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Non-Gaussian Covariate-Dependent Spatial
Measurement Error Model for Analyzing Big

Spatial Data
Vahid Tadayon and Abdolrahman Rasekh

Spatial models based on the Gaussian distribution have been widely used in environ-
mental sciences. However, real data could be highly non-Gaussian and may show heavy
tails features. Moreover, as in any type of statistical models, in spatial statistical models,
it is commonly assumed that the covariates are observed without errors. Nonetheless,
for various reasons such as measurement techniques or instruments used, measurement
error (ME) can be present in the covariates of interest. This article concentrates on mod-
eling heavy-tailed geostatistical data using a more flexible class of ME models. One
novelty of this article is to allow the spatial covariance structure to depend on ME. For
this purpose, we adopt a Bayesian modeling approach and utilize Markov chain Monte
Carlo techniques and data augmentations to carry out the inference. However, when the
number of observations is large, statistical inference is computationally burdensome,
since the covariance matrix needs to be inverted at each iteration. As another novelty,
we use a prediction-oriented Bayesian site selection scheme to tackle this difficulty. The
proposed approach is illustrated with a simulation study and an application to nitrate
concentration data.
Supplementary materials accompanying this paper appear online.

Key Words: Bayesian site selection; Covariate-dependent spatial covariance function;
Gaussian log-Gaussian spatial measurement error model; Spatial heteroscedasticity.

1. INTRODUCTION

A popular approach for modeling continuous spatial data is often based on the Gaus-
sian process. However, in many applications, including those in environmental sciences,
datasets often present asymmetry. This may manifest itself in the exploratory data analy-
sis by demonstrating heavier tails than in a Gaussian process or spatial heteroscedasticity
caused by outliers (Tadayon 2017). In other words, the observed data may contain special
cases which have extreme values compared to their neighboring observations. All this calls
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for statistical models to address these non-Gaussianity features. A widely used approach is
to find some nonlinear transformations so that the assumption of normality for the trans-
formed data holds. However, an appropriate transformation may not exist or may be difficult
to find or even to interpret (Kim and Mallick 2004). Evidently, the situation is exacerbated
in multivariate settings with several spatial response variables. Recently, more suitable theo-
retical strategies have been developed to handle some of the potential weaknesses associated
with the transformation methods (Palacios and Steel 2006; Fonseca and Steel 2011). Here,
we focus on the Gaussian log-Gaussian (GLG, hereafter) model defined by Palacios and
Steel (2006) as a scale mixing of a Gaussian process to accommodate heavier tails than the
common Gaussian process. In this model, the Gaussian stochastic process ε (s) is replaced
by a ratio of two independent stochastic processes, as ε (s) /

√
λ (s), where the mixing term

λ (s) is a log-Gaussian stochastic process. Previous works on this model include Steel and
Fuentes (2010), Fonseca and Steel (2011) and Bueno et al. (2017).

In practice, many environmental phenomena act on a very large scale and occasionally
within areaswith rough terrain and poor infrastructure. Thismakesmaintaining gauges chal-
lenging, expensive and naturally with ME. For example, pollution level, e.g., ammonium
(NH+

4 ) or nitrite (NO−
2 ) concentration (as explanatory variables in modeling groundwa-

ter nitrate concentration, see Nolan and Stoner, 2000), is difficult to measure and is often
approximated by using the distance from a polluted site or by using the measures at a few
monitoring sites. In the last decade, the impact of covariate ME on spatial regression model-
ing has been received increasing attention. Li et al. (2009) showed that ignoringME results in
attenuated regression coefficient (naive) estimates and inflated variance components. Some
other works in this area include Huque et al. (2014), Huque et al. (2016) and Alexeeff et al.
(2016). On the other hand, it is clear and expected that ME in the covariates can affect the
covariance function. More precisely, covariate ME (when the covariates are included in the
covariance function,) presents a new spatial correlation structure based on including covari-
ates information, i.e., ME variance (Bueno et al. 2017). Including covariates information
in the covariance structure of the process under study has recently become popular in the
context of spatial models (Schmidt et al. 2011; Reich et al. 2011; Ingebrigtsen et al. 2014;
Neto et al. 2014; Bueno et al. 2017). The common goal of these investigations is to consider
more flexible models to accommodate non-stationarity, non-isotropicity or heteroscedastic-
ity. However, none of these works considered covariate ME which is evidently one of the
potential contributors to environmental exposures.

On the other hand, nowadays, with the advancement of remote sensors, wide usage of
GPS devices in vehicles and cell phones, popularity of mobile applications and geographic
information systems, as well as cheap data storage and computational devices, enormous
geo-referenced data are being collected from broader disciplines and are called big spatial
data (BSD). A core difficulty of analyzing BSD using both Bayesian or likelihood-based
approaches is in inverting an n × n covariance matrix, where n indicates the sample size.
In Bayesian inference (as in a frequentist framework), the inverse of covariance matrix
needs to be calculated at each iteration which makes it infeasible for large n. An intro-
ductory overview of several methods for analyzing BSD can be found in Heaton et al.
(2017), wherein all of the suggested strategies were conducted based on a Gaussian spatial
process. The prediction-oriented Bayesian site selection (BSS) approach proposed by Park
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and Liang (2015) is another strategy to overcome this problem. This method first splits the
observations into two parts: the observations near the target prediction sites (part I) and the
remaining (part II). Then, by treating the observations in part I as response variable and
those in part II as explanatory variables, BSS forms a regression model which relates all
observations through a conditional likelihood derived from the original model. The dimen-
sion of the data can then be reduced by applying a stochastic variable selection procedure
to the regression model, which selects only a subset of the part II as explanatory data. BSS
is able to catch the long range dependence through selection of appropriate explanatory
variables.

1.1. MOTIVATIONAL EXAMPLE: NITRATE IN DRINKING WATER

The presence of nitrates (NO−
3 , with the maximum tolerable concentration 50mg/L) in

drinking water is perceived as a pollution problem. Elevated levels of NO−
3 in drinking

water (much more than the regulatory limit 10 mg/L) presents a serious threat to infants and
livestock as attested by conditions such as infant methemoglobinemia, nitrate poisoning of
livestock and digestive system cancers (Bastian and Murray 2012). Therefore, the detection
of areas with high nitrate concentration in drinking water has gathered much attention from
researchers. As a demonstrative example, we describe the means concentrations of NO−

3 ,
NO−

2 and NH+
4 in drinking water over the USA as motivation for our proposed model

(presented in Sect. 2). At each location, we derive means concentrations as the average
of the measured concentrations from measurements (per site) around days 9, 18 and 27
of each month within year 2003. The dataset (downloadable from the EPA website) has
been collected from a monitoring network composed of 36, 760 stations and contains the
means concentrations of NO−

3 , NO
−
2 and NH+

4 and monitors geographic coordinates given
as latitude and longitude. The regulatory limits and maximum permissible levels of NO−

2
and NH+

4 are, respectively, 0.003 mg/L and 0.04mg/L, and 1mg/L and 0.5mg/L. Due to
measurement methods, e.g., the sulfanilamide and the phenate methods, NO−

2 and NH+
4 are

often affected by ME (see Sathasivan et al. 2008; Jarvis et al. 2009; Choi and Kim 2010;
Opsahl et al. 2017).

Panels (a) and (b) of Fig. 1 show a schematic description of the region and a histogram
of the nitrate concentration, respectively. As a result of simple exploratory data analysis,
the histogram shows a non-Gaussian feature, but to explore more precisely, further inves-
tigation is needed. To that end, a simple regression model was fitted and other exploratory
data analyses were pursued: normal QQ-plots as well as the Kolmogorov–Smirnov test for
the normality of both the response and the residuals. The p-values obtained from two-sided
Kolmogorov–Smirnov normality tests for both the response and the residuals are approx-
imately 2 × 10−16. The QQ-plot of the response variable in Panel (c) reveals significant
deviation from normal behavior which was also confirmed by the QQ-plot of the residuals
(not shown here). However, non-Gaussianity in purely spatial problems is, in general, very
hard to assess because of having only one observation to work from. That is, in spatial
problems we observe one observationY ∼ Nn (μ, ϒ) rather than independent observations
from a Gaussian distribution. For more exploration, one way of assessing normality is to
decorrelate the observations, e.g., to Y∗, such that Y∗ ∼ Nn (μ∗, In), and then normality

https://www.epa.gov/waterdata
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Figure 1. Panel a shows the spatial locations of the water quality monitoring stations in the USA; the coordinates
(latitude and longitude) are in decimal degrees. Panel b displays the histogram of the nitrate concentration and its
kernel density estimate. Panels c and d show the normal QQ-plots of the nitrate concentration and the residuals
of a simple regression based on the decorrelated data, respectively. Panel e displays the upper and lower outlier
bounds based on Haining’s method.

will be proven if the QQ-plot of the new residuals is normal (see “Appendix A”). Panel
(d) confirms our previous result. Finally, we performed another initial exploratory analysis
based on Haining’s method for outlier detection (Haining 1993). The last panel of Fig. 1
which indicates the upper and lower outlier bounds confirms the existence of (at least) one
region in the space with larger observational variance relative to the rest.

We will propose a GLG spatial model which relax the assumption that covariates are
observed without ME and also allow us to accommodate and identify observations that
have extreme values compared to their neighboring observation under a Gaussian pro-
cess. Our approach leads to a non-Gaussian covariate-dependent spatial ME model for
analyzing BSD. Specifically, we accommodate covariate ME in a non-Gaussian spatial
model and incorporate covariate information (ME variance) into the spatial covariance
structure. We also address computational issues related to non-Gaussian BSD (which
is also not addressed in the literature, as far as we are aware) by modifying the BSS
method. The organization of the paper is as follows: After describing our proposed model
and its properties (Sect. 2), in Sect. 3, we describe the inference procedure and dis-
cuss prior specification for the proposed model parameters. An analysis of synthetic data
is presented in Sect. 4. Section 5 illustrates the implementation of our model to ana-
lyze the nitrate concentration presented in Sect. 1.1. The article ends with a conclusion
section.
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Figure 2. Traces of 104 MCMC iterations (with a thinning 10) and a measure of effective sample size (ESS) after
the burn-in period for the model parameters.

2. AN OVERVIEW OF THE GLG COVARIATE-DEPENDENT
SPATIAL MEMODEL

The considered model is set up by the following components: Let
{
Y (s) : s ∈ D ⊂ �d

}

denote a spatial random field, where s represents a site in d-dimensional space and Y (si )

be the observations of the process in locations si (i = 1, . . . , n). Our starting model for the
i th location given covariates x (si ) = (x1 (si ) , . . . , xk (si ))

′ is

Y (si ) = β0 + x′(si )βx + σ
ε (si )√
λ (si )

+τρ (si ), (1)

where the mean surface β0 + x′(·)βx with unknown coefficient vector β = (
β0,β

′
x

)′ =
(β0, β1, β2, . . . , βk)

′ is often termed trend or drift. The scale parameters σ and τ are defined
in �+, and the process ε(·) is a zero-mean and unit-variance Gaussian random field with
a valid correlation function C (H) in �d , which captures spatial correlation based on the
Euclidean distance H between sites i and j , i.e., H = ∥∥si − s j

∥∥. The latent process λ (·)
also affects the spatially dependent process and is responsible for capturing the variance
inflation in the process ε(·) across different locations. Finally, ρ (·) denotes an uncorrelated
Gaussian process with zero mean and unitary variance, modeling a nugget effect. To make
our results comparable with the previous works, we focus on modeling the latent variable
{λ (s) : s ∈ D} as a stationary log-Gaussian process such that ln λ (·) is a Gaussian process
with mean function −ν/2 (ν > 0) and covariance function νC (H). Thus, ψ(·) = ln λ(·) ∼
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Nn (−(ν/2)1n, ν
), where λ = (λ (s1), . . . , λ (sn))′, 1n is an n × 1 vector of 1’s and 


is an n × n correlation matrix with C (H) as its (i, j)th element. ε(·), ln λ (·) and ρ (·) are
considered independent of each other.

Clearly, observations with relatively small values of the scale mixing process will tend
to be away from the mean surface. We interpret these observations in terms of spatial
heteroscedasticity or following Palacios and Steel (2006) call them outliers, even though
we really mean that they belong to a region with larger observational variance relative to the
rest of the space. Obviously, λ (·) is a unit-mean process with variance exp (ν)−1. Hence, ν
governs the behavior of λ (·); small values of ν minimize the variance of λ (·), which leads
to contracting its distribution around one, and so the proposed model tends to be a Gaussian
model, while larger values of ν drive the distribution of λ (·) toward zero, justifying the
existence of some regions in the space with larger observational variances. It is noteworthy
that although different correlation functions for ε(·) and λ(·) can be chosen, for the purpose
of model complexity reduction, it is assumed that the elements of λ(·) are correlated through
the same correlation function as that of ε(·). Further, this approach prevents identifiability
problems (which have already been addressed by Palacios and Steel, 2006). Therefore, for
Y = (Y (s1) , . . . , Y (sn))′,� = diag (λ),X = (x1, . . . , xn) and fixed parameters, we have
Y |λ ∼ Nn

(
β01n + Xβx , σ

2�−1/2
�−1/2+τ 2 In
)
.

In the presence of ME, the covariate x (·) can be observed only through w (·) =
(w1, . . . , wk)

′ such that w(·) = x(·) + u(·), where u (·) ∼ Nk
(
0k, σ

2
u Ik

)
is an uncorre-

lated white noise process. Here,w (·) ∼ Nk
(
x(·), σ 2

u Ik
)
and a functional ME model will be

used. A review of the literature of ME reveals that the variance of the ME has been deter-
mined, perhaps by making a large number of independent repeated measurements (Fuller
2009). Considering ME, we rewrite model (1) as

Y (si ) = β0 + w′(si )βx + σ
ε (si )√
λ (si )

− u′(si )βx+τρ (si ), i = 1, 2, . . . , n. (2)

In this model, we assume that the random field u(·) is independent of ε(·), λ(·) and ρ(·). The
main reason behind this assumption is that the source of response error (in the motivational
example) is independent of the source of ME in covariates (due to different techniques
employed to collect the data). Note that the term nugget effect is responsible for capturing
microscale variability at fine scales that cannot be distinguished from observational data
since it occurs at a scale that is much smaller than the inter-distance between observations
sites. However, the term u′(·)βx (i.e., the ME effect) is commonly due to instrument or
laboratory analysis error.Assuming isotropy,we also consider aCauchy correlation function,
as C (H) = [

1 + (H/θ1)
θ2
]−1

, θ1 > 0, 0 < θ2 ≤ 2, at spatial distance H. This class of
correlation functions, which allows for smoother processes than induced by the exponential
function, also provides the simultaneous fitting of both the long-term and the short-term
correlation structure within a simple analytical model. The parameters θ1 and θ2 are the
range and the smoothness parameters, respectively. We collect all the model parameters as
η = (

β, σ 2, θ1, θ2, σ
2
u , ν, τ 2

)′
. Thus, forW = (w1, . . . ,wn), we have

Y |λ,W, η ∼ Nn

(
μ = [

β01n + Wβx
]
, =

[
σ 2�− 1

2 
�− 1
2 +

(
σ 2

u β ′
xβx+τ 2

)
In

])
.

(3)
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Next, we briefly outline some preliminary properties of the proposed model (2).

2.1. PROPERTIES

The covariance between any two points of the process, the marginal kurtosis at location
s and the marginal moments of Y (s) given w (s) around its mean are of special interests
here. The proofs are presented in “Appendix B.”

• Covariance: For the marginal distribution of Y (s) after integrating out λ (s), we have

Cov
[
Y (si ) |w (si ) , Y

(
s j
) ∣∣w

(
s j
) ] = σ 2C (H) exp

{ν

4
[3 + C (H)]

}
, (4)

where si , s j ∈ D, i, j = 1, . . . , n and i 
= j (see 10). Firstly, this term will always be
positive. Secondly, it is obvious that for fixed values of σ 2 and ν, Eq. (4) depends only
on the distanceHwhich means model (2) has a stationary spatial covariance structure.
Thirdly, for constant values of σ 2 andH, this covariance is a monotonically increasing
function of ν, that is, in the same distances, this covariance would be maximumwithin
the regions with extreme values of the response. Moreover, Var [Y (si ) |w (si ) ] =
σ 2 exp {ν} + σ 2

u β ′
xβx+τ 2 (see 11) means that large values of ν are associated with a

greater variance in the spatial process Y (·) and this is true for any location. As a result
of (4), it is easy to see that

Corr
[
Y (si ) |w (si ) , Y

(
s j
) ∣∣w

(
s j
) ] = σ 2C (H) exp

{
ν
4 [3 + C (H)]

}

σ 2 exp {ν} + σ 2
u β ′

xβx+τ 2
. (5)

Roughly speaking, if the distance between si and s j tends to 0, the correlation between
Y (si ) |w (si ) and Y

(
s j
) ∣∣w

(
s j
)
tends to one for enough small values of σ 2

u and τ 2.
Therefore, interlocking the model with ME does not induce a discontinuity at 0.

• Kurtosis: In order to evaluate the tail behavior of the finite-dimensional distribution
of the proposed process, we consider the kurtosis of the process Y (s) givenw (s). The
marginal kurtosis with respect to λ (s) is given by:

Kurt [Y (s) |w (s) ] = 3σ4e3ν+3σ4
u
[
β′

x βx
]2+6σ2σ2

u
[
β′

x βx
]
eν+6

(
σ2eν+σ2

u β′
x βx

)
τ2+3τ4

[
σ2 exp{ν}+σ2

u β′
x βx +τ2

]2 (6)

(see 12). This term is always positive and tends to 3eν as σu tends to 0. Although we
cannot say anything about whether (6) is an increasing or decreasing function of ν, we
can say, with certainty, that large values of kurtosis will be accrued for enough large
values of ν, where the distribution of Y (s) given w (s) is peaked.

• Marginal Moments: Evaluating the effect of log-normal scale mixing on the tail
behavior of the finite-dimensional distributions can be achieved through the marginal
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central moments. In the absence of a nugget effect,

E
{
[Y (s) − E (Y (s))]n

∣∣w (s)
} =

n∑

i=2m
m=0,...,n/2

(
n
i

)

f (n, i) g (n, i) , (7)

for even n, and E
{
[Y (s) − E (Y (s))]n

∣∣w (s)
} = 0 for odd n, where cn = ∏n/2

m=1[n −
2m + 1], f (n, i) = σ n−i cn−i exp {[(n − i) ν/4][1 + (n − i)/2]} and g (n, i) =[
σ 2

u β ′
xβx/2

]i/2 [
i !/( i

2

)!] (see 13). Equation (6) immediately results from (7) for τ = 0.

2.2. THE PREDICTION-ORIENTED SELECTION SCHEME

Here, we only modify the BSS procedure such that it can be used in our non-Gaussian
ME model. With a slight abuse of notations, let D denote a realization of model (2) at nd

distinct locations s = {
s1, . . . , snd

}
and sp = {

s p
1 , . . . , s p

n p

}
indicate n p distinct locations

of interest for prediction. Suppose that D has been partitioned into two distinct subsets:
Dπ = {y (si ) ; si ∈ sπ }, which includes all observations that are near the prediction sites sp,
i.e., sπ = {

sπ
1 , . . . , sπ

nπ

}
(see “Appendix C” for selection procedure), and D−π = D\Dπ ,

where \ is the relative complement symbol. Moreover, we consider Yπ = Y (sπ ) as a
vector of observations contained in Dπ and likewise Y

(
s−π

)
as a vector of observations

contained in D−π . We aim to use Y
(
s−π

)
as explanatory variable in a regression model for

the response, but since the variables in Y
(
s−π

)
can be highly correlated, we select a subset

of Y
(
s−π

)
, say Yδ = Y

(
sδ
)
, of size nδ as the explanatory variables for Yπ (see “Appendix

C” for selection procedure). Therefore, the conditional distribution Yπ | yδ,λ,W, η can be
easily obtained through the properties of the multivariate normal distribution as

Yπ
∣∣ yδ,λ,W, η ∼ Nnπ

(
μπ + πδ

−1
δ

[
yδ − μδ

]
,π − πδ

−1
δ δπ

)
, (8)

where μπ and π are, respectively, the mean and the variance of Yπ | λ,W, η; like-
wise, μδ and δ are, respectively, the mean and the variance of Yδ |λ,W, η and πδ

= Cov [(Yπ | λ,W, η) ,
(
Yδ |λ,W, η

)]
. Clearly, π , δ and πδ are all readily obtained

as appropriate sub-matrices of in (3). Then, by marginalizing out the nuisance parameters
λ,W and Yδ , the likelihood function can be written as:

L (D; η) = ∫
�nδ

∫
�n

∫
�n+ P

(
Yπ

∣∣yδ,λ,W, η
)

P
(
Yδ |λ,W, η

)
P (λ,W |η ) dλdWdYδ.

(9)

Due to high-dimensional intractable integrals which have no analytic closed form, the com-
putation of likelihood function is actually challenging. We present below a Bayesian frame-
work which relies on the prediction-oriented selection scheme to facilitate calculations.
Further, the Bayesian paradigm allows for taking into account uncertainties in the parame-
ters.



Non- Gaussian Covariate- Dependent Spatial Measurement Error... 57

3. PRIOR DESIGNATION AND BAYESIAN PREDICTION

In this section, we outline our inferential approach based on the Bayesian paradigm.
A convenient strategy of avoiding improper posterior distribution in the absence of prior
information is to utilize proper (but diffuse) priors. As a feasible but not necessary opti-
mal scheme, the prior distributions are supposed to be mutually independent a priori. The
hyper-parameters of the adopted priors including c1, c2, . . . , c8 are chosen to reflect vague
prior information. Customarily, it is assumed that the coefficients β have been drawn, inde-
pendently, from the common prior distribution Nk+1 (0k+1, c1 Ik+1) with some large fixed
variance c1 which results in vague prior information. Hence, we are able to compare models
with different trends if we allow c1 to vary. Ideally, it is often expected that the prior of
the (inverted) variance parameter would be invariant to rescaling the observations. Conse-
quently, the inverse-gamma family of non-informative prior distributions with small values
for its hyper-parameters can be chosen for σ−2. However, Palacios and Steel (2006) sug-
gested the generalized inverse-Gaussian (GIG) prior which is a flexible family of distribu-
tions that includes both the gamma and the inverse-gamma distributions as special cases.
We consider the GIG prior class for σ 2 as

fV (v; γ, c2, c3) =
(

c3
c2

)γ

2κγ (c2c3)
vγ−1e

− 1
2

{
c22
v +c23v

}

, c2, c3 ∈ �+, γ ∈ �,

where κγ is the modified Bessel function of the third kind and order γ . Regarding the
flexibility of the proposed class for the case γ = 0, we assume σ 2 ∼ G I G (0, c2, c3),
τ 2 ∼ G I G (0, c4, c5) and ν ∼ G I G (0, c6, c7). Since the range parameter θ1 has an
inverse relationship with the Euclidean distanceH, we consider θ1 ∼ Exp

[
c8/med (H∗)

]
,

where med (H∗) is the median value of all distances in the space. Ultimately, we assume
a uniform prior for the smoothness parameter as θ2 ∼ U (0, 2). By combining the likeli-
hood function (9) with the joint prior density, the posterior distribution can be obtained.
However, the existence of multiple integrals makes it analytically intractable. Conse-
quently, we first augment the observed data with latent variables λ, W and ε so that both
the augmented posterior π

(
η
∣∣yπ , yδ,λ,W, ε

)
and the conditional predictive distribution

P
(
Y (sp)

∣∣yπ , yδ,λ,W, ε
)
are available. Details of the posterior sampling framework are

given in “Appendix D.” The posterior predictive distribution ofY (sp) can be easily obtained
as

P
(
Y
(
sp) ∣∣yπ , D−π , λ,W, ε

)= ∑

yδ⊂D−π

∫
P
(
Y
(
sp)

∣∣∣yπ , λ,W, ε, yδ, η
)
π
(
η

∣∣∣yπ ,λ,W, ε, yδ
)

P
(
yδ
)

dη.

Thus, ̂Y (sp) is the sample mean of draws Y(i) (sp) from an n p-variate normal distribu-

tion with mean μ
(i)
sp + p,πδi 

−1
πδi

[
Yπδ

i − μ
(i)
πδ

]
and variance p − p,πδi 

−1
πδi

′
p,πδi ,

whereμ
(i)
sp denotes the mean ofY (sp) based on the sample

{
λ(i),W(i), ε(i), yδ(i)

, η(i)
}m

i=1
,

Yπδ
i =

(
Yπ ′

,Yδ(i)′)′
is the joint vector formed by Yπ and Yδ(i)

, p,πδi is the covari-

ance matrix of Y (sp) and Yπδ
i , μ

(i)
πδ and πδi are the mean and the covariance matrix



58 V. Tadayon, A. Rasekh

of Yπδ
i , respectively. Obviously, the prediction variance is given as ̂Var (Y (s p)| ·) =

m−1
m∑

i=1

(
y(i) (s p) − ̂y (s p)

)2
.

4. SIMULATION STUDY

We now evaluate the performance of BSS in model (2) using a simulation study along
with comparison to the standard Bayesian method. In this study, our goal is to assess the
performance of the proposed model compared to its competitors: naive Gaussian, Gaussian
ME and naive GLG. To that end, we have the following settings: We simulated R = 35
independent datasets from the Gaussian model (resulted from letting λ (si ) = 1 in Eq. (2)),
with k = 2 and the following presumed parameters: β0 = 3, β1 = −2, β2 = 1.5, σ 2 = 1,
σ 2

u = 0.4, θ1 = 10, θ2 = 1 and τ 2 = 0.3. Each dataset contains 7 × 104 observations
with locations drawn uniformly from the square region [0, 500]× [0, 500]. Thus, e.g., for a
small and a large distance, sayHs = 1 andHl = 700, respectively, we have C (Hs) ≈ 0.9
and C (Hl) ≈ 0.01. For simplicity, in each R simulation, we considered the simple linear
regression β0 + β1x (r)

1 + β2x (r)
2 , r = 1, . . . ,R. In fact, we drew two distinct samples

each of size 7 × 104 from the normal distributions with means 3 and 5, and variances 3
and 3.5, and saved these values into two distinct vectors named x1 and x2, respectively.
Henceforth, we look at these data as fixed (not random) and true (unobserved) values of
two covariates x1 and x2. In other words, we suppose that x (r)

i for i = 1, 2 is not directly

observed, but we observed instead w
(r)
i = x (r)

i + u(r)
i , where u(r)

i ∼ N
(
0, σ 2

u = 0.4
)
. It is

worth remembering that we were interested in investigating the potential of the proposed
model for accommodating outlier regions. To that end, after obtaining the responses in each
R simulations, a region in the central part of the under study space (with about 3500 sites)
is selected and contaminated to give rise to a heavy-tailed data such that favorable outlier
regions are achieved. To fit our model to the data, we use the publicly available statistical
software R.

The hyper-parameters c1, c2, . . . , c8 are as follows: As a benchmark value for c1, we
choose 104. For posterior and predictive inference, this is not a critical prior, and any suit-
ably large value of c1 will lead to very similar results. The hyper-parameters c2, c3, . . . , c7
are chosen smaller than unity to reflect prior means and standard deviations around 1. A
rough idea of c8 could be around the mean value of all distances in each dataset. Since
we would expect inference to be the most challenging for the hyper-parameter c0, different
values of c0 are considered and the results will be compared. For each dataset, BSS was run
until convergence conditions of the MCMC were satisfied through the Gelman–Rubin con-
vergence diagnostics (Gelman and Rubin 1992). Moreover, the performance of the MCMC
algorithm was assessed by the examination of trace plots, burn-in, thinning and a measure
of effective sample size (ESS), some of which are shown in Fig. 2. Results are based on
104 iterations after the burn-in period, in which a thinning factor 10 was taken to reduce
the autocorrelation in the generated chains. In each dataset, two subsets of sizes 50 and 150
were randomly selected from the contaminated and uncontaminated sites, respectively, and
used for prediction, i.e., n p = 200, and the remaining samples (i.e., nd = 69, 800) were
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used for model training. To assess the sensitivity of BSS to the choice of nπ , BSS was first
applied to this example with c0 = 5 and three different choices of nπ = 500, 650 and 800.
To compare the four mentioned models, we computed the square root of the mean squared
prediction errors (RPE) and the deviance information criterion (DIC) which is a popular
criterion for model assessment in the literature. Moreover, to evaluate the performance of
BSS in each procedure, we also carried out a Bayesian inference for the full data (BFD).

Owing to extremely high computation times, we divided our R simulations into 140
different jobs (appropriately) and submitted them separately to the facilities of the Western
Canada Research Grid (https://www.westgrid.ca/), to speed up the process. The results
(Table 1) indicate that BSS presents more accurate prediction as nπ increases and further,
the GLG ME model presents a better fit and prediction than the others. Furthermore, for
a fixed value of c0, as nπ increases, nδ tends to decrease, whereas the contribution of the
prediction-oriented selection scheme (Prop) increases. This table also reports the square
root of the mean squared fitting errors for the first-tier neighboring observations (RFEt1 , see
“Appendix C”) as a possible tool for ascertaining the size of nπ , which evidently provides
the same ordering of model accuracies as that for RPE. Obviously, BSS acts as good as
BFD, however, in shorter time periods. The CPU times, in hours, were recorded for a single
run of the algorithm on an iMac with Intel Core i7 2.93GHz processor and 8GB RAM. It
is worth pointing out that for this example, even with only less than 2% (on average) of
samples being used at each iteration, BSS still performs reasonably well in both fitting and
prediction. Overall, the smallest DIC (best fit) was for the GLG ME model with nπ = 800;
nonetheless, one may prefer to choose nπ = 650 based on this model, since, firstly, it takes
less time and secondly (not shown here), large values of nπ lead to decrease in the covariates’
contribution to the regression model (i.e., the modulus of the regression coefficients tends
to decrease). A suggested strategy will be discussed in Conclusion section. However, these
concerns are ignorable in our example because the prediction sites are randomly selected
from the full dataset and the number of covariates included in each model is relatively
small.

With the aim of evaluating the sensitivity of BSS to the choice of c0, we again carried out
the inference based on the GLG ME model, but this time we fixed nπ = 650 and instead
considered different values for c0 as c0 = 1, 3, 5, 7 and 9. Table 2 summarizes the results,
with the results for c0 = 5 taken from Table 1. This table shows that nδ tends to increase
while c0 increases, and again the contribution of covariates to the regression model tends
to decrease. Apparently, the results suggest relatively small values for c0, which will lead
to a parsimonious regression model. Thus, for this example if we let nπ = 650, BSS with
c0 = 3 presents better results. However, if we can afford relatively more computations, BSS
with nπ = 800 and c0 = 5 is a better choice (based on the results of BSS with nπ = 800
and three different values c0 = 2, 3 and 4, which are not shown here).

In a nutshell, within the limit of our computational resources, a reasonably large value
of nπ is actually recommended; however, when one goes for prediction, an overly large
value of nπ is not essential as the prediction accuracy depends mainly on the neighbors of
the prediction site. In practice, the value of nπ can be determined according to the value of
RFEt1 . Briefly, BSS suggests a trade-off between c0 and nπ .

https://www.westgrid.ca/
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Table 1. Models comparison based on two different procedures: BSS and BFD.

Naive models

Gaussian GLG

BSS: c0 = 5 and nπ = 500, 650, 800 BFD BSS: c0 = 5 and nπ = 500, 650, 800 BFD

500 650 800 500 650 800

nδ 380.4 (0.62) 369.0 (0.59) 345.8 (0.60) – 371.6 (0.35) 364.3 (0.35) 357.5 (0.32) –
Prop 1.26% 1.45% 1.64% 100% 1.24% 1.45% 1.65% 100%
RPE 8.23 (3.80) 8.11 (3.81) 7.61 (3.45) 7.19 (3.03) 6.16 (2.21) 6.03 (2.23) 5.85 (2.17) 4.93 (1.24)
RFEt1 8.44 (3.72) 8.08 (3.72) 8.12 (3.69) – 6.22 (2.30) 6.05 (2.25) 5.83 (2.25) –
DIC 784.47 740.68 735.24 714.46 611.52 580.28 562.37 515.93
CPU 13.4 18.6 21.0 96.8 18.4 24.7 31.0 211.3

Measurement error models

Gaussian GLG

BSS: c0 = 5 and nπ = 500, 650, 800 BFD BSS: c0 = 5 and nπ = 500, 650, 800 BFD

500 650 800 500 650 800

nδ 383.9 (0.51) 367.7 (0.53) 353.1 (0.49) – 410.1 (0.3) 383.6 (0.29) 372.0 (0.3) –
Prop 1.26% 1.45% 1.65% 100% 1.30% 1.48% 1.67% 100%
RPE 7.01 (2.94) 6.90 (2.67) 6.41 (2.31) 5.43 (1.77) 0.45 (0.02) 0.37 (0.01) 0.28 (0.01) 0.19 (0.001)
RFEt1 6.98 (2.88) 6.81 (2.75) 6.62 (2.29) - 0.49 (0.02) 0.41 (0.02) 0.33 (0.01) –
DIC 656.65 654.18 639.87 615.01 410.21 392.05 387.01 355.13
CPU 17.7 20.4 23.1 135.8 18.9 27.1 32.5 242.8

The numbers in the parentheses denote the standard deviations. RPE: the square root of themean squared prediction
errors; RFEt1 : the square root of the mean squared fitting errors for the first-tier neighbors; nδ : the average value
of nδ obtained in simulations; Prop; which stands for proportion, calculated in

[
(nπ + nδ) /nd

] × 100%; DIC:
deviance information criterion; and finally, CPU: the CPU times, in hours, for a single run of the algorithm

Table 2. Sensitivity analysis of BSS (based on the GLG ME model) to the different choices of c0. Refer Table 1
for the notation.

BSS: nπ = 650 and c0 = 1, 3, 5, 7 and 9

c0 = 1 c0 = 3 c0 = 5 c0 = 7 c0 = 9

nδ 331.2 (0.30) 351.5 (0.29) 383.6 (0.29) 401.2 (0.32) 425.8 (0.33)
Prop 1.40% 1.43% 1.48% 1.50% 1.54%
β̂0 3.033 (0.04) 3.023 (0.04) 3.020 (0.03) 2.982 (0.03) 2.971 (0.04)
β̂1 −2.030 (0.03) −1.974 (0.02) −1.967 (0.02) −1.960 (0.02) −1.955 (0.03)
β̂2 1.525 (0.03) 1.511 (0.02) 1.483 (0.03) 1.477 (0.03) 1.458 (0.03)
RPE 0.384 (0.01) 0.369 (0.01) 0.371 (0.01) 0.396 (0.02) 0.411 (0.02)
DIC 405.71 388.45 (0.3) 392.05 424.50 439.17

Finally, since the inference may be challenging in identifying the model’s variance com-
ponents (i.e., σ 2, τ 2, ν, σ 2

u , θ1 and θ2), here, we discuss to what extent information about
these parameters can be recovered from data. To assess identifiability of each of these
parameters, say σ 2, three datasets (of size 104) were generated from the proposed model
with different values of σ 2 (and fixed values for the others, as described above and with
ν = 1.5). Then, the Bayesian estimations were obtained (Table 3). The same applies for
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Table 3. Identifiability of the model’s variance components.

σ 2 τ2 ν σ 2
u θ1 θ2

True Estimated True Estimated True Estimated True Estimated True Estimated True Estimated

1 1.13 0.3 0.24 1.5 1.41 0.4 0.43 10 10.22 1 0.89
1.25 1.19 0.65 0.53 0.9 1.03 0.2 0.38 8.5 8.63 1.3 1.18
0.85 0.97 0.45 0.24 0.7 0.66 0.5 0.67 12 11.86 0.9 1.11

inference on the others. Table 3 indicates that the data allow for meaningful inference on
the model’s variance components.

5. APPLICATION: NITRATE IN DRINKINGWATER

In order to demonstrate the performance of the BSS scheme for real problems, we fit our
proposed models to the nitrate concentration data presented in Sect. 1.1. In the continuation
of the exploratory data analysis, we looked for the nearest and farthest standard Euclidean
distances. They were about 0.03 and 58, respectively, and also the median of these distances
was 18.14. Moreover, we use the H-scatter plot (panel (a) of Fig. (3)) as a tool for outlier
detection and to show the spatial variability and dependence in the data. An H-scatter plot
shows all possible pairs of data values whose locations are separated by a certain distance
H in a particular direction. When the spatial correlations are strong with closer distance of
the sampling sites or the data are highly homogenous, the monitoring sites tend to become a
straight line with the angle of 45◦. If the spatial correlation between two samples decreases
or the relationship between two variables weakens, the shape of the cloud of points will
spread out displaying a characteristic butterfly-wing shape. The points are located far from
the cross-line for small H and have a strong variability, can be supposed as outliers in the
dataset. Clearly, the spatial correlation tends to decrease with increasing point separation.
A geostatistical description of the response variability was revealed by the omnidirectional
experimental semi-variogram map as shown in panel (b) of Fig. 3. In this map, a class of
distance and a direction are aligned. This class can be converted into a grid cell representing
the vertex of the vector whose origin is at the center of the grid and whose norm equals
the distance between the two points and direction equals the direction along which the
two points. From this plot, the isotropic nature of the spatial dependence is clearly visible.
Finally, the empirical semi-variogram of the data is plotted in panel (c).

Now, a randomly selected subset of size 60 is left out of the analysis for predictive
performance assessment and the remaining samples used for model fitting. In addition,
we considered three different values of c0 = 2, 3 and 4, and three different values of
nπ = 200, 350 and 500. To make our results more interpretable, for each value of nπ ,
BSS was run 10 times independently, where the hyper-parameter values are chosen the
same as those in Sect. 4. Again, the convergence of the MCMC was verified through the
Gelman–Rubin convergence diagnostics and the results are based on the last 104 iterations
of each chain with the thinning factor 10. Knowledge of the ME variance was empirically
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Figure 3. Panel a: the H-scatter plot corresponding to the lag H for the nitrate concentration. Panel b: the
omnidirectional experimental semi-variogram of the data. Panel (c): the empirical semi-variogram from the simple
regression for the data.

determined for both explanatory variables in our study by the data center as σ 2
u ≈ 0.01. The

results are summarized in Table 4. A simple comparison of the calculated DICs reveals the
better performance of BSS with c0 = 3 and nπ = 500. Finally, Fig. 4 shows a map of the
predicted nitrate concentration under BFD (left panel) and also based on the BSS scheme
on GLG ME model with c0 = 3 and nπ = 500 (right panel).

6. CONCLUSION

In this paper, we have developed amodeling approach to account for covariateME in non-
Gaussian BSD. In particular, we focused on a GLG spatial model which is a more flexible
class of sampling models for modeling of geostatistical data with heavy tails. One impor-
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Table 4. BSS results for the nitrate concentration.

Naive Gaussian Naive GLG

BFD nπ nπ BFD

200 350 500 200 350 500

c0 = 2 RPE 6.23 (2.40) 6.19 (2.37) 6.23 (2.37) 1.81 (0.44) 1.78 (0.42) 1.76 (0.31)
DIC 275.4 270.7 274.5 180.5 176.1 173.3

c0 = 3 RPE 5.45 (2.33) 5.75 (2.37) 5.78 (2.33) 5.71 (2.32) 1.69 (0.35) 1.67 (0.33) 1.66 (0.33) 1.65 (0.217)
DIC 240.2 261.0 261.4 256.0 162.1 159.3 157.6 153.0
CPU 75.9 11.0 11.3 12.1 17.6 18.1 18.3 150.5

c0 = 4 RPE 6.34 (2.40) 6.28 (2.40) 6.15 (2.39) 1.84 (0.45) 1.72 (0.40) 1.78 (0.32)
DIC 292.2 280.1 265.8 183.5 170.6 174.7

Gaussian ME GLG ME

BFD nπ nπ BFD

200 350 500 200 350 500

c0 = 2 RPE 4.48 (1.70) 4.45 (1.70) 4.34 (1.67) 0.51 (0.03) 0.51 (0.03) 0.43 (0.02)
DIC 230.1 227.5 224.3 139.2 138.8 131.3

c0 = 3 RPE 3.21 (1.02) 3.50 (1.55) 3.49 (1.51) 3.46 (1.52) 0.45 (0.01) 0.42 (0.01) 0.38 (0.01) 0.27 (0.004)
DIC 197.2 209.5 207.4 206.6 132.1 130.9 125.6 117.1
CPU 98.3 12.1 12.8 13.4 17.7 18.5 19.6 193.4

c0 = 4 RPE 3.73 (1.57) 3.70 (1.58) 3.63 (1.51) 0.62 (0.04) 0.50 (0.03) 0.40 (0.01)
DIC 218.7 217.2 213.2 144.5 137.5 128.3

Refer Table 1 for the notation

Figure 4. Map of the predicted nitrate concentration based on BFD (left panel) and BSS on GLGMEmodel with
c0 = 3 and nπ = 500 (right panel).

tant aspect of our proposed framework is that the process variance is allowed to depend on
covariate ME variance, accounting for covariate uncertainty. Moreover, we equated heavy
tails with outliers/large values and explained that the large values may be due to the large
variance. Although this could be a property of a non-stationary Gaussian process, and not
necessarily indicate non-Gaussian distribution, the exploratory data analysis of the stud-
ied real data implied that the response is stationary. In continuing, we have developed a
prediction-oriented BSS approach to overcoming the large matrix inverse problem which
is an obstacle encountered by BSD. The analysis of our artificial dataset showed that by
choosing appropriate values for nπ and c0, we can expect both parameter estimations and
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predictions based on the BSS approach are nearly as good as those produced by BFD, how-
ever, with a small subset of the data. It should be noted that, if the response variables are
not uniformly selected from the set of observations and the number of explanatory variables
included in the regression is too large (none of them satisfied in our study), the resulting
parameter estimates from BSS may be biased. To address this issue, Park and Liang (2015)
proposed an ensemble BSS approach, which works in a style of bootstrap sampling.

Obviously, the conclusions and the final suggestion in our case study do not constitute
the general answer to the question about the best choice of computational methods. In other
words, owing to the introduction of many latent variables with strongly dependent compo-
nents in the model, the described MCMC method may converge slowly and thus fails to
offer valid results. A potential strategy would be to use an inverse Bayes’ formula for pro-
ducing approximately independent samples from the posterior density of the latent variables
which reduces the correlation in the Gibbs sampler and accelerates the convergence. The
variational Bayes method is one of the other applicable strategies. Although this method
requires more complex theoretical calculations, it could increase the speed of calculations.
One of the additional assumptions required by our approach is that ε (·) and λ (·) have the
same correlation structure, but one can choose different spatial correlation structures and
solve the identifiability issue. In addition, the focus of this work was on the functional ME.
Extending the proposedmodel to the structuralME is another interesting direction for future
work.
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APPENDIX

A SPATIAL DATA DECORRELATION

Let ϒ = Cθ (H) + δ2 In , and assume the parameters μ, θ and δ2 are known. Then,
ϒ−1/2Y ∼Nn

(
ϒ−1/2μ, In

)
. This decorrelated vector can now be used for assessing normality.

However, in practice, as the parameters are unknown, they are replaced by some appropri-
ate estimates. The details are as follows: (I) Estimate μ using ordinary least squares; (II)
estimate the covariance parameters θ and δ2 based on the variogram of Y − Ŷ; (III) cal-
culate the Cholesky decomposition L L ′ of Cθ̂ (H) + δ̂2 In , and (IV) decorrelate the data as
Y∗ = L−1/2 [Y − μ̂].
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B PROOFS

This section presents some detailed proofs of the results shown in Sect. 2.1. To prove
Eq. (4), let Yw (s) = Y (s) |w (s) and follow the definition and simple properties of the
covariance (and variance) as:

Cov
[
Yw (si ) , Yw

(
s j
)] = Cov

[
σ

ε(si )√
λ(si )

− u′ (si )βx+τρ (si ), σ
ε(s j )√
λ(s j )

− u′ (s j
)
βx+τρ

(
s j
)]

= Cov

⎡

⎣σ
ε (si )√
λ (si )

, σ
ε
(
s j
)

√
λ
(
s j
)

⎤

⎦

= σ 2E
[
ε (si ) ε

(
s j
)]

E

[
λ(si )

− 1
2 λ
(
s j
)− 1

2

]

= σ 2C (H) E

[
exp

{
−1

2
ln λ (si ) − 1

2
ln λ

(
s j
)}]

= σ 2C (H) exp
{ν

4
[3 + C (H)]

}
, (10)

Var [Yw (si )] = Var

[
σ

ε (si )√
λ (si )

− u′ (si )βx+τρ (si )

]

= Var

[
σ

ε (si )√
λ (si )

]
+ Var

[
u′(si )βx

]+Var [τρ (si )]

= σ 2 exp {ν} + σ 2
u β ′

xβx+τ 2. (11)

Let μs = β0 + w′ (s)βx . The proof of Eq. (6) requires calculating the following terms:

Kurt [Yw (s)] = E
[
(Yw (s) − E [Yw (s)])4

]

{Var [Yw (s)]}2

= E
[
Yw(s)4

]− 4μs E
[
Yw(s)3

]+ 6μ2
s E
[
Yw(s)2

]− 3μ4
s

[
σ 2 exp {ν} + σ 2

u β ′
xβx+τ 2

]2 . (12)

In what follows, we compute each of the expected values in the above equation separately
(details not presented here).

E
[
Yw(s)2

]
= E

{[
μs + σ

ε (s)√
λ (s)

− u′ (s)βx+τρ (s)

]2}

= E
{
μ2

s + (σε(s))2

λ(s) + (
u′ (s) βx

)2 + 2μs
σε(s)√

λ(s)
−2μsu

′ (s)βx − 2 σε(s)√
λ(s)

u′ (s) βx

+(τρ (s))2 + 2τμsρ (s) + 2τσ
ε (s)√
λ (s)

ρ (s) − 2τu′ (s) βxρ (s)

}

= μ2
s + σ 2eν + σ 2

u β ′
xβx+τ 2.

E
[
Yw(s)3

]
= E

{[
μs + σ

ε (s)√
λ (s)

− u′ (s) βx + τρ (s)

]3}

= μ3
s + 3σ 2μseν + 3σ 2

u μsβ
′
xβx+3τ 2μs .
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E
[
Yw(s)4

]
= E

{[
μs + σ

ε (s)√
λ (s)

− u′ (s) βx + τρ (s)

]4}

= μ4
s + 3σ 4e3ν + 3σ 4

u

(
β ′

xβx
)2 + 6σ 2μ2

s eν + 6σ 2
u μ2

s β
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xβx

+6σ 2σ 2
u eνβ ′

xβx + 3τ 4 + 6
(
μ2

s + σ 2eν + σ 2
u β ′

xβx

)
τ 2.

Thus, substituting these expectations in (12), the marginal kurtosis is reduced to (6). Ulti-
mately, we focus on Eq. (7).

E
{
[Y (s) − E (Y (s))]n

∣∣w (s)
} = E

[(
Y (s) − μs

)n] = E
[(

σ
ε(s)√
λ(s)

− u′ (s) βx

)n]

=
n∑

i=0

(
n
i

)

E

[(
σ

ε(s)√
λ(s)

)n−i
]

E
[(−u′ (s) βx

)i]
. (13)

Palacios and Steel (2006) showed that in the absence of a nugget effect,

E

[(
σ

ε (s)√
λ (s)

)n]
=
{
0 for n odd,
σ ncn exp

{ nν
4

(
1 + n

2

)}
for neven,

(14)

and on the other hand,

E
[(−u′ (s)βx

)n] =
⎧
⎨

⎩

0 for n odd,
(
σ 2

u β ′
x βx

) n
2

2
n
2

n!
( n
2 )!

for n even;
(15)

hence, Eq. (7) can be easily obtained by substituting (14) and (15) into (13).

C PREDICTION-ORIENTED SITE SELECTION

Determining sπ : We choose the nearest sites to the prediction sites sp in q-tier, where q
determines nπ as nπ = qn p and can be derived through an examination of the fitting to
Y (sπ ) or its subset (e.g., one can choose the value of nπ such that the mean squared fitting
errors for the first-tier neighboring sites are minimized among a few values of nπ under
consideration). The selection scheme entails the following steps:

1. For i = 1, . . . , n p, do the following sub-steps to identify the first tier of the
nearest sites to sp:

(a) Draw a site s p
i from the set sp at random and without replacement.

(b) Identify the nearest neighbor of s p
i by setting sπ

1,i = arg min
s∈s\

{
sπ
1,1,...,s

π
1,i−1

}

∥∥s − s p
i

∥∥

and finally, set sπ1 =
{

sπ
1,1, . . . , sπ

1,n p

}
.

2. Set s ← s\sπ1 and repeat the sub-steps in step 1 to identify the second tier of the
nearest sites to sp. Denote the second-tier neighboring set by sπ2 .
...
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q. Set s ← s\sπq−1 and repeat the sub-steps in step 1 to identify the qth tier of the nearest
sites to sp. Denote the qth tier neighboring set by sπq .

This procedure provides sπ = ⋃q
r=1 s

π
r as the set of response variables.

Determining sδ: We aim to draw nδ sites from the set s\sπ . To minimize the loss of data
information caused by site selection, sδ should be selected uniformly from the observation
region of {Y (si )} and thus, following the theory of Poisson process, the number of selected
sites can be modeled as a Poisson random variable. Therefore, to enhance our selection
pattern, we impose a truncated Poisson prior distribution as π (nδ) ∝ (c0nδ /nδ!) exp {−c0},
nδ = 0, 1, . . . , nd −nπ , where c0 is a hyper-parameterwhich have to be specified by the user.
Alternatively, one can specify a prior distribution that incorporates the spatial information
of Y

(
s−π

)
, but this will complicate the simulation of the posterior distribution.

D BAYESIAN POSTERIOR SAMPLING

In this section, we summarize the Gibbs sampling iterates for drawing samples from the
posterior P

(
λ,W, ε, η,Yδ |yπ

)
. So, we need to specify all full conditional distributions

(which are presented in Sect. D.1). However, the difficulty associated with drawing samples
from the full conditional distribution of Yδ is that a direct application of MCMC fails as it
requires the state space of the Markov chain to be of a fixed dimension, but the dimension
of Yδ may actually vary. To overcome this issue, we can use a reversible-jump MCMC
(RJMCMC) algorithm (Green 1995), which allows the dimension of the state space of the
Markov chain to vary. The underlying idea is that RJMCMC introduces three types ofmoves:
exchange, birth and death. Exchange means that the chain remains in the space with the
same dimension, but moves into a new state. Birth and death are the moves that change the
dimension of the state space. Intuitively, a birth step augments the state space by adding new
states, whereas a death step reduces the dimension of the state space. At each iteration, the
type of move, whether an exchange, birth, or death, is randomly chosen with the respective
proposal probabilities denoted by qe, qb and qd , and one accepts the new state using a
Metropolis–Hastings rule.

Let
{
λ(t),W(t), ε(t), η(t), yδ(t)

}
denote the sample generated at the iteration t . Obviously,

min (nδ) = 0 and max (nδ) = nd − nπ . To update yδ(t)
, we use a RJMCMC move. For

nδ = 0, we consider qe = 1/3 and qb = 2/3; for nδ = nd − nπ , we set qe = 1/3 and
qd = 2/3; and finally for nδ = 1, . . . , nd − nπ − 1, we suppose qb = qd = qe = 1/3.
Given λ(t),W(t), ε(t), η(t), yδ(t)

, the next iteration of the Gibbs sampler consists of the
following steps: (I) Generate λ(t+1),W(t+1), ε(t+1) and η(t+1) from their corresponding
full conditional distributions. (II) Draw yδ(t+1)

:

• (Birth) Uniformly randomly choose a point from D−π\yδ(t)
, say y∗, and add it to the

current site set yδ(t)
(i.e., yδ(t+1) = yδ(t) ∪ y∗) with probability

min

⎧
⎨

⎩
1,

P
(
λ(t+1),W(t+1), ε(t+1), η(t+1) |yπ , y∗ ) P (y∗)

P
(
λ(t),W(t), ε(t), η(t)

∣∣∣yπ , yδ(t)
)

P
(
yδ(t)

)
nd − nπ − nδ

nδ + 1

qd

qb

⎫
⎬

⎭
.
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• (Death) Uniformly randomly select y∗ out of yδ(t)
and remove it from the current site

set yδ(t)
(i.e., yδ(t+1) = yδ(t)\y∗) with probability

min

⎧
⎨

⎩
1,

P
(
λ(t+1),W(t+1), ε(t+1), η(t+1) |yπ , y∗ ) P (y∗)

P
(
λ(t),W(t), ε(t), η(t)

∣∣∣yπ , yδ(t)
)

P
(
yδ(t)

)
nδ

nd − nπ − nδ + 1

qb

qd

⎫
⎬

⎭
.

• (Exchange) Uniformly randomly choose y∗ from D−π\yδ(t)
and also y∗∗ from yδ(t)

.
Then, exchange y∗ and y∗∗ (i.e., yδ(t+1) = yδ(t) ∪ {y∗} \ {y∗∗}) with probability

min

⎧
⎨

⎩
1,

P
(
λ(t+1),W(t+1), ε(t+1), η(t+1) |yπ , y∗ )

P
(
λ(t),W(t), ε(t), η(t)

∣∣∣yπ , yδ(t)
)

⎫
⎬

⎭
.

D.1 THE FULL CONDITIONAL DISTRIBUTIONS

Below, we describe the full conditional distributions of all unobservable quantities
through a Gibbs sampler framework to draw samples from P

(
λ,W, ε, η

∣∣yπ , yδ
)
. In what

follows, we use the notation g−ϑ to show the vector g without ϑ . Moreover, we partition the

latent variables into two parts as follows:λ =
(
λπ ′,λδ ′)′

, ε =
(
επ ′, εδ ′)′

,W = (
Wπ ,Wδ

)

and � = (
�π,�δ

)
, respective to the location sets sπ and sδ . Regardless of the details, the

full conditional distributions are as follows:

• Latent variable ψ : For each of the components of ψπ (i.e., ψi ), we can write

P
(
ψi
∣∣yπ , yδ,ψπ

−i ,ψ
δ,W, ε, η

) ∝ P
(
Yπ

∣∣yδ,ψ,W, ε, η
)

P
(
ψi
∣∣yδ,ψπ

−i ,ψ
δ,W, ε, η

)
,

(16)

where the first term in the right-hand side of (16), i.e., the likelihood contribution, is propor-
tional to a product of normal density functions truncated on [0,∞). To construct a suitable
candidate generator, we approximate this distribution by log-normal distributions on λi s.
By matching the first two moments of λi , we obtain an approximating distribution of the
likelihood contribution to ψi as

N
(

ai , b2i

)
, ai = ln

σ 2ε2i

[
1 + hi� (hi ) + h2

i

]

[
σ 2

u β ′
xβx+τ 2

]
[� (hi ) + hi ]4

, b2i = 4 ln
1 + hi� (hi ) + h2

i

[� (hi ) + hi ]2
,

(17)

such that hi = σ t1i sign (εi )/
√

σ 2
u β ′

xβx+τ 2, t1 = σ−1
(
yπ − β01nπ − Wπβx

)
, sign (·)

denotes the sign function and � (·) = φ (·)/� (·) where φ and � denote the standard normal
density and cumulative distribution function, respectively. On the other hand, the second
term in the right-hand side of (16) can be easily obtained as

ψi

∣∣∣yδ, ψπ−i , ψ
δ,W, ε, η ∼ N

(
− ν

2
+ 
(i)′
(−i,−i)−1 [

ψ−i − ν

2
1n−1

]
, ν − 
(i)′
(−i,−i)−1


(i)
)

,

(18)
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where 
(i)′ shows the i th row of 
 and 
(−i,−i) is 
 in which the i th row and the i th
column have been omitted. Combining (18) and (17), we propose a candidate value for ψi ,

say ψcand
i from ψi

∣∣yπ , yδ,ψπ
−i ,ψ

δ,W, ε, η ∼ N

(
b2i a∗

i +b∗2
i ai

b2i +b∗2
i

,
b2i b∗2

i

b2i +b∗2
i

)
where a∗

i and b∗2
i

are the mean and the variance of the normal distribution in (18), respectively.

• Latent variable W: Suppose that t2 =
(
yπ − β01nπ − σεπ/

√
λπ
)
. Then,

Wπβx

∣∣yπ , yδ,λ,Wδ, ε, η ∼ Nnπ

([
σ 2

u β ′
xβx+τ 2

]−1 (t2 − Xπβx
)
,
[
σ 2

u β ′
xβx+τ 2

]−1
Inπ

)
.

(19)

At iteration t , the coefficient vectorβ is knownand so a sample fromWπ
∣∣yπ , yδ,λ,Wδ, ε, η

can be easily obtained as a solution of the under-determined systems of linear equations
Wπβx = C, where C is a sample of (19). If the under-determined linear system has no
solution, C is substituted with another sample of (19).

• Latent variable ε: Let t∗1i
= t1i

√
λπ

i for i = 1, 2, . . . , nπ , gε = 
πδ

−1
δ εδ and

Gε = 
π − 
πδ

−1
δ 
δπ . Thus, for A1= [σ 2/

(
σ 2

u β ′
xβx+τ 2

)]�π−1 + G−1
ε ,

επ
∣∣yπ , yδ,λ,W, εδ, η ∼ Nnπ

(
A−1
1

[
�π−1

t∗1 + G−1
ε gε

]
, A−1

1

)
.

• The intercept: By setting t3 = yπ −Wπβx −σεπ/
√

λπ , the conditional distribution
of the intercept parameter is obtained as

N

([
nπ

σ 2
u β ′

xβx+τ 2
+ 1

c1

]−1 nπ∑

i=1

t3i /
(
σ 2

u β ′
xβx+τ 2

)
,

[
nπ

σ 2
u β ′

xβx+τ 2
+ 1

c1

]−1
)

.

In the six last items, the full conditional distribution of parameters βx , σ 2, τ 2, ν, θ1

and θ2 are of nonstandard forms, so a Metropolis–Hastings step or a sampling importance
resampling (SIR) algorithm can be used. Choosing the first approach to draw samples
from an unknown quantity, say ϑ , consists of accepting the produced value ϑ∗ from the
candidate generator q (ϑ∗) at the kth iteration with probability min {1, rk}, where rk =
f (ϑ∗ |data ) q

(
ϑ(k)

)
/ f
(
ϑ(k) |data

)
q (ϑ∗) and f (· |data ) is proportional to the posterior

distribution of ϑ . By choosing the SIR algorithm, we may generate (say m) approximate
samples from the posterior distribution of ϑ as follows:

• Draw samples
{
ϑ(i)

}m
i=1 from the proposal distribution q (ϑ),

• Calculate importance weights ωi = f
(
ϑ(i) |data

)
/q
(
ϑ(i)

)
,

• Normalize the importance weights as pi = ωi/
∑

i ωi ,

• Resample with replacement from
{
ϑ(i)

}L
i=1 with sample probabilities pi .

A conservative candidate distribution for applying the SIR algorithm is the pre-specified
prior on ϑ .
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• Parameter βx : It is easy to see that π
(
βx

∣∣∣yπ , yδ,λ,W, ε, η−βx

)
is proportional to

(
1

β ′
xβx

) nπ
2

exp

{
− 1

2c1
β ′

xβx

}
exp

{

− 1

2
(
σ 2

u β ′
xβx+τ 2

)
(
t2 − Wπβx

)′ (t2 − Wπβx
)
}

,

and the proposal distribution Nk
(
Wπ ′t2,

[
c1 + σ 2

u +τ 2
]

Ik
)
is of interest.

• Parameter σ 2: Similarly, for t4 = yπ−β01nπ −Wπβx ,π
(
σ 2
∣∣yπ , yδ,λ,W, ε, η−σ 2

)

is proportional to

(
σ 2)− nπ

2 −1
exp

{

−1

2

[
c22
σ 2 + c23σ

2

]}

exp

⎧
⎨

⎩
− 1

2
(
σ 2

u β ′
xβx+τ 2

)
nπ∑

i=1

(

t4i − σ
επ

i√
λπ

i

)2
⎫
⎬

⎭
,

and our suggested proposal distribution is G I G
(

nπ/2, c2,
√

c23 +∑nπ

i=1 επ
i /
√

λπ
i

)
.

• Parameter τ 2: π
(
τ 2
∣∣yπ , yδ,λ,W, ε, η−τ 2

)
is a proportion of

(
τ 2
)− nπ

2 −1
exp

{

−1

2

[
c24
τ 2

+ c25τ
2

]}

exp

{

− 1

2
(
σ 2

u β ′
xβx + τ 2

)
nπ∑

i=1

t25i

}

where t5 = yπ − β01nπ − Wπβx − σεπ/
√

λπ .

• Parameter ν: Consider gλ = − (ν/2) 1nπ + 
πδ

−1
δ

(
ln λδ + (ν/2) 1nd−nπ

)
and

Gλ = 
π − 
πδ

−1
δ 
δπ . Then, ν

∣∣yπ , yδ,λ,W, ε, η−ν is a proportion of

exp

{
− 1

2ν

(
ln λπ − gλ

)′G−1
λ

(
ln λπ − gλ

)} 1

ν
nπ
2 +1

exp

{

−1

2

[
c26
ν

+ c27ν

]}

and so a candidate distribution can be chosen as

G I G

(
nπ

2
,

[
c26 +

(
ln λπ − 
πδ


−1
δ ln λδ

)′
G−1

λ

(
ln λπ − 
πδ


−1
δ ln λδ

)] 1
2

, c7

)

.

• Parameter θ1: Similarly, π
(
θ1
∣∣yπ , yδ,λ,W, ε, η−θ1

)
is proportional to

|Gλ|− 1
2 |Gε|− 1

2 exp

{
−1

2

[
ν−1 (ln λπ − gλ

)′ G−1
λ

(
ln λπ − gλ

)

+(επ − gε

)′G−1
ε

(
επ − gε

)]− c8θ1
med (H)

}
.

A conservative candidate distribution is the pre-specified prior on θ1.
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• Parameter θ2: Finally, π
(
θ2
∣∣yπ , yδ,λ,W, ε, η−θ2

)
is a proportion of

|Gλ|− 1
2 |Gε|− 1

2 exp

{
−1

2

[
ν−1 (ln λπ − gλ

)′ G−1
λ

(
ln λπ − gλ

)+(επ − gε

)′G−1
ε

(
επ − gε

)]}
,

and again we choose the pre-specified prior on θ2 as the proposal distribution.
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