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Pseudo-Likelihood or Quadrature? What We
Thought We Knew, What We Think We Know,
and What We Are Still Trying to Figure Out

Walt Stroup and Elizabeth Claassen

Two predominant computing methods for generalized linear mixed models (GLMMs)
are linearization, e.g., pseudo-likelihood (PL), and integral approximation, e.g., Gauss–
Hermite quadrature. The primary GLMM package in R, LME4, only uses integral
approximation. The primary GLMM procedure in SAS®, PROC GLIMMIX, was orig-
inally developed using linearization, but integral approximation methods were added
in the 2008 release. This presents a dilemma for GLMM users: Which method should
one use, and why? Linearization methods are more versatile and able to handle both
conditional and marginal GLMMs. Linearization can be implemented with REML-like
variance component estimation, whereas quadrature is strictly maximum likelihood.
However, GLMM software documentation and the literature on which it is based tend
to focus on linearization’s limitations. Stroup (Generalized linear mixed models: mod-
ern concepts, methods and applications, CRC Press, Boca Raton, 2013) reiterates this
theme in his GLMM textbook. As a result, “conventional wisdom” has arisen that inte-
gral approximation—quadrature when possible—is always best. Meanwhile, ongoing
experience with GLMMs and research about their small sample behavior suggest that
“conventional wisdom” circa 2013 is often not true. Above all, it is clear there is no one-
size-fits-all best method. The purpose of this paper is to provide an updated look at what
we now know about quadrature and PL and to offer some general operating principles for
making an informed choice between the two. A series of simulation studies investigating
distributions and designs representative of research in agricultural and related disciplines
provide an overview of each method with respect to estimation accuracy, type I error
control, and robustness (or lack thereof) to model misspecification.
Supplementary materials accompanying this paper appear online.
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1. INTRODUCTION

Over the past two decades, generalized linear mixed model (GLMM) software has been
developed—e.g., PROCGLIMMIX inSAS/STAT®andRpackages glmmPQLandLME4—
and the GLMM has gained acceptance as a mainstream method of analyzing non-Gaussian
data from studies that call for a mixed model approach. Unlike fixed-effects-only general-
ized linear models (GLMs) and linear mixed models (LMMs) for Gaussian data, both of
which have likelihood functions from which estimating equations can be derived, GLMM
likelihood functions are generally intractable and require some form of numerical approxi-
mation.

Two forms of approximation—linearization and integral approximation—are the most
commonly used. Linearization methods include penalized quasi-likelihood (PQL) (Bres-
low and Clayton 1993) and pseudo-likelihood (PL) (Wolfinger and O’Connell 1993). Inte-
gral approximation includes Laplace approximation and quadrature—specifically adaptive
Gauss–Hermite quadrature (Pinheiro and Bates 1995). Despite PL being the default, SAS
software documentation emphasizes cases in which PL produces undesirable results and
quadrature is preferred. Because LME4 uses integral approximation only, quadrature is
implicitly the method of choice. Stroup (2013) reinforces this theme (see, e.g., pp. 300–
303). By the early 2010s, de facto conventional wisdom held that one should use GLMM
software’s quadrature algorithms, whenever possible, for GLMM estimation and infer-
ence.

In the meantime, much experience has been gained using GLMMs. This experience sug-
gests that the conventional wisdom circa the early 2010s is, in many cases, misleading
or simply wrong. This paper presents a fresh look at the behavior of PL and quadra-
ture as implemented by available GLMM software in a number of common research
scenarios that use GLMMs. Our goal is to provide some general guidelines. When is
PL preferred, and why? When is quadrature recommended, and why? When does nei-
ther method appear capable of producing useable results? How would a data analyst
know?

The paper is organized as follows:

• Section 2 describes a brief review of relevant GLMM background.

• Section 3 describes history essential to understanding the dilemmas faced by GLMM
users.

• Section 4 shows the description of simulation studies intended to characterize PL and
quadrature in comparative experimentswith respect to type I error control and accuracy
of treatment mean estimation.

• Section 5 shows the simulation study results.

• Section 6 describes the summary—overarching principles to the extent that we under-
stand them to date, and some thoughts on next steps.

To reiterate, the focus of this paper is on the performance of PL and quadrature algorithms as
they are implemented in software currently available for GLMMs in agricultural research.
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2. GLMM BACKGROUND

A generalized linear mixed model is defined as follows. Let y be a vector of observations
whose distribution, conditional on b, a vector of random model effects, can be written

y|b ∼ D
(

h (Xβ + Zb) ,V1/2
μ PV1/2

μ

)

where Xβ + Zb is the mixed model linear predictor,

X and Z are matrices of constants,

β is a vector of fixed effects,

h (•) is the inverse link function,

b ∼ N (0,G)

V1/2
μ is a diagonal matrix whose elements are

√
v (μi ), where v (μi ) is the variance

function for the i th observation,

P is a matrix of scale or covariance parameters depending on the distribution and model.
Let σ denote the vector of scale or covariance parameters on which P depends.

The linear predictor models the expected value of y|b, hereafter denoted μ, through the
inverse link function. Alternatively, GLMMs are often specified as η = Xβ + Zb = g (μ),
where g (•) is called the link function.

The standard GLMM estimation approach is maximum likelihood. This requires maxi-
mizing

f (y) =
∫

b

f (y|b) f (b) db

with respect to σ, β, and b. In general, this integral is intractable. Estimation requires some
form of approximation. The two most common approaches are linearization and integral
approximation. What follows are heuristic overviews of each approach. For more in-depth
discussions of these methods, refer to the references cited in Sect. 1.

Linearization
Linearization results in maximum likelihood estimating equations for the generalized

linear model (GLM)

X′WXβ = X′Wy∗

where y∗ = Xβ + D (y − μ), W = DV1/2
μ PV1/2

μ D and D is a diagonal matrix whose i th
element is ∂ηi/∂μi . Noting that E (y∗) = Xβ and V ar (y∗) = W−1, the GLM estimating
equations can be viewed as generalized least squares with the pseudo-variate y∗.

Pseudo-likelihood, the form of linearization used by PROC GLIMMIX, extends the
pseudo-variate GLS approach to the mixed model. Linearization begins by taking the first-
order Taylor series expansion of g (y) evaluated at μ. This results in the pseudo-variate
extended to the mixed model linear predictor.
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g (μ) + ∂g (y)/∂y|μ (y − μ) = Xβ + Zb + D (y − μ) .

Pseudo-likelihood in effect assumes that y∗|b is approximately distributed
N

(
Xβ + Zb,W−1

)
and uses y∗ and W accordingly in the mixed model estimating equa-

tions. Covariance estimating equations are adapted fromHarville (1977). The residual likeli-
hood forms are used to obtainREML-likePLcovariance parameter estimates. Full likelihood
forms are used to obtain ML-like PL estimates. In GLIMMIX, the methods are called RSPL
and MSPL, respectively, RSPL being the default.

Integral Approximation
As the name implies, integral approximation refers to the GLMM marginal likelihood

f (y) =
∫

b

f (y|b) f (b) db.

Two commonly used methods are the Laplace approximation and adaptive Gauss–Hermite
quadrature. This paper focuses on quadrature.

The following illustrates—very heuristically—the basic idea. Noting theGLMM random
effects assumption, b ∼ N (0,G) , the marginal likelihood integral can be written

∫

b

f (y|b) (2π)−r/2 |G|−1/2 exp
(−b′Gb/2

)
db.

This can be rewritten
∫

b

f (y|z) (π)−r/2 exp
(
z′z

)
dz

where z is the vector of z-scores obtained from the random vector b. The Gauss–Hermite
approximation of this integral is

∑
w f (y|x) (π)−r/2

where x and w are quadrature abscissas and weights, respectively.
In practice, the abscissa weights are centered and scaled. See Pinheiro and Bates (1995)

or PROCGLIMMIXdocumentation for details.Maximum likelihood estimates are obtained
using the log of the quadrature approximation. One-point quadrature is equivalent to the
Laplace approximation.

3. SOME HISTORY

Linearizationmethods date to publications byBreslow andClayton (1993) andWolfinger
and O’Connell (1993). Subsequently, publications by Breslow and Lin (1995), Lin and
Breslow (1996), Murray et al. (2004), and Pinheiro and Chao (2006) document problems
with linearization methods. Summarized by Bolker et al. (2009), these papers focus on
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Table 1. Average estimates of σ2b , true σ2b = 1

Method 200 replications, N = 4 10 replications, N = 200

RSPL 0.609 0.986
MSPL 0.599 0.881
Laplace 0.835 0.902
Quadrature 0.994 0.902

Table 2. From Claassen (2014). Recommended method. binomial(N , p) Data with S subjects

Small S (few replications) Large S (many replications)

Small N∗ Quadrature is least bad Use quadrature
Large N Use RSPL Does not matter—use either method

∗ Binary data are the extreme case of small N

binary data, binomial distributions with N p or N (1 − p) < 5 , and highly skewed count
distributions, e.g., those with expected count < 5. Adaptive Gauss–Hermite quadrature,
which appeared in a publication by Pinheiro and Bates (1995), seemed to address these
problems.

Although RSPL is the GLIMMIX default, SAS documentation focuses heavily on “the
down side of PL,” leaving the impression that quadrature, when possible, is the method of
choice for GLMMs. R’s LME4 package reinforces this impression, integral approximation
being the only method available with LME4.

A 2-day short course at JSM (Schabenberger and Stroup, 2008) and a subsequent GLMM
textbook (Stroup, 2013) continued the “down side of PL” theme. Both use the follow-
ing example to illustrate. One thousand simulated data sets are generated from a ran-
dom coefficient binomial GLMM. Specifically, yi |bi ∼ Bin (N , pi ),bi ∼ N

(
0, σ2b

)
and

ηi = log [pi/(1 − pi )] = η + bi . In the example, σ2b = 1, η = −1 (or, equivalently,
p ∼= 0.27) , i = 1, 2, 3, ..., 200 and N = 4. In other words, these are binomial data with a
lot of replication (200 subjects or, equivalently, 200 experimental units) but small binomial
N at each replication. Estimates of the random effect variance were obtained from RSPL,
MSPL, Laplace, and quadrature. The left-hand column of Table 1 shows the results.

The PL estimates are biased downward by approximately 40%, whereas the quadrature
estimate is essentially unbiased.

This example shows the dominant perception as of 2013. Missing in the literature was
attention to scenarios, common in agricultural research, in which replication is minimal.

Claassen (2014) revisited this example, but with N = 200 and only ten subjects, i.e., ten
replicate experimental units. The right-hand column of Table 1 shows the results.

In Claassen’s version, RSPL shows negligible bias, whereas MSPL and both integral
approximation methods are downward biased by approximately 10%. Out of these, two
examples came recommendations for binomial data, shown in Table 2.
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Figure 1. Plots of binomial p.d.f..

Table 2 raises the following questions. Why the difference? Are there organizing princi-
ples that inform or extend to GLMMs with other distributions and other designs?

In the time since 2013, Stroup pursued this question in hismodeling class, having students
compare the small sample behavior of RSPL and quadrature. Scenarios were drawn from
Stroup’s consulting with researchers whose experiments called for GLMM analysis. The
exercises were originally intended to give students hands-on experience generating evidence
supporting “quadrature is better” conventional wisdom. Instead, in an unexpectedly large
number of cases, RSPL’s performance was superior—often dramatically so.

These exercises led to a conjecture, based partly on pseudo-likelihood’s implicit assump-
tion that y∗|b is approximately normally distributed, and partly on the known downward
bias of maximum likelihood variance component estimates. Figure 1 shows plots of the
binomial p.d.f. with N = 4 and N = 200. In both cases, p = 0.27.

With N = 4, the binomial distribution is strongly right skewed. On the other hand, the
right-hand plot shows the binomial (N = 200, p = 0.27) p.d.f. with the normal distribu-
tion superimposed; the two distributions are almost indistinguishable. Pseudo-likelihood’s
assumption of normality for y∗|b seems reasonable when N = 200 but not when N = 4.

Now consider variance estimation. Start with students’ introduction to variance esti-
mation: “Let {yi ; i = 1, 2, ..., S} be a random sample from a population with distribu-
tion N

(
μ, σ2

)
. The unbiased estimate of σ2 is

∑
i

(yi − ȳ)2/(S − 1).” The maximum

likelihood estimate of σ2 is
∑
i

(yi − ȳ)2/S. Maximizing the likelihood of the residuals,

{(yi − ȳ) ; i = 1, 2, ..., S} yields the residual maximum likelihood (REML) estimate of
σ2,

∑
i

(yi − ȳ)2/(S − 1). Now suppose σ2 = 1,
∑
i

(yi − ȳ)2 = 9 and S = 10. The MLE

of σ2 is 0.9, whereas the REML estimate is 1. This is exactly what we observe in Claassen’s
version of the binomial random intercept example: y|b, and hence, y∗|b, satisfies PL’s “y∗|b
approximately normal” assumption, and RSPL computes a REML-like estimator, which
averages close to 1. The other methods compute MLEs and average close to 0.9.

When N = 4 but S = 200, y∗|b fails PL’s “y∗|b approximately normal” assump-
tion. Pseudo-likelihood performs poorly. Quadrature performs well because the difference
between S and S-1 is negligible when S = 200, making ML’s downward bias negligible.
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Although our conjecture seems to explain the difference between the two versions of the
random coefficient binomial example, does this explanation hold for other models and other
distributions? In the following sections, we explore this question via simulation.

In addition, we explore onemore question. An oft-cited advantage of integral approxima-
tion is that one is working with the actual likelihood, not a linear approximation. However,
in many cases, this supposed advantage may actually be a liability. Thelonious Monk, the
iconic jazz musician, once said, “There are no wrong notes, but some are more right than
others.” Recasting his quote inmodeling terms, “There are no rightmodels, but some are less
wrong than others.” Integral approximation depends crucially on having a “less wrong than
others” likelihood, i.e., one that is consistent with the processes and probability characteris-
tics that give rise to the data. However, what happens when the likelihood is misspecified?
How robust is quadrature? How robust is PL? We include in our simulation study situations
in which there are competing plausible “how the data arise” scenarios that provide a good
basis for assessing robustness to model misspecification.

To summarize, the main purpose of this paper is to compare REML-like PL with quadra-
ture in scenarios common in agricultural research, but largely ignored by the existingGLMM
literature.

4. SIMULATION SCENARIOS

Our focus is on designs typically used by agricultural researchers and distributions associ-
ated with response variables common to their disciplines. An exhaustive study of all designs
and distributions being impractical for a single publication, we limit simulation scenarios
as follows.

Designs. Most researchers use block designs in some form, e.g., complete block designs
(with or without missing data), incomplete block designs, designs with multi-level or split-
plot features, etc. Even observational studies frequently have implicit retrospective blocking
criteria, such as matched pairs, common locations or habitats, etc. Most studies estimate
and compare treatment means or estimate a regression relationship.

The simulations in this paper use two designs, a randomized complete block (RCB) and a
balanced incomplete block (BIB) design. Both designs have six treatments. In both designs,
we consider two cases, one with five replications per treatment and the other with 15. The
smaller design represents cases in which replication is minimal—a common occurrence
in agricultural research. We include the larger design to illustrate the effect of increasing
replication on the relative performance of the quadrature and REML-like PL methods.

For the RCB five or 15 replications translates to five or 15 blocks. The BIB used in this
simulation study has a block size of three. The BIB with five replications per treatment has
ten blocks, and the design with 15 replications has 30 blocks. Note that the BIB, the RCB
with missing data and designs with split-plot features are all special cases of incomplete
block design structure. Our experience is that the BIB results reported in this paper apply
to incomplete block structures in general.

Distributions. Commonly measured response variables that are reasonably assumed to
followanon-Gaussian distribution are discrete proportions (binomial), discrete counts (Pois-
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Table 3. Source of variation table for count data

Source Poisson-gamma Poisson-normal

Process Observation Process Observation

Block b j ∼ N
(
0, σ2b

)
b j ∼ N

(
0, σ2b

)

Treatment τi τi

Exp unit
(block)

ui j ∼ � (1/φ, φ) yi j |b j , ui j ∼
Poisson

(
λi j ui j

) ui j ∼ N
(
0, σ2u

)
yi j |b j , ui j ∼
Poisson

(
λi j

)

son, negative binomial), continuous proportions (beta), continuous, non-negative, right-
skewed including but not limited to time-to-event data (gamma, log-normal).

For the simulation studies in this paper, we generated simulated data according to com-
monly used “how we think the data arise” scenarios for each type of response variable and
then analyzed the data with GLMMs typically used for these data. The remainder of this
section consists of three subsections: Sect. 4.1 describes how simulated data were generated;
Sect. 4.2 describes GLMMs used to analyze these data; and Sect. 4.3 describes the infor-
mation tabulated from each scenario and how it was used to characterize the performance
of the pseudo-likelihood and quadrature algorithms.

In the interest of space, the remainder of this paper focuses on count data scenarios. These
fully illustrate the issues involved, and the results for the other distributions are similar to
those reported below. Descriptions and results for binomial, beta, gamma, and log-normal
scenarios are available with this paper’s supplementary materials online.

4.1. DATA GENERATION SCENARIOS

Following Stroup (2013), a model is “sensible” if there is a one-to-one correspondence
between sources of variation and parameters in the model to account for these sources (see
Chapter 2 discussion of translating design to model). In a blocked design, there are three
sources: blocks, experimental units within blocks, and treatments. For each type of response
variable, a plausible “howdata arise” scenariomust specify howvariation is believed to occur
for each source of variation.

Table 3 shows two common GLMM processes for count data, the Poisson-gamma and
Poisson-normal. The names refer to the distribution of y|b and the distribution of the exper-
imental unit within block effect, respectively. Both processes assume Gaussian random
variation among block effects and fixed treatment effects. The difference is the distribution
associated with effects at the experimental unit level.

For the Poisson-gamma process, integrating out the unit-level effect, ui j yields yi j |b j ∼
Negative binomial

(
λi j ,φ

)
(see Hilbe, 2014, for in-depth discussion). For this reason, the

negative binomial GLMM is commonly used for data assumed to arise via the Poisson-
gamma process. We maintain this distinction in terminology throughout the rest of this
paper. Poisson-gamma refers to the process giving rise to the data, and negative binomial
GLMM refers to the model used to analyze the data.
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Figure 2. Plots of count data distributions used in simulation study.

Table 4. Simulation scenarios for count data

Generating distribution Scale Design of experiment

RCB BIB

Poisson-gamma φ = 0.25 5 blocks 15 blocks 10 blocks 30 blocks
φ = 1

Poisson-normal σ2u = 0.25

σ2u = 1

Data were generated using both processes. For the Poisson-gamma (a.k.a. negative bino-
mial) process, we usedφ = 0.25 to simulate data inwhich yi j |b j has a reasonably symmetric
distribution and φ = 1 to simulate data in which yi j |b j is strongly right-skewed. Figure 2
shows probability density function plots of the two distributions, with φ = 0.25 on the left.

For the Poisson-normal process, we used σ2u = 0.25 and σ2u = 1, unit-level variance that
mimics the two negative binomial scenarios.We generated a total of eight RCB data sets and
eight BIB data sets, representing the two block sizes, two distributions and two unit-level
scale or variance parameters given above. Table 4 summarizes the count data simulation
scenarios.

The treatment effects, τi , were set to 0 for all simulated data sets in order to assess type
I error rates. The true treatment mean was set to λi = exp (η + τi ) = 10, where η denotes
the model’s intercept. In all scenarios, the block variance was set to σ2b = 0.5.

4.2. GLMMS USED FOR STATISTICAL ANALYSIS

Because both REML-like PL and quadrature algorithms are both readily available in SAS
PROC GLIMMIX and because it has the flexibility to implement all of the models under
consideration, this simulation study uses PROC GLIMMIX. In this section, we describe
the models used for each scenario. SAS statements for all models used in this paper are
available in online supplemental materials.
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For count data, we analyzed all data sets using both the negative binomial and Poisson-
gamma GLMMs.

Negative binomial GLMM:
Assumed distributions: yi j |b j ∼ Negative binomial

(
λi j ,φ

)
; b j ∼ N

(
0, σ2b

)
.

Linear predictor: ηi j = log
(
λi j

) = η + τi + b j .
Poisson-normal GLMM:
Assumed distributions: yi j |b j , ui j ∼ Poisson

(
λi j

)
; b j ∼ N

(
0, σ2b

)
; ui j ∼ N

(
0, σ2u

)
.

Linear predictor: ηi j = log
(
λi j

) = η + τi + b j + ui j .
In both cases, η denotes the intercept and the other terms and assumptions are specified

in Table 3. An alternative form of the Poisson-normal GLMMuses the compound symmetry
(CS) structure.

Linear predictor: log
(
λi j

) = η + τi + ui j .

Distributions:

⎡
⎢⎣

u1 j
u2 j
u3 j
u4 j
u5 j
u6 j

⎤
⎥⎦ ∼ N

⎛
⎜⎜⎝

⎡
⎣

0
0
0
0
0
0

⎤
⎦

′
⎡
⎢⎢⎣

σ2 + σcs σcs σcs σcs σcs σcs
σcs σ2 + σcs σcs σcs σcs σcs
σcs σcs σ2 + σcs σcs σcs σcs
σcs σcs σcs σ2 + σcs σcs σcs
σcs σcs σcs σcs σ2 + σcs σcs
σcs σcs σcs σcs σcs σ2 + σcs

⎤
⎥⎥⎦

⎞
⎟⎟⎠

yi j |ui j ∼ Poisson
(
λi j

)
Assuming σcs > 0, the CS covariance, σcs , and the block variance, σ2b, are equivalent, as

are the scale variance, σ2 and the unit-level variance σ2u . The advantage of the CS parameter-
ization is that it avoids the problem of type I error rate inflation when a negative solution for
the block variance occurs. See Stroup and Littell (2002) for a discussion of this issue. Note
that the CS covariance parameterization can be used in conjunction with the Poisson-normal
GLMM but not the negative binomial GLMM. In the negative binomial GLMM, the CS
scale parameter σ2 and the negative binomial scale parameter φ are confounded. See Stroup
(2013, pp. 107–108) for details. See also Stroup et al. (2018) for a discussion of negative
variance component solutions with Poisson-normal and negative binomial GLMMs.

Note that all models used in this study are intended to estimate or test differences among
E (yi |b) the “broad inference space” i th treatment mean of y|b , i.e., λi for count data. This
is the expected value of “a typical member of the population” as opposed to the mean of the
marginal distribution, E (yi ). As noted in Gbur, et al. (2011) and Stroup (2013, 2014), the
broad inference space E (yi |b) is the appropriate target of inference in most academic, basic
or discovery research. Some versions of PQL add a mandatory overdispersion parameter,
which alters the target of inference from E (yi |b) to E (yi ). This is an important subtlety
that should not be overlooked.

4.3. INFORMATION USED FROM STATISTICAL ANALYSIS

For each scenario, the models shown in Sect. 4.2 were applied to the data for each simu-
lated experiment relevant to that model. For example, data sets generated using the Poisson-
gamma process were analyzed using the negative binomial and Poisson-normal GLMM,
each with the PROC GLIMMIX RSPL and quadrature algorithm. In each run, output data
sets were created to track the following information: the estimated treatment means on the
data scale, h

(
η̂ + τ̂i

)
; the estimated block variance (the one variance parameter common

to all scenarios); the rejection rate, defined the proportion of data sets in which H0 : τi = 0
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Table 5. Randomized complete block design. Poisson-gamma data generating process

Scale
parameter

N blocks Analysis
model

Estimation
method

Rejection
rate

Coverage mean λ̂ Mean σ̂2blk Proportion
converged

ϕ = 0.25 5 NB RSPL 0.062 0.951 10.3 0.50 0.993
Quad 0.128 0.917 10.4 0.41 0.991

PN RSPL 0.051 0.951 9.8 0.49 0.999
Quad 0.144 0.911 9.6 0.41 0.996

15 NB RSPL 0.060 0.953 10.0 0.49 1.000
Quad 0.068 0.945 10.1 0.46 1.000

PN RSPL 0.056 0.944 9.4 0.47 1.000
Quad 0.077 0.913 9.1 0.46 1.000

ϕ = 1 5 NB RSPL 0.136 0.914 10.3 0.49 0.953
Quad 0.124 0.908 10.8 0.37 1.000

PN RSPL 0.054 0.909 7.8 0.32 0.996
Quad 0.126 0.819 7.4 0.37 0.995

15 NB RSPL 0.122 0.933 9.9 0.49 0.930
Quad 0.082 0.936 10.4 0.44 1.000

PN RSPL 0.050 0.800 7.1 0.42 0.999
Quad 0.069 0.719 6.6 0.44 1.000

Rejection Rate: proportion of data sets in which H0 : all λi is rejected at α = 0.05

Coverage: proportion of 95% confidence intervals for λi that contain true mean (λi = 10)

for all i = 1, 2, ..., 6 was rejected at α = 0.05; coverage, defined as the proportion of
95% confidence intervals containing the true mean (i.e., the true h (η + τi )); convergence
defined as the proportion of data sets that converged to a solution.

Average treatment mean estimates, mean block variance estimates, percent of data sets
in which H0 was rejected, and percent of data sets in which the 95% confidence interval
contained the true mean and convergence proportion were tabulated for each model and
each estimation algorithm. These are reported in the following section.

5. RESULTS

This section is divided into three subsections. Section 5.1 contains results for the count
data scenarios using the randomized complete block design. Section 5.2 contains the bal-
anced incomplete block count data results. The count data scenarios illustrate most of the
issues that characterize the small-sample behavior of REML-like PL and quadrature. Sec-
tion 5.3 contains selected results from the other distributions to complete the picture within
the space constraints of this paper.

5.1. COUNT DATA: RANDOMIZED COMPLETE BLOCK DESIGN

Tables 5 and 6 show results for the RCB count data scenarios. In all tables, as well as the
discussion in this section, REML-like PL is referred to by its GLIMMIX acronym RSPL.

For both processes inwhich the distribution of the observations conditional on the random
effects is approximately symmetric (φ = 0.25 for the Poisson-gamma process, σ2u = 0.25
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Table 6. Randomized complete block design. Poisson-normal data generating process

Scale
parameter

N blocks Analysis
model

Estimation
method

Rejection
rate

Coverage mean λ̂ Mean σ̂2blk Proportion
converged

σ2u = 0.25 5 NB RSPL 0.054 0.932 11.7 0.50 0.994
Quad 0.104 0.892 11.8 0.40 0.994

PN RSPL 0.035 0.994 11.0 0.49 0.999
Quad 0.115 0.907 10.8 0.41 0.997

15 NB RSPL 0.058 0.930 11.4 0.50 1.000
Quad 0.085 0.908 11.5 0.48 1.000

PN RSPL 0.051 0.948 10.7 0.49 1.000
Quad 0.073 0.939 10.3 0.48 1.000

σ2u = 1 5 NB RSPL 0.138 0.879 16.2 0.52 0.962
Quad 0.167 0.835 16.9 0.41 1.000

PN RSPL 0.039 0.950 12.0 0.48 0.997
Quad 0.106 0.917 11.7 0.41 0.995

15 NB RSPL 0.127 0.765 15.5 0.51 0.939
Quad 0.139 0.709 16.2 0.48 1.000

PN RSPL 0.051 0.948 11.2 0.47 1.000
Quad 0.064 0.941 10.6 0.45 0.998

for the Poisson-normal process) RSPL consistently outperforms quadrature with respect to
all criteria evaluated. With 1000 simulated experiments, type I error rate should be between
0.03 and 0.07 and confidence interval coverage should be between 0.93 and 0.97. RSPL
meets these criteria in all cases—for designs with five or 15 blocks, regardless of whether
the model is correct (e.g., the negative binomial GLMM is fit to Poisson-gamma data) or
misspecified (e.g., the negative binomial model is fit to Poisson-normal data). For designs
with five blocks, quadrature consistently shows elevated type I error rate (consistently greater
than 0.10) and confidence interval coverage below0.93.Quadrature’s performance improves
somewhat for designs with 15 blocks, but only if the model is correctly specified.

Variance component estimates are what one would expect. With five blocks, there are a
total of 30 observations (N = 30) and 24 residual DF. The RSPL estimates of σ2B average
close to 0.5 and the quadrature estimates, which are MLEs, are close to 0.4, matching the
ratio of N to the residual DF. With 15 blocks, (N = 90) and residual DF is 84. RSPL
estimates remain close of 0.5, but quadrature estimates are close to 0.47—the value one
would expect given the ratio of N to residual DF. Note that the discrepancy between RSPL
estimates and the ML estimates from quadrature result from the discrepancy between N
and the residual DF. If there were more treatments relative to the number of observations,
this discrepancy would increase and in turn further compromise quadrature’s performance
relative to RSPL with respect to type 1 error control and confidence interval coverage.

Convergence is not an issue for either method, regardless of the GLMMfit or the number
of blocks. This changes when y|b is right-skewed (φ = 1). See below.

Using the correct or misspecified model has negligible effect on quadrature’s perfor-
mance for the cases with five blocks. Increasing replication to 15 blocks reduces the bias
inherent inmaximum likelihood variance component estimates and their resulting inferential
statistics—provided the GLMM and the data-generating process agree. However, increas-
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ing replication does not improve quadrature’s type I error control or coverage when the
negative binomial GLMM is fit to Poisson-normal data or the Poisson-normal GLMM is fit
to Poisson-gamma data. Quadrature does not appear to be robust to model misspecification,
whereas RSPL does.

For right-skewed processes (φ = 1 for the Poisson-gamma, σ2u = 1 for the Poisson-
normal) with the five block designs, quadrature’s type I error rate and confidence interval
coverage are similar to what they were with the approximately symmetric y|b distribution.
RSPL’s type I error rate and confidence interval coverage are similar to quadrature when
negative binomial GLMMs are fit, regardless of whether the generating process is Poisson-
gamma or Poisson-normal. However, RSPL’s type I error control remains within the 0.03
and 0.07 limits when the Poisson-normal GLMM is used, regardless of the generating
process. Confidence interval coverage for RSPL with the Poisson-normal GLMM is within
the 0.93 to 0.97 limits for the Poisson-normal generating process, but coverage is 0.909 for
Poisson-gamma process.

With 15 blocks, quadrature’s performance improves provided the GLMM is consistent
with the generating process—i.e., negative binomial GLMM fit to Poisson-gamma data or
Poisson-normal model fit to Poisson-gamma data. For these cases, type I error rate is below
0.07 and confidence interval coverage is above 0.93. If the model is misspecified, quadrature
performance improves relative to five blocks, but type I error rate is still greater than 0.07
and coverage is less than 0.93. With 15 blocks, RSPL’s performance is within type I error
limits for all cases except when fitting the negative binomial GLMM to Poisson-normal
data. Coverage is consistently somewhat better than quadrature.

There is one case, fitting a negative binomial GLMM to data with a strongly right-skewed
distribution of y|b, in which neither quadrature nor RSPL performwell—both have elevated
type I error rates and poor coverage. Quadrature improves somewhat with 15 blocks, but its
performance is still problematic.

For the processes in which the distribution of y|b is right-skewed, convergence is a non-
issue for all GLMMs fit with quadrature, regardless of the number of blocks. Convergence
is only an issue for RSPL when fitting the negative binomial GLMM. With five blocks, the
convergence proportion is around 0.96 and drops to around 0.94 with 15 blocks.

Notice that in two cases with 15 blocks, fitting a negative binomial GLMM to Poisson-
normal data and fitting a Poisson-normal GLMM to Poisson-gamma data, there is a large
discrepancy between the true λi , which is 10, and the average of their estimates. For the
negative binomial GLMM fit to Poisson-normal data, λ̂i averages 15.5 with RSPL and 16.2
with quadrature. For the Poisson-normal GLMM fit to Poisson-gamma data, λ̂i averages
7.1 with RSPL and 6.6 with quadrature. Coverage suffers accordingly. The discrepancy
results from the fact that the negative binomial GLMM and Poisson-normal GLMM target
different characteristics of themarginal distribution of y. As described in Stroup (2013), both
generating processes produce strongly right-skewed marginal distributions of y. Stroup’s
Chapter 3 (pp. 99–107) discusses the impact on the resulting inference space for GLMMs
in general terms. Chapter 11 (pp. 356–60) provides additional specifics relevant to count
data. The marginal distributions of y produced by the Poisson-normal and Poisson-gamma
processes,while intractable analytically, canbe characterized empirically by simulation.One
can then demonstrate by simulation that Poisson-normal GLMM’s broad inference space
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Table 7. Balanced incomplete block design. Poisson-gamma data generating process

Scale
parameter

N blocks Analysis
model

Estimation
method

Rejection
rate

Coverage Mean λ̂ Mean σ̂2blk Proportion
converged

ϕ = 0.25 10 NB RSPL 0.042 0.947 10.2 0.49 0.988
Quad 0.116 0.932 10.2 0.46 0.987

PN RSPL 0.036 0.950 9.7 0.48 0.999
Quad 0.150 0.918 9.4 0.46 0.986

30 NB RSPL 0.053 0.947 10.0 0.49 0.998
Quad 0.058 0.944 10.1 0.48 1.000

PN RSPL 0.041 0.937 9.4 0.47 1.000
Quad 0.075 0.906 9.1 0.48 1.000

ϕ = 1 10 NB RSPL 0.122 0.903 9.9 0.49 0.877
Quad 0.115 0.912 10.7 0.39 0.999

PN RSPL 0.033 0.913 7.6 0.42 1.000
Quad 0.128 0.848 7.2 0.44 1.000

30 NB RSPL 0.126 0.899 9.4 0.50 0.840
Quad 0.084 0.935 10.3 0.44 1.000

PN RSPL 0.045 0.787 7.0 0.42 1.000
Quad 0.073 0.700 6.5 0.46 1.000

estimate ofλ targets themedian of themarginal distribution and the negative binomial targets
a value somewhere between the median and the marginal mean. Thus, fitting a Poisson-
normal GLMM to Poisson-gamma data will produce λ̂i below λi and fitting a negative
binomial GLMM to Poisson-normal data will do the opposite. The effect is exacerbated
by a large-scale parameter value (e.g., φ = 1 for the Poisson-gamma or σ2u = 1 for the
Poisson-normal) and by increasing replication.

5.2. COUNT DATA: BALANCED INCOMPLETE BLOCK DESIGN

Table 7 shows results for count data with the balanced incomplete design when the data
generating process is Poisson-gamma. Table 8 shows count BIB results for the Poisson-
normal data generating process. Overall, the results are similar to those with the RCB
reported in the previous section. The main differences are the type I error performance
and coverage of quadrature and the convergence rate of RSPL fitting the negative binomial
GLMM when the data generating process is strongly right-skewed (φ = 1 for the Poisson-
gamma data and σ2u = 1 for the Poisson-normal data).

As with the five-block RCB, the ten-block BIB quadrature type I error rates are consis-
tently well above 0.07 and coverage well below 0.93. When replication is increased to 15
with the RCB, quadrature type I error rate improves to near or below 0.07 and coverage to
near or above 0.93 for GLMMs that match the generating process. With the 30-block BIB,
quadrature’s type I error rate does not improve as much, with type I error rates remaining
above 0.07 and coverage below 0.93.

For the negative binomial GLMMfit with RSPL to the highly skewed cases, convergence
was between 0.94 and 0.96 for the RCB. It decreases to below 0.9 for the BIB. This suggests
that the latter convergence rate would be expected for RCBs with missing data, and the
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Table 8. Balanced incomplete block design. Poisson-normal data generating process

Exp unit
variance

N blocks Analysis
model

Estimation
method

Rejection
rate

Coverage mean λ̂ Mean σ̂2blk Proportion
converged

σ2eu = 0.25 10 NB RSPL 0.062 0.939 11.4 0.50 0.984
Quad 0.134 0.915 11.5 0.46 0.991

PN RSPL 0.052 0.950 10.8 0.49 1.000
Quad 0.155 0.921 10.6 0.47 1.000

30 NB RSPL 0.060 0.917 11.2 0.49 0.997
Quad 0.082 0.906 11.3 0.49 1.000

PN RSPL 0.043 0.942 10.6 0.47 1.000
Quad 0.084 0.939 10.2 0.49 1.000

σ2eu = 1 10 NB RSPL 0.160 0.863 15.5 0.54 0.852
Quad 0.182 0.845 16.7 0.47 1.000

PN RSPL 0.052 0.951 11.9 0.49 1.000
Quad 0.146 0.918 11.5 0.48 0.997

30 NB RSPL 0.160 0.772 14.7 0.55 0.815
Quad 0.118 0.730 15.7 0.56 1.000

PN RSPL 0.057 0.941 11.1 0.47 1.000
Quad 0.087 0.939 10.5 0.50 1.000

convergence rate for RSPL might be even lower for unbalanced incomplete block designs
when the distribution of y|b is highly skewed.

To summarize, aside from these minor differences, the overall behavior of RSPL relative
to quadrature is similar for complete and incomplete block scenarios.

5.3. OTHER DISTRIBUTIONS

Given the similarity of the BIB and RCB results for count data, simulations for the
binomial, beta, and gamma generating processes are limited to the BIB case. Results for
these scenarios can be obtained in the online supplementary materials. The main overview
comment is that the results are consistent with those reported in the above sections for count
data.

6. CONCLUSIONS AND FUTUREWORK

Based on these combined results, the conjecture described in Sect. 3 appears to hold. ML
versus REMLmatters, as does the shape of the distribution of y|b. Quadrature’s downward-
biased variance MLEs result in inflated type I error rates and poor coverage in designs
with minimal replication, but improve—provided the analysis GLMM is consistent with the
data-generating process—when replication is increased relative to the number of treatments.
REML-like PL (PROC GLIMMIX acronym RSPL) produces type I error rates and confi-
dence interval coverage consistent with nominal α level and confidence coefficient, even if
the model is misspecified, provided the distribution of y|b is at least approximately sym-
metric. RSPL appears to perform acceptably unless the distribution of y|b is very strongly
skewed. Quadrature performswell in scenarios with ample replication andwhen the GLMM
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Table 9. Recommended method

Small S (few e.u./treatment) Large S (many replications)

f (y|b) skewed Quadrature is least bad—
provided the GLMM fit and
the process by which the data
arise are well matched

Use quadrature—but take care
to match GLMM to data gen-
erating process to the extent
possible—model misspecifica-
tion matters

f (y|b)at least approximately symmetric Use RSPL Use RSPL

being fit is well matched to the data generating process. Quadrature struggles when replica-
tion is minimal and when the GLMM is misspecified—even slightly as the Poisson-normal
and Poisson-gamma cases illustrate.

Given these results, Table 9 expands on Table 2 for our recommendations for analysis
method for any GLMM.

Although quadrature’s performance improves with increased replication, RSPL is still
preferred when the distribution of y|b appears to be reasonably symmetric for three reasons.
First, RSPL is more forgiving of model misspecification than quadrature. Second, RSPL is
less computationally demanding than quadrature. Third, RSPL can be used with much more
complex covariance structures, e.g., those that arise in multi-level or repeated measures
designs. Admittedly, the characterizations of distribution shape and replication in Table 9
are not exact. If there is any doubt, we encourage data analysts to run simulations similar to
those illustrated in this paper to decide if REML-like PL or quadrature (or Laplace) is more
appropriate given the characteristics of the data to be analyzed.

These recommendations point to an obvious need for work on diagnostics to identify
model misspecification. In our experience, methods used with Gaussian data such as resid-
ual plots and Q–Q plots are inadequate to identify differences in data generating processes
with non-Gaussian data. See Stroup et al. (2018) for a discussion of this issue and some sug-
gestions of how to handle model specification pending the development of more informative
diagnostics.

We also emphasize that the issues discussed here, all obtained from simulations with
equal treatment means, are exacerbated when treatment means are unequal. In all of the
distributions presented, variances are functions of means. Therefore, when the treatment
means are different, heterogeneity of variance becomes a factor and affects both confidence
interval coverage and power characteristics. Space limits this paper to the equal means case.
Suffice it to say, however, that if a procedure cannot control type I error, as is so often the
case with quadrature estimation, it should not be used.

Analysts need also to be aware of the default fitting method in their software of choice.
LME4 in R uses integral approximation—and hence ML variance estimation—only. LME4
has no REML-like option. The closest packages R users have pseudo-likelihood are glmm-
PQL and HGLMMM. However, glmmPQL only implements the ML version of PQL and it
imposes a scale parameter (analogous to RANDOM _ RESIDUAL_ in PROC GLIMMIX)
that is often superfluous, alters the inference space and cannot be turned off. For example,
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glmmPQL cannot fit either the Poisson-normal or negative binomial GLMM as defined in
this paper. Molas and Lesaffre (2011) state that HGLMMM uses a REML-like objective
function to estimate variance parameters. However, it too imposes a scale parameter that
creates the same problems as glmmPQL. SAS/STAT PROC GLIMMIX allows users the
option of RSPL (the default), MSPL, quadrature or Laplace integral approximation. All
analyses described in this paper can be implemented using PROC GLIMMIX.

Readers should note that the REML-like PL versus quadrature issue is not limited to
generalized linear mixed models; they apply to nonlinear mixed models (NLMMs). The
primary tools for fitting NLMMs in R and SAS, respectively, are the NLME package and
PROC NLMIXED. Both use adaptive quadrature. Littell et al. (2006) discuss %NLINMIX,
a macro that works in conjunction with PROCMIXED to fit NLMMs using PL. This macro
was widely used before the NLME package and PROCNLMIXEDwere introduced. Future
work will address the question, “Is quadrature always the method of choice for NLMMs,
and if not, when would REML-like PL be a better choice?”.

Finally, the results presented in this paper may have implications for Bayesian analysis.
Bayesianmethods are likelihood-based—that is, estimation uses a full likelihood and a prior
to obtain a posterior distribution. This applies to variance components as well as other model
parameters. What happens if the likelihood used for the analysis and the process by which
the data arise are not well matched? To what extent are the same issues presented in this
paper in play with Bayesian inference? Although this is a topic beyond the scope of this
paper, it is something that data analysts using Bayesian methods should consider.

The data analysis for this paper was generated using SAS/STAT software, version 9.4
(TS1M6), of the SAS System for Windows. Copyright ©2016 SAS Institute Inc., SAS, and
all other SAS Institute Inc. product or service names are registered trademarks or trademarks
of SAS Institute Inc., Cary, NC, USA.
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