uses μ

(1)
α = 0.4, μ(2)

α = −1.2, and
μ

(3)
α = 0. The priors center the parameters around suitable a priori speeds and directional

preferences reported in a previous study of Cuvier’s beaked whales (Tyack et al. 2006, Table
2). All of the variance parameters {σ 2(s)

α } use Inv-Gamma(2, 1) prior distributions.
We employ a partially empirical approach to specify the joint prior distribution for the

stage transition times [T (1)
i j , T (2)

i j |Ĝi ]. Specifically, we obtain Ĝi using all of the deep dives

within a single satellite tag, i.e., Ĝi is specific to the individual wearing that tag. First,
we use linear interpolation to approximate complete dive trajectories Ỹ i

1, . . . , Ỹ i
ni from

observations Y i
1, . . . ,Y i

ni . For each dive, the approximate depth at time t is defined as the
linear interpolation between the midpoints of the depth bins at the closest observation times
tk−1 < t < tk ; see, for example, Fig. 1. Then, following suggestions in Hooker and Baird
(2001), each interpolated dive is segmented into empirical descent, foraging, and ascent
stages according to the first and last times at which the whale crosses 85% of each dive’s
maximum depth.

We use the empirically segmented dives to estimate Ĝi as a bivariate lognormal, parame-
terized via a two-step moment-matching scheme. We begin with a smoothing step, in which
we compute maximum likelihood fits of the empirical descent and foraging durations to
independent Gamma distributions. Then, we parameterize the marginal lognormal distribu-
tions so that themarginal lognormalmomentsmatch themean and variance of the smoothed,
Gamma fits. The empirical correlation between descent and foraging times provides the cor-
relation in the bivariate log-normal distribution. This moment-matching scheme yields a Ĝi

which produces better out-of-sample predictive validation than a direct maximum likelihood
fit.

We use the augmented likelihood (5) for each tag record, along with the forego-
ing priors, to construct a Gibbs sampler to obtain samples from the posterior distribu-
tion of the parameters and random effects within and across tag records. The sampler
requires initial values for the stage-dependent parameters �i and the random effects across
all dives Ti1 = (T (1)

i1 , . . . , T (1)
ini

), Ti2 = (T (2)
i1 , . . . , T (2)

ini
), Ei = (εi1, . . . , εini ), and

� i = (ψi1, . . . , ψini ). Most parameters are updated on unconstrained scales via adap-
tive random walk Metropolis-Hastings steps (Andrieu and Thoms 2008). This includes the
transformed descent parameters logitπ(s), animal-specific speeds log λ

(s)
i , stage transition
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times (logT (1)
i j , logT (2)

i j ) as a blocked update, and start and end offsets εi j and ψi j . The

regression effects α
(s)
0 and α

(s)
1 and random effect scales σ

2(s)
α are updated with conjugate

steps.

3.4. MODEL ASSESSMENT

Our model validation approach uses out-of-sample posterior predictive checks (Gelman
et al. 2014, Chapter 6). We randomly split the dataset of dive observations into a single
testing and a single training partition, creating the partitions such that they both contain the
same number of dives. Themodel is fitted to the training observations, which yields posterior
samples for each tag’s model parameters �i , stage transition times Ti1 and Ti2, and offsets
Ei and � i . Then, we compare the empirical distribution of the testing observations to the
posterior predictive distribution for simulated observations Y of a new dive Ỹ where, as
noted in Sect. 2, we confine ourselves to dives that are observed to exceed 800m—a deep
dive threshold adopted from analysis of earlier data records from this same geographic area
(Shearer et al. 2019).

Whenweattemptmodel validation, the features of the divesweemploymust be associated
with the observations actually used to fit themodel, i.e., with the data,Y. That is, we recreate
the observation process for the validation. Inference on dive features such as duration and
maximum depth is of primary ecological interest, and we pursue this below. This leads us to
compare the observed distribution over the depth bins at nominal times 5min, 10min, etc.,
with the corresponding predictive distribution over these depth bins at these same, nominal
times. The predictive distributions are described more precisely below but, conceptually,
we take a posterior draw of the parameter vector �i to generate a predictive realization
Ỹnew of a deep dive. Then, we draw an offset ε, which we use to align the predictive
realization with the nominal bin times, yielding observations Ynew of depth bins at each
nominal observation time. We do this over a sample of posterior predictive replicates to
obtain a depth bin distribution for each nominal observation time. For each tag replicate
and for each nominal time, by overlaying, we offer informal visual comparison between the
posterior predictive distribution and the empirical distribution of depth bins.

The posterior predictive distribution for the partial observation of a new dive [Ynew|Y]
is obtained through composition sampling the posterior predictive distribution for complete
dives [Ỹnew, εnew, ψnew|Y], i.e.,

[Ynew|Y] =
∫

[Ynew|Ỹnew, εnew, ψnew] × (6)

[Ỹnew, εnew, ψnew|Y]dỸnewdεnewdψnew.

We approximate the posterior (6) by Monte Carlo sampling the finite mixture distribution
1
B

∑B
b=1[Ynew|Ỹ(b)

new, ε
(b)
new, ψ

(b)
new], where B is the number of posterior parameter samples.

While the predictive dive distribution [Ỹnew, εnew, ψnew|Y] implicitly averages over all ani-
mals, we sample new dives proportionally, so that we match the empirical distribution of
the number of validation dives across satellite tags.
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The observation distribution [Ynew|Ỹnew, εnew, ψnew] in (6) is degenerate because our
model assumes observations are made at times that are exactly offset from the start of a
new dive Ỹnew by εnew units of time. Similarly, the sign of the end offset ψnew determines
whether or not the final surface bin is observed. In our Monte Carlo computation, the offsets
ε
(b)
new and ψ

(b)
new are uniformly sampled from the bth posterior sample of dive offsets E(b)

i and


(b)
i . Once again, the animal index i is chosen so that our posterior predictive distribution’s

number of dives across satellite tags matches the empirical distribution seen in the validation
dataset.

The rest of the bth posterior sample is used to draw the dive Ỹ(b)
new from Ỹ(b)

new ∼

[Ỹ(b)
new|�(b)

i ,T(b,Ib)
i1 ,T(b,Ib)

i2 ]. Here �
(b)
i is the bth posterior sample of model parameters,

and T(b,Ib)
i1 and T(b,Ib)

i2 are stage 1 and stage 2 transition times taken from the bth posterior

samplesT(b)
i1 andT(b)

i2 , respectively. Specifically, the stage transition timesT(b,Ib)
i1 andT(b,Ib)

i2

are the Ibth entry of the sampled random effect vectorsT(b)
i1 andT(b)

i2 ; the index Ib is sampled
uniformly from {1, . . . , ni } for each b = 1, . . . , B.

4. SIMULATION INVESTIGATION

We assess the model’s ability to recover model parameters through simulation. We simu-
late 100 dives from the model when the parameters� are fixed at their prior mean values for
vertical speeds, and atπ(1) = 0.97 andπ(3) = 0.03. The parameter values are obtained from
a previous study of deep whale dives (Tyack et al. 2006). We use the empirical priors from
our study to specify the distributions G1 and G2 from which we simulate stage durations.
The effect of time between observations is important for understanding how satellite tags
that could record data more frequently may potentially improve parameter recovery. Thus,
we estimate model parameters when the simulated dives are observed every 300, 60, and
30s. We observe the simulated dives from t = 0, and treat the offsets (ε, ψ) as unknown
during estimation.

All parameters are adequately recovered, and results reveal that parameter estimates are
moderately improved by increasing sampling frequency (i.e., by reducing time between
observations). The Gibbs sampler is run for 10,000 iterations, and the first 5000 samples are
discarded for burn-in. Traceplots and effective sample size diagnostics suggest that the chain
converges and yields adequate effective sample sizes to draw posterior inference. Table 1
compares posterior estimates for the model parameters � to the true parameters used to
simulate the data. Decreasing the time between observations also decreases the uncertainty
for the directional preference parameters π(1) and π(3), but the uncertainty in the speed
parameters α

(1)
0 , α(2)

0 , and α
(3)
0 does not noticeably decrease. However, the posterior means

get closer to the true value. The findings suggest that collecting data at 5-minute intervals
is adequate for estimating the dive characteristics we consider.

5. ANALYSIS OF REAL DIVE DATA

From the satellite telemetry records described in Sect. 2, we analyze 318 deep dives
(> 800m) across seven animals. On average, we observed 45 deep dives per animal. We
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Table 1. Recovery of simulation parameters when fitting the dive model to different sets of observation times.
Table shows posterior means, standard deviations, and 95% highest posterior density intervals for each
parameter. Each parameter’s exact value is noted at the start of each group of rows

Parameter Timestep (s) Mean Sd. HPD Interval

π(1) = 0.97 300 0.95 0.029 (0.89, 0.99)
60 0.97 0.009 (0.95, 0.98)
30 0.97 0.007 (0.95, 0.98)

π(3) = 0.03 300 0.05 0.015 (0.03, 0.08)
60 0.04 0.007 (0.02, 0.05)
30 0.04 0.006 (0.03, 0.05)

α
(1)
0 = 0.41 300 0.61 0.960 (−1.20, 2.50)

60 0.47 0.990 (−1.50, 2.50)
30 0.44 1.020 (−1.65, 2.36)

α
(2)
0 = −1.20 300 −1.60 1.100 (−3.70, 0.40)

60 −1.50 0.940 (−3.40, 0.41)
30 −1.43 1.070 (−3.45, 0.54)

α
(3)
0 = 0.00 300 0.20 0.960 (−1.90, 2.00)

60 −0.03 0.990 (−2.00, 1.90)
30 −0.02 0.974 (−1.99, 1.88)

estimate model parameters for these dives, we use the posterior predictive distribution to
conduct out-of-sample model validation, and we draw inference on summary-statistics for
dives, as discussed in Sect. 1.

TheGibbs sampler is run for 10,000 iterations, and the first 5000 samples are discarded for
burn-in. Traceplots and effective sample size diagnostics suggest that the chain converges
and yields adequate effective sample sizes to draw posterior inference. Table 2 presents
posterior estimates of the model parameters �, and the posteriors show Bayesian learning
over the priors derived from Tyack et al. (2006). The posterior distribution for � also has
generally low correlation between components. The posterior correlations for each intercept-
slope pair (α(s)

0 , α
(s)
1 ) are negative, as expected, and, in fact, for all three stages are−0.65 up

Table 2. Posterior means, standard deviations, and 95% Highest posterior density (HPD) intervals for model
parameters � when fit to satellite tag data

Parameter Stage Mean Sd. HPD.Interval

π(s) s = 1 0.97 0.01 (0.93, 0.99)
s = 3 0.05 0.01 (0.03, 0.06)

α
(s)
0 s = 1 0.55 0.28 (0.04, 1.13)

s = 2 −1.70 0.38 (−2.46,−0.98)
s = 3 0.16 0.28 (−0.36, 0.73)

α
(s)
1 s = 1 −0.09 0.42 (−0.90, 0.78)

s = 2 0.35 0.58 (−0.77, 1.53)
s = 3 −0.06 0.42 (−0.90, 0.77)

σ
2(s)
α s = 1 0.30 0.18 (0.08, 0.62)

s = 2 0.49 0.35 (0.12, 1.06)
s = 3 0.32 0.19 (0.09, 0.67)
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to two significant digits. The absolute magnitude of all other posterior correlations between
pairs of parameters is less than 0.12.

Out-of-sample model validation shows that our model reproduces characteristics of
observed dives. Illustratively, Fig. 3 shows that the posterior predictive distributions of
depth bins at the nominal 5-minute observation times match the empirical distributions of
the validation dives relatively well for animal tag record Zc084. Results for the other tag
records are similar, and are available in the Supplement (Supplement, Figures 1–12). The
posterior predictive distributions generally have the same shape and location as the empir-
ical distributions. However, for some time windows the predictive distributions tend to be
shifted to the right (i.e., predicted depths are deeper than observed).

The posterior predictive distribution for dives over 800m allows us to draw inference
on characteristics of dives that are biologically meaningful. The posterior predictive distri-
butions for descent and foraging durations (Fig. 4) match the validation distributions well,
and the predictive distribution for overall dive duration is slightly overdispersed relative to
the validation distribution. (Recall that these validation distributions are not “observed” but
are extracted empirically.) The posterior predictive distribution for the maximum observed
depth of dives over 800m is approximately uniformly distributed across the six depth bins
that collectively span 773m to 2383m. The distribution is overdispersed with respect to the
empirical validation data for Zc084, but is more reasonable for animal tag record Zc085
(Supplement, Figures 13–14).

The random effects model lets us jointly estimate diving rates for each whale. Bivariate
posterior distributions for descent λ(1) and ascent λ(3) speeds are similar across whales,
although there is some evidence that two clusters exist—one in which λ(1) ≈ λ(3), and a
second in which λ(1) > λ(3) (Supplement, Figure 14). Similarly, the posterior predictive
distribution for overall dive duration shows some variation between animals, especially in
the right tails of the distributions (Supplement, Figure 15).

6. SUMMARY AND FUTUREWORK

Our work has been motivated by the practical employment of longer term tags, i.e.,
satellite tags, for marine mammal diving behavior. Most historical satellite tag data recorded
only the maximum depth an animal reached during a dive. In contrast, here we examine data
that were recorded at finer temporal resolutions. Using these data, we developed a multi-
stage model for the deep dives associated with a satellite tag record. The satellite tag data
examined here suffer two strong challenges with regard to learning about diving behavior.
First, they are collected very sparsely—in our case, at 5-min intervals—and second, they
only records depths in terms of an arbitrarily created set of depth bins.

Our approach to learning about dive behavior formulates a generative model which
produces dive realizations incorporating three observable stages, a descent stage, a foraging
stage, and an ascent stage. Other models for whale diving behavior use multiple foraging
sub-stages (Langrock et al. 2014). However, these models are developed for data with much
higher resolution than satellite tags provide and, in addition, view the substages as latent.
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Ourmodel is a continuous-timeMarkov chain specification, which supplies a depth bin at
every time during the dive. The model proceeds sequentially within a given stage, choosing
a duration in bin followed by a transition to a new bin. The deep dives within a satellite
tag record share a common stage-wise duration and transition specification. However, dive-
specific random effects are introduced. We introduce replicate-specific parameters in order
to borrow strength and capture inter-animal variation.

We address misalignment issues to fit the model to observations. The sparse temporal
interval at which depth bins are recorded precludes knowing exactly when a dive starts
and ends, in addition to times in stages. We handle this issue through the properties of
our continuous-time Markov chain specification as well as additional dive-specific random
effects that capture the start time and end time of a dive.

The overall model specification is hierarchical and was fitted within a Bayesian frame-
work. The model was implemented in NIMBLE version 0.9.0 with a custom likelihood
function (de Valpine et al. 2017). The model runs quickly, fitting the family of dives ana-
lyzed in a few hours with modest computing power. Through simulation, we demonstrated
the ability of themodel to recover the true continuous-time discrete-spacemodel parameters.
Then, we applied the model to seven, real satellite tag records. We used a partly empirical
approach to specify stage transition time priors. We validated the model, out of sample, by
showing the ability to predict dive behavior across the sparse time intervals, and also with
regard to dive duration and maximum depth. The validation results suggest that this model
is able to capture and reproduce biologically meaningful characteristics of deep dives.

There is a rich agenda of future work. Our current effort captures baseline diving behav-
ior. We seek to learn about departure from such behavior in response to exposure to anthro-
pogenic sound such as navy sonar signals. Using information on exposure to sound can we
identify deep dive behavior that differs from baseline?

We will also attempt to model the entire satellite tag record rather than just the deep
dive portion. This entails modeling the dives sequentially, including the time between deep
dives, which is devoted to shallow dives and surface activity. Such modeling may reveal
interesting shallow dive behavior and also inform about subsequent deep dive behavior.

Additionally, we plan to enrich our generative model to allow within-stage, time-
dependent durations and bin transition probabilities. Further, we will explore the possibility
of bringing our approach to terrestrial animal movement modeling, considering transitions
over rectangles in two-dimensional space. The intent is to avoid the use of approximate
imputation distributions employed in current CTDS modeling, as described in the Introduc-
tion.
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