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Modeling complex collective animal movement presents distinct challenges. In partic-
ular, modeling the interactions between animals and the nonlinear behaviors associated
with these interactions, while accounting for uncertainty in data, model, and parameters,
requires a flexible modeling framework. To address these challenges, we propose a gen-
eral hierarchical framework for modeling collective movement behavior with multiple
stages. Each of these stages can be thought of as processes that are flexible enough to
model a variety of complex behaviors. For example, self-propelled particle (SPP)models
(e.g., Vicsek et al. in Phys Rev Lett 75:1226–1229, 1995) represent collective behav-
ior and are often applied in the physics and biology literature. To date, the study and
application of these models has almost exclusively focused on simulation studies, with
less attention given to rigorously quantifying the uncertainty. Here, we demonstrate our
general framework with a hierarchical version of the SPP model applied to collective
animal movement. This structure allows us to make inference on potential covariates
(e.g., habitat) that describe the behavior of agents and rigorously quantify uncertainty.
Further, this framework allows for the discrete time prediction of animal locations in the
presence of missing observations. Due to the computational challenges associated with
the proposed model, we develop an approximate Bayesian computation algorithm for
estimation. We illustrate the hierarchical SPP methodology with a simulation study and
by modeling the movement of guppies.

Supplementary materials accompanying this paper appear online.
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1. INTRODUCTION

Due to the rapid increase in available radio-tracking technology (Millspaugh et al. 2012),
researchers have been tasked increasingly with modeling complex animal behavior from
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large datasets. Although data availability has improved the breadth of questions that can
be addressed, modeling species interactions is complicated by the nonlinear nature of the
interactions, complexity of data structures, uncertainty in data, and interactions with envi-
ronmental covariates. Modeling animal movement in a formal statistical framework has
been studied extensively in the literature (e.g., for a recent overview see Hooten et al. 2017),
but fewer advancements have been made in modeling collective animal movements and
interactions using fine-scale data now offered by recent technology. Understanding of com-
plex species interactions, such as social hierarchies and predator–prey relationships, could
benefit from the development of a flexible modeling framework that evaluates collective
movement behavior.

Although modeling individual animal movement has a long history in the ecological and
statistics literature (e.g., see the overview inHooten et al. 2017), until more recently there has
been less focus on collective animal movement. Recent work in this area has considered a
wide range ofmodeling frameworks (e.g., Perna et al. 2014; Bonnell et al. 2016). In addition,
there is increasingly more focus on analyzing collective animal movement within a formal
statistical framework that can account for uncertainty data, process, and parameters (e.g.,
Langrock et al. 2014; Scharf et al. 2017; Dalziel et al. 2016; Russell et al. 2016). Yet, the
inherent nonlinear behavior present in collective movement processes is difficult to capture
with many traditional statistical models. Therefore, the challenges associated with modeling
collective animal movement requires researchers to employ complex models, and many of
the motivating mechanistic models can come from other subject matter disciplines. For
instance, collective animal movement is modeled with a spatial point process interaction
function in Russell et al. (2016) and with network modeling in Scharf et al. (2017).

Modeling the collective behavior of animals across many temporal and spatial scales
fits naturally within the broader class of dynamic spatio-temporal models (DSTMs) (e.g.,
Cressie and Wikle 2011). However, in the statistical literature these models have tended
to focus on global process behavior, rather than local decision-based behavior. Exceptions
include agent-based models (ABMs), which have shown promise as a DSTM for animal
movement (Hooten and Wikle 2010). ABMs take a “bottom-up” approach by modeling the
behavior of individual agents in terms of a set of relatively simple “rules.” As detailed in
Wolfram (1983), these simple rules can lead to complex behavior and thus lead to complex
collective behavior for the group of agents.

The highly cited self-propelled particle (SPP)model fromVicsek et al. (1995) is an exam-
ple of a widely applied ABM for modeling the collective behavior of objects, both inanimate
and animate. SPP models are popular due to their simplicity and demonstrated ability to
describe collective motion of objects. For example, SPP models have been used to simulate
the collective movement of animals that flock or school such as birds or fish (e.g., Yates
et al. 2010). Typically, SPP models are utilized as simulation models to investigate various
types of collective behavior (e.g., Yates et al. 2010; Hubbard et al. 2004; Mann 2011) as a
function of the few parameters that control behavior (namely, particles move in a direction
similar to their neighbors). Indeed, the appeal of these models is that they can capture quite
complex and nonlinear spatio-temporal behavior with relatively few parameters. However,
these models are rarely used in a rigorous statistical estimation and prediction framework
to model animal behavior.
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The methodology proposed here relies on a hierarchical model to characterize the uncer-
tainty in the agent (animal) observations (such as measurement error) as well as that asso-
ciated with the processes that describe an agent’s movement. In particular, latent agent
locations are updated at each discrete time period with separate speed and directional angle
sub-models (see Eqs. (3) and (4), respectively) that determine the agent’s velocity vector.
Discussed in detail in Hooten et al. (2017), the so-called velocity models provide a discrete
time approach for modeling movement dynamics. By decomposing an agent’s velocity
into separate processes, we can incorporate more flexible sub-models that capture com-
plex behavior at multiple stages. Placing the proposed methodology within a hierarchical
structure also allows us to model uncertainty at multiple levels, as well as environmental
covariates at various stages in the model (e.g., location, time, habitat features). Within this
framework, inference on the environmental covariates that determine an agent’s movement
can be conducted, and one can also predict the latent process for any discrete time in the
presence of missing observations. The parameters that control these processes can also be
thought of as processes (e.g., spatial, temporal) and further modeled with covariates or other
dependence models (e.g., Cressie and Wikle 2011). Although the specific implementation
considered here for illustration utilizes the SPP model, other interaction models (e.g., such
as the model used in Langrock et al. 2014) could easily be incorporated.

The proposed hierarchical model is implementedwithin a Bayesian estimation paradigm.
By using a Bayesian hierarchical model (BHM), we quantify uncertainty at each stage of the
model, and with a separate data model, we canmake predictions when data are missing. Due
to the unique computational challenges associated with the proposed modeling framework,
inference is carried out with approximate Bayesian computation (ABC) in conjunction with
Markov chainMonte Carlo (MCMC). ABC algorithms are often used for likelihoods that are
either intractable or difficult to compute (e.g., Beaumont et al. 2010;Marin et al. 2012), such
as the SPPmodel. In general, the literature on implementing ABCmethods with multi-stage
hierarchical models (i.e., more than two levels) is limited. Thus, we propose a hybrid ABC–
MCMC algorithm to implement the proposed hierarchical collective movement model.

2. HIERARCHICAL COLLECTIVE MOVEMENT MODEL

Webegin by introducing a general hierarchical framework formodeling collective animal
movement. We follow the commonly used hierarchical modeling paradigm of specifying
data, process, and parameter distributions as outlined in Berliner (1996).

Suppose we have discrete referenced time periods t = 0, . . . , T and denote the agents in
themodel by i = 1, . . . , N . For each time period, the observed locations ofmt of N possible
agents is defined as zt ≡ {z′

i,t }i∈{1,...,mt }, where zi,t ≡ (xi,t , yi,t )′, and xi,t and yi,t are the
coordinates (inR2) of the location of the i th agent at time t . Likewise, let the latent location
process be given by st ≡ (s′1,t , . . . , s′N ,t )

′, which denotes the latent locations of the agents at
time period t , where si,t ≡ (x̃i,t , ỹi,t )′, and x̃i,t and ỹi,t are the latent location coordinates (in
R
2) of the i th agent at time t . At each time period t , we then have the following data model:

zt = Ht st + εt , εt ∼ Gau(0,Rz,t ), (1)
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where Ht is an 2mt × 2N incidence matrix of zeros and ones used to account for missing
locations (e.g., see Chapter 7 of Cressie and Wikle 2011, for further details) and Rz,t is an
2mt×2mt error variance–covariancematrix for the 2mt -dimensional error process, εt . In the
example to follow, wemake a simplifying assumption thatRz,t ≡ σ 2

ε I, which assumes inde-
pendent and homogeneous measurement error. However, more complex data models that
account for dependence, change-of-support, dimension reduction, or nonlinear transforma-
tions could also be used here as is common in spatio-temporal statistics (e.g., see chapter 7 of
Cressie andWikle 2011, for other examples), or one can incorporate the uniquemeasurement
error structures associatedwith telemetry data (e.g., see the discussion inHooten et al. 2017).

Next, the process model for each agent at time t is defined generally as:

si,t = f (si,t−1 + ui,tδi,t ;� f ) + ηi,t , ηi,t
i id∼ [η], (2)

where ηi,t = (ηx,i,t , ηy,i,t )
′ and [η] is any valid probability density function (pdf). For

(2) and the process equations to follow, the notation i id implies that the noise terms are
independently and identically distributed in both space and time. The i id assumption for the
noise terms can easily be altered. Regarding the process model, ui,t is a scalar representing
speed, while δi,t = (δx,i,t , δy,i,t )

′ is a unit vector denoting the directional component of an
agent’s velocity. Thus, the term ui,tδi,t defines a vector corresponding to an agent’s velocity.
In addition, the parameter-dependent function f (·) is included for the sake of generality.
For instance, in the application to follow we use f (·) to enforce boundary conditions that
are modeled with specific parameters (i.e., � f ).

In this framework, the movement of an agent is largely driven by the processes used to
model the speed and directional angle of an agent. The directional component of an agent’s
velocity (i.e., the compass heading of the agent) is determined by the angle parameter
θi,t where (δx,i,t , δy,i,t )

′ = (cos(θi,t ), sin(θi,t ))′. Generally, we define the directional angle
model for agent i at time period t as:

θi,t = g(si,t−1;�δ) + γi,t , γi,t
i id∼ [γ ], (3)

where [γ ] is a pdf used to model the so-called angular noise,γi,t (e.g., Yates et al. 2010) of
the agent. Because an agent often has an imperfect ability to sense the location of nearby
agents (Yates et al. 2010), angular noise is often incorporated into the classic SPP model. In
this case, �δ could include parameters associated with terms for environmental covariates
and the interactions between agent locations. Moreover, for collective movement applica-
tions, it is likely that g(·) will be a nonlinear function. For example, in collective animal
behavior models it is common to include terms to model avoidance, alignment, and attrac-
tion behaviors among animals (e.g., Gautrais et al. 2008; Scharf et al. 2017). Although all of
these behaviors are not explicitly modeled in the application to follow, g(·) could account
for them (with each behavior having specific parameters modeled as processes). We adopt
the common practice in the SPP literature of modeling the angular noise of an agent with a
uniform distribution (e.g., Yates et al. 2010). Alternatively, the angular noise could also be
modeledwith a vonMisses distribution (i.e., circular Normal distribution) or with a wrapped
Gaussian distribution (e.g., Mann 2011).
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To complete the general hierarchical movement model framework, we specify the speed
model as follows:

ui,t = h(si,t−1;�u) + φi,t , φi,t
i id∼ [φ], (4)

where [φ] is a pdf that accounts for the speed variation in an agent’s movement. For many
applications, it is likely that environmental covariates could explain some of the variation in
an agent’s speed and thus, these would be included in h(·). Further, interaction models can
also be included in h(·). For example, Hubbard et al. (2004) used SPP interaction models
in both direction and speed through the use of a common parameter. While some collective
movement models in the literature specify the speed of an agent deterministically (e.g.,
Mann 2011), by modeling the speed probabilistically, the model has the potential to capture
more realistic behavior. To complete the specification of the model, we define all of the
parameters as � ≡ (� f ,�δ,�u)

′ and let [�] represent the prior distribution on these
parameters (where the notation [·] denotes a pdf). These prior distributions are application
specific (e.g., see “Appendix B” for the specific priors corresponding to the model for our
application).

3. APPROXIMATE COMPUTATION METHODOLOGY

The general hierarchical movement model presented above presents distinct computa-
tional challenges for conducting inference on the model parameters and state variables. One
solution that has recently become popular is approximate Bayesian computation (ABC).
Often referred to as a “likelihood-free” method, ABC is a Bayesian computational method
for likelihoods that are either completely intractable or difficult to evaluate. First proposed
for solving genetic problems (e.g., Tavaré et al. 1997), ABC has been applied to a wide
range of applications (e.g., Beaumont et al. 2010; Marin et al. 2012).

3.1. BASIC ABC ALGORITHM

In the following, we briefly review the basic mechanics of applying ABC. Suppose the
likelihood [y | θ ] generates the process of interest, where y denotes the observed data
and θ represents a vector of parameters with prior distribution [θ ]. Assuming we want to
sample from [y | θ ], the following simple accept–reject algorithm can be implemented to
approximate the posterior distribution [θ | y] (Marin et al. 2012):

Algorithm 1 Basic ABC algorithm

Select a summary statistic(s) m(·), distance metric d(·), and tolerance ε ≥ 0.
for j = 1 to J do

repeat

1. Sample θ∗ from prior distribution [θ ].
2. Simulate a dataset ỹ from the model [y | θ∗].
until d(m(y),m (̃y)) ≤ ε

set θ( j) = θ∗
end for
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Throughout the ABC literature, the problem of how to select an appropriate summary
statistic (i.e.,m(·) in the above algorithm) has been thoroughly studied. In general, summary
statistics are used as away to efficiently capture information about the observed data. Ideally,
the summary statistics for the observed data will be similar to the summary statistics for the
simulated data. It can be shown that when this summary statistic is a sufficient statistic for
θ and the tolerance is zero (i.e., ε = 0) ABC produces samples from the exact posterior.
Unfortunately, in complicated models (such as hierarchical DSTMs) sufficient statistics are
rarely available and onemust select summary statistics to reduce the approximation as much
as possible (i.e., to make ε as small as possible). Multiple methods have been proposed for
selecting summary statistics (e.g., Fearnhead and Prangle 2012; Aeschbacher et al. 2012),
although some of these methods do not appear feasible (for computational reasons) for com-
plicated hierarchical models with minimal a priori information. From our experience, the
choice of summary statistic is application dependent (as has been demonstrated throughout
the ABC literature). In the application to follow, we apply two different sets of summary
statistics for the proposed methodology.

There are a variety of other computational techniques besides ABC that could be
employed for nonlinear dynamical collective movement models. For example, Fasiolo et al.
(2016) made a comprehensive comparison of ABC methods and state-space methods (i.e.,
particleMarkov chainMonte Carlo and iterated filtering) with regard to nonlinear dynamical
state-space models. In addition, Nott et al. (2012) showed the equivalence between certain
types of ABC algorithms and the so-called ensemble Kalman filter state-space methods.
Overall, ABC is a very appealing option for complex models that can be represented as
generative or simulation models (e.g., see Lagarrigues et al. 2015, for an ecological exam-
ple). Although Fasiolo et al. (2016) described the potential loss of precision in inference
for information reduction methods such as ABC, for this particular problem any loss in
precision seems to be minimal (since we are able to recover many of the true parameter
values in the simulation study below).

3.2. HYBRID MCMC–ABC ALGORITHM

Although the original ABC algorithm presented above is relatively simple, many more
complicatedABCalgorithms have been proposed. Themethodology developed here, in part,
utilizes the ABC–MCMC method first introduced in Marjoram et al. (2003). Specifically,
the proposed algorithm uses the ABC–MCMC method to sample multiple levels of state
variables and parameters within a traditional MCMC algorithm. We call this approach the
“hybrid MCMC–ABC algorithm.” To our knowledge, none of the existing ABC algorithms
provide a framework in which the parameters, state variables, and latent locations from the
presented model could all be estimated. For example, Pereyra et al. (2013) used a hybrid
framework in which parameters are estimated with ABC and state variables are separately
estimated with traditional Gibbs and/or Metropolis–Hastings (MH) steps. Alternatively,
Picchini (2014) and Sisson and Fan (2011), along with others, provide an ABC algorithm
in which both parameters and state variables can jointly be sampled. Our hybrid algorithm
essentially combines both of these algorithms, while also estimating multiple sets of state
variables within the ABC algorithm (i.e., speed and direction variables). That is, previous
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hybrid algorithms have focused on using ABC for much simpler processes (involving only
a few parameters and no state variables) than the algorithm proposed here.

We describe the details of our hybrid MCMC–ABC algorithm in the context of the
presented animal movement model. First, the latent locations in (2) are sampled with one-
variable-at-a-time MH steps (see supplementary materials for further details), and the σ 2

ε

error variance parameter is sampled via a Gibbs step. Importantly, all of the remaining
parameters in the model (denoted � ≡ (� f ,�δ,�u)

′) and state variables (denotedA1:T ≡
(u1:T , δ1:T )′) are sampled using the ABC algorithm to follow. We denote the simulated
locations in the ABC algorithm as s̃1:T , where s̃1:T ≡ (s̃1, . . . , s̃T )′. The known initial
locations and state variables are denoted as s̃0 and A0, respectively. Using the previously
defined notation, the hybrid MCMC–ABC algorithm is as follows:

Algorithm 2 Hybrid MCMC-ABC algorithm

At the ( j + 1)st iteration of the MCMC-ABC algorithm:

1. Sample s( j+1)
i,t for i = 1, . . . , N and t = 1, . . . , T using one-variable-at-a-time MH steps

(see supplementary materials).

2. Sample σ
2( j+1)
ε using a Gibbs step (see supplementary materials).

3. Generate proposal �∗ ∼ q[�∗ | �( j)] where q[·] is an arbitrary proposal distribution.

4. Generate (s̃∗1:T ,A∗
1:T ) ∼ π [s̃0,A0; �∗] where, (s̃∗0,A∗

0) = (s̃0,A0) and

π [s̃0,A0;�∗] =
T−1
∏

t=0

N
∏

i=1
[ s̃∗i,t+1 | s̃∗i,t ,A∗

i,t+1, �
∗ ][ A∗

i,t+1 | s̃∗i,t , �∗ ] (i.e., we are

essentially simulating the movement path for all of the agents in this step).

5. Set (�( j+1), s̃( j+1)
1:T ,A( j+1)

1:T ) = (�∗, s̃∗1:T ,A∗
1:T ) with probability:

α = min
(

1,
πε [ s( j+1)

1:T |s̃∗1:T ,A∗
1:T ,�∗ ] [�∗] q[�( j)|�∗]

πε [ s( j+1)
1:T |s̃( j)1:T ,A( j)

1:T ,�( j) ] [�( j)] q[�∗|�( j)]
)

.

Otherwise, (�( j+1), s̃( j+1)
1:T ,A( j+1)

1:T ) = (�( j), s̃( j)1:T ,A( j)
1:T ).

In the ABC algorithm above, πε[ s( j+1)
1:T | s̃∗1:T ,A∗

1:T ,�( j) ] is the so-called uniform
kernel defined as:

πε

[

s( j+1)
1:T | s̃∗1:T ,A∗

1:T ,�( j)
]

=
⎧

⎨

⎩

1, if d
(

m
(

s( j+1)
1:T

)

,m(s̃∗1:T )
)

≤ ε

0, otherwise,

where s( j+1)
1:T represents the current sampled latent locations. It should be noted that the

MH ratio (i.e., α) above is considerably simplified since the state variables s̃1:T and A1:T
have proposal distributions that are equal to their respective prior distributions. Perhaps it is
most useful to think of s̃1:T and A1:T as auxiliary variables as described in Sisson and Fan
(2011). Furthermore, despite the relatively high dimensionality of s̃1:T and A1:T , we have
found that with appropriately chosen summary statistics (see Sect. 4.3 for a discussion of the
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particular summary statistics used here) one can still achieve reasonable acceptance rates.
ForABC, reasonable acceptance rates can range from1%(e.g., Fearnhead andPrangle 2012)
to 8.5% (e.g., Picchini 2014) depending on the application. Importantly, the ABC algorithm
presented above is able to jointly sample the state variable and parameters, thereby reducing
some of the computational cost associated with hierarchical ABMs.

4. HIERARCHICAL SPATIO-TEMPORAL SPP MODEL

In this section, we provide details based on the general movement model described in
Sect. 2 (using similar notation as Sect. 2), along with a description of the guppy application
and details of our implementation. The model presented in this section will be referred to
as the hierarchical SPP (HiSPP) model.

4.1. GUPPY APPLICATION

Before detailing the proposed model, we start by describing the motivating application of
modeling the collective movement of guppies (Poecilia reticulate). In particular, the HiSPP
model is applied to a subset of the experimental guppy movement data from Bode et al.
(2012). Detailed in Bode et al. (2012), to provide shelter for the experiment, one corner of
the guppy tank was covered with gravel and cardboard. Shown in Fig. 1a, the guppies were

Figure 1. Summary of the data and posterior results for the guppy datawith summary statistic HiSPP1. aObserved
guppy movement paths, where each color represents a separate guppy. Note, the top left corner was covered with
gravel and cardboard to provide shelter. b Plot of the guppy data with approximately 35% of the data removed and
considered missing. c Posterior mean path calculated using HiSPP1. d Example of a single simulation from the
HiSPP model using a set of parameters sampled from the posterior.
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released from the opposite corner (i.e., the bottom right corner) of the sheltered area (top
left corner). The movement of the guppies was captured with a standard definition camera
recording at 10 frames per second. The observed guppy paths displayed in Fig. 1a provide
realistic movement with clear collective behavior (Bode et al. 2012).

4.2. HIERARCHICAL SPATIO-TEMPORAL SPP MODEL

The data model for the HiSPP model is the same as the data model in Sect. 2 (i.e.,
equation (1)),with the further assumption thatRz,t = σ 2

ε I. Now, suppose that the latent agent
locations, si,t , are confined to a bounded region such that x̃i,t ∈ [0, xm] and ỹi,t ∈ [0, ym].
The process model is specified by:

si,t ∼ TN[0,xm ]×[0,ym ]( f (si,t−1;� f ), σ
2
η I ). (5)

A truncated normal (i.e., TN) distribution is utilized to accommodate the bounded locations.
Further, using the notation from Sect. 2 for the speed and directional components of an
agent’s velocity vector, we have the following process model:

f (si,t−1;� f ) = (x̃i,t−1 + ui,tδx,i,t , ỹi,t−1 + ui,tδy,i,t )
′, (6)

if x̃i,t−1 + ui,tδx,i,t ∈ [0, xm] and ỹi,t−1 + ui,tδy,i,t ∈ [0, ym], implying that the updated
locations are within the bounded region. For the cases where the updated locations are
located outside of the boundary, we give the specific update equations in “Appendix A.” We
note that when the updated locations stray outside the bounded region, the parameters, � f ,
are employed to enforce reflective conditions (i.e., the agents are reflected off the boundary
back into the region of interest). Other types of boundary conditions may be more useful
for other applications; see Hubbard et al. (2004) for further examples. For the HiSPP model
� f = (xB, yB)′, where xB and yB define the angle of inflection for the x and y axis,
respectively (see “Appendix A” for further details).

Selecting an appropriate model for the angle, and thus the direction of an agent, is
instrumental in modeling an agent’s movement. With regard to the HiSPP model, we use
the following model to update a given agent’s angle:

θi,t = arctan
(

1
|N r

i,t−1|
∑

j∈N r
i,t−1

sin(θ j,t−1) + λ1 x̃i,t−1 + λ2 x̃2i,t−1

1
|N r

i,t−1|
∑

j∈N r
i,t−1

cos(θ j,t−1)

)

+ γi,t , γi,t ∼ U(−τ/2, τ/2),

(7)

whereN r
i,t−1 denotes the neighborhood of influence for an agent defined asN r

i,t−1 = { j ∈
{1, . . . , N } : ||si,t−1 − s j,t−1|| < r}. The parameter r denotes the radius in which an agent’s
angle can be influenced, thus defining an agent’s neighborhood of influence. While the
radius is assumed to be the same for all agents here, with additional information one could
allow the radius to vary by modeling it hierarchically (with covariates or other models).
In essence, an agent’s angle is updated as the average angle of its neighbors, while also
considering relevant environmental covariates (i.e., x̃i,t−1 and x̃2i,t−1). The covariates in (7)
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are necessary to model the portion of an agent’s movement that is not accounted for by
their interaction with their neighbors (i.e., see Fig. 1a above). Other specifications of (7),
such as including the direction of the refuge (with respect to an agent’s current location)
to bias the guppies toward the refuge, could also be useful here. The angular noise of an
agent is assumed to be uniformly distributed over a bounded region, as is typical in the SPP
literature.

The speed of an agent in the HiSPP model is specified using covariates as follows:

ui,t = max(β0 + β1 x̃i,t−1, 0) + φi,t , φi,t ∼ U(0, ρ). (8)

Although for this particular application, we found that much of the variation in an agent’s
speed is explained simply by its x-coordinate, for other applications alternative covariates
are likely necessary. Note, (8) could also take on alternative forms by using a log-link or
truncated normal distribution. In the application to follow, we found that accounting for
the nonnegative support of an agent’s speed with a uniform distribution resulted in strong
mixing with the hybrid MCMC–ABC algorithm. For the sake of brevity, we specify the
prior distributions for all of the hyperparameters in the HiSPP model in “Appendix B.”

4.3. MODEL SETUP

Here we briefly discuss details for the implementation of the hybrid MCMC–ABC algo-
rithm for the HiSPP model. As previously mentioned, we implement the HiSPP model with
two different sets of summary statistics. We will refer to the first set of summary statistics as
HiSPP1 and the second as HiSPP2. The identity function (i.e., m(si,t ) = si,t ) is employed
for the first set of summary statistics. For summary statistic HiSPP2, the temporal dimen-
sion of the data is reduced by thinning the data and only retaining every kth time period
for each agent. More importantly, at every kth period the following four statistics are cal-
culated for each agent: speed, directional angle, x-coordinate, and y-coordinate. Hence, for
every kth period, 4N summary statistics are calculated (for both applications k = 9). The
HiSPP2 summary statistic is very general while also capturing important information for
describing an agent’s movement, thusmaking it applicable for a variety of animal movement
applications.

With regard to the distance metric necessary for the ABC algorithm described above, we
use the following metric for both sets of summary statistics:

d(·) =
(

N
∑

i=1

∑

�∈L

|m(si,�) − m(s̃i,�)|
σmi,�

) 1
2
, (9)

where L denotes the set of time indexes (which differ for HiSPP1 and HiSPP2) and σmi,�

denotes a known scale parameter to ensure the statistics are weighted approximately equally
(i.e., see Picchini and Forman 2016). Specifically, for HiSPP1, each σmi,� = 1 and for
HiSPP2, σmi,� = 7.75 and σmi,� = 6 for the speed/direction statistics, respectively, while
σmi,� = 120 and σmi,� = 150 for the x/y-coordinates, respectively. To our knowledge, and
as discussed in Fasiolo et al. (2016), there is currently no formal way of selecting these
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weights for complicated hierarchical models. Hence, we use a series of simulations from
theHiSPPmodel, to chose these particular values such that the respective summary statistics
get approximately equal weight. Due to the small number of agents in both applications,
we found that using a distance metric based on absolute deviations recovers the movement
paths more accurately (based on mean-squared error) than a metric based on squared devi-
ations. Finally, the tolerance parameter for the ABC algorithm is set so that the two sets of
summary statistics have approximately equal acceptance rates (between 6 and 6.5% for both
applications).Within a range of 5–8% (acceptance rates), the model was not overly sensitive
to the tolerance level. These acceptance rates are similar to those found using a hierarchical
model in Picchini (2014), which contains a more thorough discussion of acceptance rates
for ABC.

For each implementation, the hybrid MCMC–ABC algorithm is run for 350,000 itera-
tions with the first 50,000 iterations treated as burn-in. As is typical in the ABC literature,
convergence of all chains was assessed through visual inspection of the posterior trace plots
and no evidence of non-convergence was detected. The same priors (see “Appendix B”)
were applied for both the simulation study and the guppy application. A detailed discussion
of the priors used for both applications can be found in supplementary materials (S.5).

5. RESULTS

5.1. SIMULATION STUDY RESULTS

To evaluate the performance of the HiSPP model in terms of both parameter estimation
and prediction, we simulated movement paths for 10 agents from the HiSPP model using
the parameter values listed in the second column of Table 1. We choose these particular
parameters values to simulate trajectory paths that were similar to the overall movement
pattern in the guppy application. For the sake of comparison, the number of agents (i.e.,
N = 10) and number of time periods (i.e., T = 105) were set equal to the corresponding
values from the guppy application. Figure 2a shows the simulated paths for the simulation
study (i.e., the “true” paths). By design, there is clearly a level of interaction between the
agents in the simulated paths. As displayed in Fig. 2b, approximately 35% of the data were
removed and considered missing. Frair et al. (2004) noted that 30% represents the upper
bound for the amount of missing data in the telemetry data literature. Therefore, we removed
approximately 35% of the data to represent a worst-case scenario for a realistic telemetry
dataset. Additionally, for each agent, the same size block of data in time (i.e., multiple
consecutive periods equaling 35% of an agent’s complete path) was randomly removed
(i.e., opposed to randomly removing individual observations). By removing observations,
we are also able to investigate the effect of unobserved individuals on the observed agents
(for certain time periods). Both summary statistics described in Sect. 4.3 were applied to
the simulated dataset using the settings specified in Sect. 4.3.

Despite missing approximately 35% of the data, all of the true parameter values are
contained within the 95% credible intervals (C.I.s) for both methods (with the exception of
σ 2

ε for HiSPP2). Overall, the two summary statistics provide similar posterior estimates for
most of the parameters, with the radius parameter being the clear exception. It is likely that,
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Figure 2. Summary of the data and posterior results for the simulated data with summary statistic HiSPP2. a True
simulated data produced from the HiSPP model with the parameter values from Table 1. b Plot of the simulated
data with approximately 35% of the data removed and considered missing. c Posterior mean path calculated using
HiSPP2. d Example of a single simulation from the HiSPP model using a set of parameters sampled from the
posterior.

with only 10 agents, it was difficult to estimate the magnitude of interaction among agents.
With more data, the model would be able to provide more accurate estimates of the radius
parameter. We should also note there appears to be less learning (i.e., wide C.I.s relative to
the priors) for some of the parameters such as the reflection parameters (i.e., xB and yB).
This may be attributed to the few number of agents that approached the boundary (as shown
in Fig. 2a). Evaluation of the posterior mean paths was carried out using mean-squared
error (MSE), defined here as the average squared distance between the observed paths and
the posterior mean paths for all agent locations at each time period. Table 2 shows how
HiSPP2 out-performed HiSPP1 in terms of filling in the missing data with HiSPP2 having a
lower MSE for the missing observations. Further, the posterior mean path shown in Fig. 2c
visually illustrates the predictive power of HiSPP2, with the predicted paths for the missing
samples appearing similar to the true paths. Results for two additional simulation studies
can be found in supplementary materials (S.4). For one of the additional simulation studies,
we set both λ1 and λ2 in (7) to zero. The purpose of this simulation was to investigate
possible confounding effects between the covariates in (7) and the radius parameter. The
posterior mean of both λ1 and λ2 are centered around zero (along with the C.I.’s), suggesting
the model was able to separate the effects of the radius and the covariates. For the other
additional simulation study, we replaced the covariates in (7) and (8) with covariates based
on an agent’s distance from a refuge. The results for the second additional simulation study
suggested that we were once again able to recovery many of the parameters and much of
the movement paths.
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Table 2. Mean-squared error (MSE) for both the simulated data and guppy data with summary statistic HiSPP1
and HiSPP2.

Data HiSPP1 HiSPP2 Relative MSE

Overall MSE Missing Obs. MSE Overall MSE Missing Obs. MSE Overall Missing Obs.

Simulation study 80.312 240.103 50.04 149.191 1.605 1.609
Guppy data 60.483 181.233 61.125 183.108 0.989 0.990

In order to evaluate the quality of the posterior paths for the missing data, the MSE was calculated using all of the
data (i.e., Overall MSE) and with only the missing observations (i.e., Missing Obs. MSE). Relative MSE is defined
as the MSE for summary statistic HiSPP1 divided by the MSE for summary statistic HiSPP2.

5.2. GUPPY APPLICATION RESULTS

To demonstrate the ability of the model to predict the latent collective movement process,
the guppy application was implemented by removing approximately 35% of the data (in
the same manner as the simulation study) and treating the removed observations as missing
(i.e., see Fig. 1b). For our implementation, we utilized a subset of the data analyzed in
Bode et al. (2012) consisting of 10 guppies and 105 time periods. Posterior inference for
both summary statistics (see supplementary materials) suggested an interaction among the
guppies (since the posterior mean for the radius parameter is over half the height of the
guppy tank). Similar results regarding the interaction between the guppies in these data
were found in Russell et al. (2016). Furthermore, both directional angle parameters (i.e.,
λ1 and λ2) have nonzero values, implying a common nonlinear direction pattern for the
observed guppies. Overall, the two summary statistics provided similar results in terms of
inference for all of the parameters, with a slight disagreement over the magnitude of the
radius parameter. For the sake of brevity, the posterior results not shown here are given in
supplementary materials (S.3).

With regard to recovering themissing guppydata, Table 2 showshowHiSPP1andHiSPP2
performed similarly in terms of prediction accuracy. Moreover, the posterior mean paths in
Fig. 1c appear similar to the observed paths, with visible differences only apparent for a few
of the missing observations. Along with filling in the missing data, we are also interested in
quantifying the uncertainty of the posterior paths, with particular interest in the uncertainty
for the missing data. The posterior 95% C.I.s and mean paths for each of the 10 guppies
are displayed in Fig. 3. As is common in spatial prediction, the level of uncertainty is much
higher for themissing observations compared to the known observations. Themajority of the
true values for the missing observations are contained within the 95% intervals. In general,
the missing observations with wider intervals correspond to observations with either unique
individual movements or sharp turns, while the missing observations that correspond to
more collective smooth movements have more narrow intervals.

6. DISCUSSION

The proposed hierarchical animal movement framework and the HiSPP model were very
effective at recovering the movement paths for both the simulated collective movement data
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and the guppy data. Although a substantial amount of data were missing in the simulation
study, themodelwas able to recover the parameters andmuch of themissingmovement paths
correctly. Through the use of Bayesian hierarchical modeling, we rigorously quantified the
uncertainty associated with missing data from a realistic movement application of guppies.
The model’s overall ability to recover the guppy trajectories demonstrates the potential for
utilizing ABC, even within a hierarchical framework.

Further, the developed ABC algorithm, along with the hybrid MCMC–ABC algorithm,
provide an alternative to existing state-space estimation algorithms. From a scientific per-
spective the computational mechanisms that drive ABC is very intuitive, especially for
simulation models such as complex collective animal movement models. The literature on
approximate likelihood methods is currently growing at a rapid pace, ABC is just one of
many available approximate methods (see Drovandi et al. 2015, for an overview). Along
with the overall increase in approximation methods, there has also been an increase in
approximate likelihood methods designed specifically for state-space models (e.g., Ehrlich
et al. 2015; Fasiolo et al. 2016; Martin et al. 2016, to name a few). The unique challenges
associated with modeling collective movement will likely require researchers to consider
such approximate methods in the future.

While the presented model succeeded in estimating the few covariates included in the
model, there is a great potential to include a variety of environmental covariates in future
applications. For example, if considering terrestrial collective animal movement, infor-
mation involving spatially referenced habitat features or weather patterns could easily be
incorporated into the presented framework. Inclusion of such covariates would improve
our understanding of interactions between collective animal movements and important
covariates which might accentuate or mitigate species interactions. Such insights could help
address potential impacts from current conservation challenges, such as climate change and
shifting species distributions (Van der Putten et al. 2010). We also note that the generality of
the model implies that a variety of other animals could be modeled with our methodology.

Although the presented model is formulated in discrete time, as described in McClintock
et al. (2014), there are important consequences with regard to using continuous or discrete
timewhenmodeling animalmovements. Indeed, Russell et al. (2016) described some advan-
tages of using a continuous time collective movement model with the guppy data from Bode
et al. (2012). While SPP models are usually formulated in discrete time, Yates et al. (2010)
described various alternative SPP models formulated in continuous time. Thus, modifying
the proposed hierarchical agent-based framework for continuous time would be an obvious
extension of the model.

Many realistic collective behaviors may be difficult or impossible to model with standard
statistical models, due to the nonlinear nature of these processes. Going forward, borrowing
elements from mechanistic collective movement models and associated ideas from seem-
ingly disparate subject matter sciences such as physics, chemistry, and engineering will be
important when solving complex collective animal behavior problems. We note that many
collective movement models, such as the SPP model, still have several a priori assump-
tions regarding collective behavior. Future applications may need to include mechanisms
for learning complex behaviors that are not specified a priori.
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APPENDIX A: FULL HISPP PROCESS MODEL EQUATION

The process model (i.e., Eq. 5) from Sect. 4.2 contains various update rules based on
the values of the updated locations. In particular, if one or both of the updated x and y
locations are outside the boundary of interest, then separate update conditions are invoked.
These separate update conditions ensure that the updated locations are within the boundary
of interest.We use reflective conditions to push the agents back toward the region of interest.
The direction in which the agents reflect back into the region of interest is estimated for the
cases where an agent’s updated location is beyond the x or y boundary. If an agent’s updated
location is outside both the x and y boundary, then the reflective angle is set to a fixed value
(this scenario was not common for our application). Recall that the latent locations, si,t , are
confined to a bounded region such that x̃i,t ∈ [0, xm] and ỹi,t ∈ [0, ym]. The full process
model is then given by the following:

f (si,t−1;�) =
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(x̃i,t−1 + ui,t δx,i,t , ỹi,t−1 + ui,t δy,i,t )
′ , if x̃i,t−1 + ui,t δx,i,t ∈ [0, xm ],

ỹi,t−1 + ui,t δy,i,t ∈ [0, ym ]
(x̃i,t−1 + xBδx,i,t , ỹi,t−1 + ui,t δy,i,t )

′ , if x̃i,t−1 + ui,t δx,i,t < 0
(x̃i,t−1 + ui,t δx,i,t , ỹi,t−1 + ui,t yB)′ , if ỹi,t−1 + ui,t δy,i,t < 0
(

x̃i,t−1 + ui,t
(

π
2 + xB

)

, ỹi,t−1 + ui,t δy,i,t
)′

, if x̃i,t−1 + ui,t δx,i,t > xm
(

x̃i,t−1 + ui,t δx,i,t , ỹi,t−1 + ui,t
(

π
2 + yB

))′
, if ỹi,t−1 + ui,t δy,i,t > ym ,

(

x̃i,t−1 + ui,t
5π
4 , ỹi,t−1 + ui,t

5π
4

)′
, if x̃i,t−1 + ui,t δx,i,t > xm ,

ỹi,t−1 + ui,t δy,i,t > ym
(

x̃i,t−1 + ui,t
3π
4 , ỹi,t−1 + ui,t

3π
4

)′
, if x̃i,t−1 + ui,t δx,i,t > xm ,

ỹi,t−1 + ui,t δy,i,t < 0
(

x̃i,t−1 + ui,t
7π
4 , ỹi,t−1 + ui,t

7π
4

)′
, if x̃i,t−1 + ui,t δx,i,t < 0,

ỹi,t−1 + ui,t δy,i,t > ym
(

x̃i,t−1 + ui,t
π
4 , ỹi,t−1 + ui,t

π
4

)′
, if x̃i,t−1 + ui,t δx,i,t < 0,

ỹi,t−1 + ui,t δy,i,t < 0.

APPENDIX B: SPECIFICATION OF PRIORS

Listed below are all of the prior distributions and corresponding hyperparameter values
for the HiSPP model from Sect. 4.2.

σ 2
ε ∼ IG(αε, βε), where αε = .001 and βε = .001.

σ 2
η ∼ IG(αη, βη), where αη = 4.25 and βη = 24.375.

r ∼ TN[0,rmax](μr , σ
2
r ), where μr =0, σ 2

r = 100000, and rmax = 378.4.
β0 ∼ Gau(μβ, σ 2

β ) and β1 ∼ Gau(μβ, σ 2
β ), where μβ = 0 and σ 2

β = 1000.
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λ1 ∼ Gau(μλ, σ
2
λ ) and λ2 ∼ Gau(μλ, σ

2
λ ), where μλ = 0 and σ 2

λ = 1000.
xB ∼ U(ax , bx ), where ax = 0 and bx = π

2 .
yB ∼ U(ay, by), where ay = π

2 and by = π .
τ ∼ U(aτ , bτ ), where aτ = 0 and bτ = .75.
ρ ∼ U(aρ, bρ), where aρ = 0 and bρ = 6.

Since many of the hyperparameters above are utilized at the bottom of the hierarchical
model, they are given relatively uninformative prior distributions. The hyperparameters for
the boundary conditions (i.e., xB and yB) were selected such that agents would always be
reflected back into the region of interest. See supplementary materials (S.5) for a further
discussion on the priors used with the HiSPP model.
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