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Selecting the Number of States in Hidden
Markov Models: Pragmatic Solutions
Illustrated Using Animal Movement

Jennifer Pohle, Roland Langrock, Floris M. van Beest, and
Niels Martin Schmidt

We discuss the notorious problem of order selection in hidden Markov models, that
is of selecting an adequate number of states, highlighting typical pitfalls and practical
challenges arising when analyzing real data. Extensive simulations are used to demon-
strate the reasons that render order selection particularly challenging in practice despite
the conceptual simplicity of the task. In particular, we demonstrate why well-established
formal procedures for model selection, such as those based on standard information cri-
teria, tend to favor models with numbers of states that are undesirably large in situations
where states shall bemeaningful entities.We also offer a pragmatic step-by-step approach
together with comprehensive advice for how practitioners can implement order selection.
Our proposed strategy is illustrated with a real-data case study on muskox movement.
Supplementary materials accompanying this paper appear online.
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1. INTRODUCTION

HiddenMarkovmodels (HMMs) areflexiblemodels for time series of observations driven
by underlying, serially correlated states. Originating from speech recognition, they have
found applications in various areas such as robotics, finance and social science (Zucchini
et al. 2016). Over the last couple of years, they have also emerged as an increasingly popular
statistical tool for the analysis of ecological time series data, where they have proven to be
natural statistical models for animal movement data (Patterson et al. 2016), general animal
behavior data (DeRuiter et al. 2016) and capture–recapture data (Pradel 2005), to name but
a few.

In this paper, we discuss order selection in (finite-state) HMMs, that is how to select
the number of states. While conceptually order selection appears to be a simple model
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selection task, in practice it remains a notoriously difficult challenge faced by practi-
tioners. In principle, when a maximum likelihood approach is taken, it is conceptually
straightforward to use information criteria like the Akaike information criterion (AIC),
the Bayesian information criterion (BIC) or variations thereof, to select between mod-
els with different numbers of states. However, especially in the ecological literature it
has been claimed—and sometimes demonstrated—that traditional model selection cri-
teria, and especially the AIC, often lead to the selection of much larger numbers of
states than expected a priori (Langrock et al. 2015; DeRuiter et al. 2016; Li and Bolker
2017). Whether or not order selection involves difficulties depends on the purpose of
an HMM-based analysis. We distinguish three main types of applications of HMMs:
forecasting, classification (in a supervised learning context) and general inference on
the data-generating process (unsupervised learning). Order selection is most challeng-
ing in the latter case, and we therefore focus on this application specifically in this
paper.

The preference to include many states, particularly in ecological settings, can to some
extent be explained by the complexity of such data sets. In addition to the features that
actually motivate the use of state-switching models, such as multimodality and autocorre-
lation, real data often exhibit further structure, such as outliers, seasonality or individual
heterogeneity. When neglecting these features in the HMM formulation, then additional
states may be able to capture this ignored data structure and therefore provide a better
model fit than models with a lower, but (biologically) more realistic number of hidden
states (Langrock et al. 2015; Li and Bolker 2017). For analyses where the interest lies
on the interpretation of the states, or on the general dynamics of the state process, this
behavior of model selection criteria is highly undesirable. For example, in the context of
animal movement modeling, the states can intuitively be interpreted as proxies for the
behavioral states of an animal (e.g., resting, foraging or traveling), and primary interest
usually focuses on identifying the drivers of behavioral processes. Therefore, an HMM
applied to an animal’s movement data can yield a deeper understanding of the behavior
of said animal. However, as outlined above, traditional model selection criteria often point
to models with large numbers of states which, crucially, may not be biologically inter-
pretable anymore. In this paper, we suggest a pragmatic approach to choose the number
of states in practical applications, which takes into account formal criteria for guidance,
but also stresses the importance of the study aim, expert knowledge and model checking
procedures.

The paper is organized as follows. In Sect. 2, we lay out the HMM basics, including a
brief review of the types of ways in which HMMs are applied, and provide an overview
of theoretical and practical aspects related to order selection. In Sect. 3, we use simulation
studies to demonstrate how additional states in an HMM can capture neglected structure
in the data, leading standard information criteria to often overestimate the true number of
hidden states. In Sect. 4, we discuss how to pragmatically choose an adequate number of
states and provide practical advice and guidance. Section 5 gives a real-data case study on
muskox movement.
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2. HIDDEN MARKOVMODEL BASICS

2.1. BASIC FORMULATION OF HMMS

An HMM is a doubly stochastic process in discrete time, the dependence struc-
ture of which, in its most basic form, is displayed in Fig. 1. The model assumes the
observations, X1, . . . , XT , to be driven by an underlying (unobserved) state sequence,
S1, . . . , ST . The state process is usually assumed to be an N -state Markov chain, such
that Pr(St |St−1, St−2, . . . , S1) = Pr(St |St−1), with St ∈ {1, . . . , N }. Throughout the paper,
we assume the Markov chain to be stationary, unless explicitly stated otherwise. The state-
switching probabilities are summarized in the transition probability matrix (TPM) � =(
γi j

)
, where γi j = Pr(St = j | St−1 = i), i, j = 1, . . . , N . In addition to the Markov prop-

erty, it is usually assumed that the observations are conditionally independent of past obser-
vations and states, given the current state: p(Xt |Xt−1, . . . , X1, St , . . . , S1) = p(Xt |St ).
Here p is used as a general symbol to denote either a probability function (if Xt is discrete-
valued) or a density function (if Xt is continuous-valued). Thus, the distribution of each
observed variable Xt , t = 1, . . . , T , is completely determined by the current state St .
Together with the Markov property, this completes the basic model structure as directed
graph depicted in Fig. 1.

With animal behavior data, the observed process will often be multivariate, Xt =
(X1t , . . . , Xmt ). In that case, a commonly made additional assumption is that the m
variables are also conditionally independent, given the current state, hence p(Xt | St ) =∏m

i=1 p(Xit | St ). This is the so-called contemporaneous conditional independence assump-
tion.

In this basic form, the HMM formulation is completed by choosing the number of hidden
states, N , and the class(es) of state-dependent distributions (also called emission distribu-
tions). In practice, the model parameters will then need to be estimated, which is usually
accomplished using either numerical maximum likelihood, the expectation–maximization
(EM) algorithm or Markov chain Monte Carlo (Zucchini et al. 2016).

2.2. TYPES OF HMM-BASED ANALYSES

As indicated in Sect. 1, there are three main types of ways in which HMMs can be
applied. First, HMMs can be used for forecasting future values of the observed time series,

St−1 St St+1

Xt−1 Xt Xt+1

... ... (hidden)

(observed)

Figure 1. Dependence structure of an HMM in its most basic form.
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as typically done in econometric time series analysis. In these instances, HMMs are not
usually regarded as good representations of the true data-generating process and instead
are used merely as tools to accommodate features of the observed time series that may be
difficult to capture otherwise, using standard time series models (e.g., ARIMA or GARCH
models). The main purpose of this application of HMMs is usually not to learn something
about the process, but instead to accurately predict future observations. A specific example is
given by the application ofHMMs to financial share returns: here it is not actually reasonable
to assume that there is a finite number of (market) states, yet the models can produce good
forecast distributions.

Second, in the machine learning literature, HMMs are often used for classification in a
supervised learning context (e.g., for speech recognition, gesture recognition). In these set-
tings, anHMM is trained using data where the underlying states are known and subsequently
applied to new, unlabeled data with the aim to recognize the underlying states. In ecology,
HMMs are sometimes applied in this way to detect animal behavior states (Broekhuis et al.
2014; see also the discussion in Leos-Barajas et al. 2016). However, these applications are
relatively rare in ecology, since training data, where the states are directly observed, need
to be available, which is usually difficult to realize in the field. In this type of application of
HMMs, the choice of the number of states is not an issue, as the states and their meaning
are predefined.

Third, in an unsupervised context, HMMs are used to learn something about the data-
generating process, without defining the role of the states a priori. Especially in movement
ecology, this is the standard way in which HMMs are applied, with the aim of inferring
novel aspects related to the behavioral process (Morales et al. 2004; Patterson et al. 2009).
While practitioners may have some expectations regarding the number of states also in the
unsupervised context, the identification of a suitable number of states in general still remains
a primary aim of empirical studies. Thus, the unsupervised learning context is where order
selection in HMMs constitutes the biggest challenge, so it is this case that we focus on.

2.3. MODEL SELECTION FOR HMMS

In practical applications of HMMs, users need to (i) specify the dependence assumptions
made within the model, (ii) decide on the class of distributions used for the state-dependent
process (e.g., normal distributions) and (iii) select the number of states, N . It may also be
necessary to (iv) decide which covariates to include in the model. It is our experience that
in most practical applications of HMMs, model selection focuses on (iii) and, if applicable,
(iv), with (i) and (ii) specified with little or no investigation into the corresponding goodness
of fit of the resulting models. For the model selection involved in both (iii) and (iv), when
a maximum likelihood approach is taken, then information criteria such as the AIC or the
BIC are typically used.

When using the AIC, the focus lies on out-of-sample predictive accuracy. Given a model
fitted using maximum likelihood, with corresponding estimate θ̂ for the parameter vector θ ,
the AIC is defined as AIC = −2 logL(θ̂ |x) + 2p, where L(·|x) is the likelihood function
given the observed time series x = (x1, . . . , xT ) and p is the number of model parameters
(see Zucchini et al. 2016, for details on how to evaluate the likelihood of anHMM). The term
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logL(θ̂ |x) can be regarded as a simple plug-in estimate of the expected log predictive density
(using only the available data to forecast the log likelihood of future data). The log predictive
density is one of many examples of a proper scoring rule for assessing predictive accuracy
(Gneiting and Raftery 2007). Crucially, the plug-in estimator is biased due to overfitting:
on average, the model fits the given sample better than an average sample. Under regularity
conditions, it can be shown that in the limit (i.e., asymptotically, as T → ∞), this bias
converges to p. For large sample sizes, logL(θ̂ |x) − p hence is an approximately unbiased
estimator of the expected log predictive density (with the AIC obtained by multiplying this
term by −2).

The BIC is defined as BIC = −2 logL(θ̂ |x) + p log(T ) and differs from the AIC in its
form only through the increased penalty term (for T ≥ 8). However, it is derived from a
Bayesian viewpoint and aims at identifying the model that is most likely to be true, instead
of maximizing prediction accuracy as does the AIC. Under regularity conditions and for
large samples, minimizing the BIC is approximately equivalent to maximizing the posterior
model probability (Schwarz 1978). However, for HMMs, consistency of the BIC is not fully
established (Celeux and Durand 2008). More comprehensive accounts on the theoretical
background of both AIC and BIC, and also their relation to other model selection concepts,
are given in Zucchini (2000) and Burnham and Anderson (2002).

Similarly as the BIC, the integrated completed likelihood (ICL) criterion proposed by
Biernacki et al. (2013) takes into account model evidence, but additionally considers the
relevance of partitions of the data into distinct states, as obtained under the model. The ICL
criterion approximates the integrated complete-data likelihood, which is the joint likelihood
of the observed values x = (x1, . . . , xT ) and its associated underlying state sequence
s = (s1, . . . , sT ) using a BIC-like approximation. As the true state sequence is unknown, it
is replaced by the Viterbi-decoded state sequence ŝ, that is the most probable state sequence
under the model considered. With Lc(·|x, ŝ) denoting the (approximate) complete-data
likelihood, the ICL criterion is defined as ICL = −2 logLc(θ̂ |x, ŝ) + p log(T ). As in case
of the AIC and the BIC, the model is chosen that leads to the smallest value of the criterion.
In the context of HMMs, the simulation studies provided by Celeux and Durand (2008)
indicate that ICL may actually underestimate the number of states of the HMM in certain
scenarios. This can be explained by the preference of the ICL criterion for models where
the emission distributions do not strongly overlap.

Cross-validated likelihood using a proper scoring rule, as suggested inCeleux andDurand
(2008), constitutes another approach to model selection that focuses mostly on predictive
performance. Cross-validation methods can become very computationally intensive, which
becomes particularly problematic with the increasingly large telemetry data sets collected
in movement ecology, where the estimation of a single model can easily take several hours.

From the theoretical perspective, the behavior of any of these criteria, and of ICL in
particular, is poorly understood. A key assumption of both AIC and BIC is that the actual
process is indeed represented by one of the candidate models. If the candidate models are at
least good approximations of the true data-generating process, then this procedure can still
be expected toworkwell (Zucchini 2000). However, whenworkingwith complex ecological
data, neither an HMM nor in fact any other computationally feasible statistical model can
be expected to be a complete representation of the true process, which will typically involve
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various complexpatterns (even if the actual state space is low-dimensional). Thus, intuitively,
it is clear that undesirable behavior of say AIC or BIC may occur in applications of HMMs
to complex patterns.

2.4. RUNNING EXAMPLE: ANIMAL MOVEMENT

Todemonstrate the practical challenges involvedwhen selecting the number of states of an
HMM, we use animal movement modeling as a running example. Animal movement is one
of themost natural and intuitive applications of HMMs and also constitutes a scenario where
overestimation of the number of states is particularly prevalent. In HMM applications to
animalmovement data, the observedprocess is usually a bivariate time series comprising step
lengths and turning angles between subsequent locations, typically though not necessarily
collected using GPS technology. The states of the Markov chain underlying a fitted HMM
can then be interpreted as providing rough classifications of the behavioral modes of the
animal observed (e.g., exploratory vs. encamped). While we use this particular area of
application of HMMs to fix the ideas, the issues and methods discussed in this paper are not
restricted to such data.

3. SIMULATION STUDIES

In this section, we present simulation studies to investigate the performance primarily
of the AIC and the BIC, but also of the ICL criterion, when it comes to selecting a suit-
able number of hidden states. Given the asymptotic equivalence of AIC and cross-validated
likelihood (Stone 1977)—at least for ordinary linear regression—we did not implement the
latter because of the associated substantial computational effort. ICL in contrast offers a con-
ceptually different, classification-based approach to assessing a model’s relative suitability,
with a stronger focus on separation of classes.

We showcase seven scenarios where there is additional structure in the data that is not
accommodated within basic HMM formulations. Each type of additional structure con-
sidered may be found in real data, and especially within animal behavior data, where the
assumptions made with the basic HMM formulation typically are overly simplistic. What
will be shown is that in such cases, the misspecification of the model formulation will often
be compensated by additional states which, to some extent, absorb (or “mop up,” figuratively
speaking) the neglected structure.

3.1. SIMULATION SCENARIOS CONSIDERED

As a baseline model, we consider a two-state HMM having a gamma-distributed output
variable, with two distinct sets of parameters, one for each state of the underlying stationary
Markov chain. This type of model is common for analyzing animal movement data, with
the two HMM states corresponding roughly to “foraging/resting” and “traveling” behavior,
respectively. The state-dependent gamma distributions in the baseline model are shown in
Fig. 2. If not explicitly stated otherwise in the description of the scenarios below, then the
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Figure 2. Gamma distributions of the baseline HMM used in the simulation experiments.

gamma distribution within the first state has mean= 0.5 and shape= 0.7 (resulting in a
strictly monotonically decreasing density function), and the gamma distribution within the
second state has mean= 4 and shape= 2.5 (resulting in a density function with mode
distinct from zero). In addition, if not explicitly stated otherwise, then the probability of
leaving a state in any given time interval is specified to be 0.1 (hence that of remaining in a
given state is 0.9).

In each of the seven scenarios considered below, some component of the baseline model
formulation will be slightly modified when simulating data. However, crucially, all the
scenarios still involve only two genuine states. We will then demonstrate that when not
taking the modification into account, hence fitting the slightly misspecified basic models to
the data, then additional states will be included as per recommendation of model selection
criteria, in order to compensate for the inflexibility of the model to otherwise capture the
additional structure.

Scenario 1 (outliers) This first, very simple scenario represents a situation in which some
of the data are outliers. In movement ecology, these outliers could, for example, be due
to unusually large measurement errors (e.g., as a result of poor satellite coverage when
using GPS tags). The corresponding simulated data are generated using the baseline setup
described above, but subsequently adding uniformly distributed random errors from the
interval [10, 20] to only 0.5% of the data points (25 data points per sample generated).
Intuitively it is clear that these few outlying values may cause the two-state baseline model
to have a rather poor goodness of fit, since the two gamma state-dependent distributions
may not be able to cover the extreme values without losing accuracy for the non-outlying
observations. This can potentially be compensated for by including additional states merely
to capture the outlying values.

Scenario 2 (inadequate emission distribution) While parametric distributions will often
provide good approximations of the actual empirical distribution within a state, in practice it
will practically never be the case that the true within-state distributions are actual members
of some parametric family. In other words, the parametric family being used (e.g., gamma
or normal distributions) will in general only provide an approximation of the actual data-
generating process within a state. In this scenario, we illustrate possible consequences of
this for order selection.
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Figure 3. Heavy-tailed emission distribution within state 2, as implemented in Scenario 2.

To do so, the observations within the second state were not generated by a gamma
distributionwithmean 4 and shape 2.5 anymore, but instead by a similarly shaped but heavy-
tailed distribution which we constructed nonparametrically using B-spline basis functions
(Langrock et al. 2015). The specific shape of the distributionwithin state 2 is shown in Fig. 3.

Clearly, the shape of this distribution cannot be fully captured by a single gamma dis-
tribution. However, the distribution appears to be such that a two-component mixture of
gamma distributions within the second state may be sufficiently flexible to provide a good
approximation to the nonparametric distribution. Notably though, a corresponding two-state
model, with TPM � = (

γi j
)
, i, j = 1, 2, and mixture weights α and 1 − α for the two

gamma distributionswithin state 2, is equivalent to a three-state gamma–HMMwith suitably
structured TPM,

� =
⎛

⎜
⎝

γ11 α(1 − γ11) (1 − α)(1 − γ11)

(1 − γ22) αγ22 (1 − α)γ22

(1 − γ22) αγ22 (1 − α)γ22

⎞

⎟
⎠ .

Therefore, a two-state HMM with a gamma mixture in one of the states can be represented
by a three-state simple gamma–HMM. It is thus possible that model selection criteria favor
models with more than two states, not because there are more than two genuine (behavioral)
states, but because with the additional states it is possible to represent more flexible emission
distributions.

Scenario 3 (temporal variation) In many ecological time series, there are clear temporal
patterns in the data. We use diel (24-h period) variation as an example, but the issue applies
to any temporal resolution with variation in the data (e.g., seasonal). Diel patterns could,
for example, be present in the transition probabilities, with the corresponding parameters
then being cyclic functions of time. The scenario we consider here is a hypothetical setting
with a nocturnal animal that is more likely to be active at nighttime than during the day.
The state-switching probabilities will then depend on the time of day. We constructed the
transition probabilities using trigonometric functions, with a possible state switch occurring
every 15 min. The resulting transition probabilities, as a function of time of day, are shown
in Fig. 4.
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Figure 4. Transition probabilities as a function of time, as implemented in Scenario 3.

In the movement ecology literature, analyses including such temporal components were
presented, for example, in Towner et al. (2016) and in Li and Bolker (2017). Such a temporal
structure in the data, if neglected,may to some extent be captured by additional hidden states.

Scenario 4 (individual heterogeneity) When observing more than only one individual,
it is natural to assume the individuals to differ, inter alia, in their personality and fitness.
In the context of animal movement, one could imagine younger individuals to move faster
when in an active state, or to occupy certain behavioral states more often, than older indi-
viduals. In the former case, the natural modeling approach for such a setting would be to
consider individual-specific parameters of the gamma distribution within the active state.
For parsimony in terms of the number of model parameters, random effects would typically
be used.

Not accounting for such individual heterogeneity within the model formulation, hence
assuming identical within-state gamma distributions across all individuals, could again lead
to information criteria favoring models with more than two states: for example, one of
the resulting >2 nominal HMM states may be capturing the active movement of fitter
individuals, while anothermay be associatedwith the activemovement of less fit individuals,
with at least a third state capturing the inactive movement behavior. In our simulations, we
simulated 10 animal tracks of length 500 each, using a log-normal distribution with the
parameters μ = ln 4 and σ = 0.15 to generate individual means for the (track-specific)
gamma emission distribution within the second state.

Scenario 5 (semi-Markov state process)Afirst-orderMarkov chain implies that the times
spent within a state are geometrically distributed. For example, in the baseline model, the
probability mass function (PMF) for the time k spent in a state (either 1 or 2) is

p(k) = 0.1 · 0.9k−1, k = 1, 2, 3, . . . . (1)

In particular, themode of the PMFof the dwell time is at k = 1. This implicit consequence
of the Markov property will clearly be inappropriate in some applications. To give just one
example, in Langrock et al. (2014) it was shown that the distribution of the time beaked
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whales spend foraging at the bottom of a deep dive is substantially different from a geometric
distribution.

Hidden semi-Markov models are designed to overcome this limitation of HMMs, by
explicitly specifying a state dwell-time distribution (e.g., a Poisson or a negative binomial),
at the cost of a considerable increase in computational effort. Notably, any given semi-
Markov state process can be arbitrarily accurately represented using a (first-order) Markov
state process with expanded state space (Zucchini et al. 2016). This implies that when a
semi-Markov structure is ignored in the model formulation, then model selection criteria
can be expected to point to models with larger number of states than there are genuine
(biological) states, with the model states structured such that the semi-Markov structure is
reflected.

The synthetic data in this simulation experiment are generated by the baseline model
described above, but replacing the geometric dwell-time distribution within state 2, as given
in (1), by a Poisson distribution with mean λ = 3, shifted by one.

Scenario 6 (second-order state process)Asimilar, yet conceptually differentmodification
of the Markov assumption is to consider higher-order Markov chains for the state process
(Zucchini et al. 2016), thus allowing, at any point in time, the future state to depend not
only on the present but also on one or more past states. An example application to eruption
times of the Old Faithful Geyser is given in Langrock (2012).

Similarly as in case of hidden semi-Markovmodels, HMMswith underlying higher-order
Markov state processes can equivalently be represented as HMMs with first-order Markov
state processes with extended state space (Zucchini et al. 2016). If higher-order memory
is neglected in the model formulation, then with the identical reasoning as in the previous
scenario, we would expect model selection criteria to favor models with overly complex
state architectures.

To demonstrate this issue, the data in this scenario were generated from a second-order
Markov chain, determined by the following (time-homogeneous) state-switching probabil-
ities:

P(St = 2 | St−1 = 1, St−2 = 1) = P(St = 1 | St−1 = 2, St−2 = 2) = 0.25;
P(St = 2 | St−1 = 1, St−2 = 2) = P(St = 1 | St−1 = 2, St−2 = 1) = 0.05.

This means that switching the state after just having entered it is less likely than when
having already stayed in the state for k > 1 time units.

Scenario 7 (violation of conditional independence assumption) Conditional indepen-
dence of the observations, given the states, is one of the key assumptions made in the basic
HMM formulation presented in Sect. 2.1. This assumption is violated if there is additional
correlation in the observed time series within a state. To demonstrate the consequences
of not accounting for corresponding structure in the model formulation, in this simulation
scenario we consider time-varying mean parameters of the state-dependent gamma distri-
butions, generated using autoregressive processes of order 1, each of themwith fairly strong
persistence.

Figure 5 depicts an example sequence ofmean parameters generated in this way, showing
only the first 200 time points for clarity. Within state 1, the mean of the gamma distribution
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Figure 5. One example (sub-)sequence of gamma mean values generated in Scenario 7.

fluctuates around 0.5, while within state 2 it fluctuates around 4. Thus, the state now deter-
mines the average level of the mean, but the exact value of the mean depends not only on
the state but also on its previous value. For example, in the context of animal movement,
the step length of an animal may depend not only on the current behavioral state, but also
on the previous speed/step length. Especially at fine temporal resolutions, this would in
fact be expected as there will be a certain momentum in the movement. While such fine
resolutions are rarely seen with GPS data, they are nowadays commonly seen in analyses
of accelerometer data, which can also be tackled using HMMs (Leos-Barajas et al. 2016).

With the same rationale as outlined in Scenario 4—just replacing heterogeneity across
individuals by temporal heterogeneity within individuals—it is intuitively clear that, when
the additional correlation is not incorporated in the model, model selection criteria may
favor models with more states than adequate.

Scenario 8 (benchmark, correct model specification) As a benchmark, we also consider
a scenario where the data were generated from exactly the baseline model.

3.2. SIMULATION RESULTS

For each scenario, 100 data setswere generatedwith T = 5000 observations each.Within
a given scenario, to each of these 100 data sets, simple gamma–HMMs were fitted, which
do not take into account the modification implemented. These slightly misspecified models,
with 2–5 states, were fitted to the simulated data sets using numerical maximum likelihood.

For each scenario, Table 1 displays the proportions of the 100 runs in which models
with 2, 3, 4 or 5 states were favored by AIC/BIC/ICL, respectively. Both AIC and BIC
mostly overestimated the number of states that were used to generate the artificial data, in
all scenarios that involve model misspecifications. The AIC performs worse than the BIC
due to the smaller penalty on model complexity (consistent with the results of Celeux and
Durand 2008). The performance of order selection based on AIC and BIC clearly depends
on the severity of the assumption violation. For example, if there were less extreme outliers
in Scenario 1, then of course the performance of AIC and BICwith respect to order selection
would not be as bad as reported here, and similarly in the other scenarios.
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Table 1. Percentages of runs in which the models with 2–5 states are chosen by AIC, BIC and ICL, for all
simulation scenarios.

Simul. scenario Criterion Number of hidden states selected

2 (%) 3 (%) 4 (%) 5 (%)

1 (outliers) AIC – 47 49 4
BIC 30 70 – –
ICL 58 42 – –

2 (inadequate emission distribution) AIC – 27 60 13
BIC – 100 – –
ICL 26 71 3 –

3 (temporal variation) AIC – – 57 43
BIC 14 84 2 –
ICL 100 – – –

4 (individual heterogeneity) AIC 3 13 77 7
BIC 79 15 6 –
ICL 96 1 3 –

5 (semi-Markov state process) AIC – 14 74 12
BIC – 100 – –
ICL 100 – – –

6 (second-order state process) AIC – 1 90 9
BIC 2 98 – –
ICL 92 2 3 3

7 (violation of cond. indep. assumption) AIC – – 28 72
BIC 5 95 – –
ICL 100 – – –

8 (benchmark) AIC 37 43 20 –
BIC 100 – – –
ICL 100 – – –

In the scenarios considered, the ICL performed very well. This can be explained by the
tendency of the ICL to favor non-overlapping solutions, that is HMMs where the state-
dependent distributions are clearly distinct. By virtue of the way the state-dependent distri-
butions were defined, this behavior is appropriate in most of the scenarios considered. The
obvious exceptions are Scenarios 1 and 2—in the former case due to a third, distinct state-
dependent distribution to account for the fairly extreme outliers, and similarly in the latter
case, with a third state-dependent distribution accounting for the right tail of the distribution
within state 2.

3.3. DISCUSSION OF THE SIMULATION RESULTS

In this paper, we focus on analyses where the interest lies in identifying the number
of genuine states of the data-generating process, for example due to a focus on drawing
ecological inference related to the state process. When faced with the choice between a
model with the correct number of states, but a lack of fit in the emission distributions,
and a model with too many states that does fit the data well—cf. Scenarios 1 and 2 above,
comparing models with two vs. such with three states—we argue that in practice it may then
be preferable to choose the former. Of course, the ideal solution would be to re-formulate the



282 J. Pohle et al.

modelwith the correct number of states such that it does fit the datawell (see Sect. 4.3). There
are other situations, for instance thosewhere the aim is to forecast future observations, where
it would be preferable to have an essentially incorrect number of states yet a better model fit.
In the Supplementary Material, we further investigate the trade-off between identifying the
correct number of states and obtaining unbiased estimators of the emission distributions.

In practice, itmaybe the case that individual assumption violations aremuch less dramatic
than those presented in our simulation setups. On the other hand, with complex empirical
data, we will usually be facing more than just one violation of the assumptions involved in
the basic HMM formulation. For example, in the application of HMMs to blue whale dive
data reported in DeRuiter et al. (2016), there were indications of a minor violation of the
assumption of contemporaneous conditional independence, strong individual heterogeneity
and a minor lack of fit of the emission distributions. These deviations of a basic HMM being
fitted from the true data-generating process may effectively accumulate, such that order
selection may be at least as problematic, if not more, than with just a single, yet stronger
assumption violation.

Conceptually, it is of course possible to modify the basic HMM, incorporating the addi-
tional structure in the model formulation, before tackling the problem of order estimation.
For example, in Scenario 2 the reason for the inclusion of additional states, as per recom-
mendation of the model selection criteria considered, is simply the insufficient flexibility
of the state-dependent gamma distribution to adequately capture the observations generated
within state 2. Such a mismatch between the distributional family employed and the empir-
ical distribution can be detected using residual analyses, as discussed in Sect. 4 below. A
natural and easy-to-implement remedy would then be to use a finite mixture distribution
as emission distribution within state 2. Such a model was implemented, for example, in
Leos-Barajas et al. (2016), in that case effectively merging two states associated with low
activity of eagles. Furthermore, for example GPS measurement error can be accounted for
within the model formulation (Patterson et al. 2016), mixed HMMs can be used to accom-
modate individual heterogeneity (Zucchini et al. 2016), and semi-Markov or second-order
state processes can be implemented to better capture the dependence structure (Langrock
2012). When feasible, then improving the model formulation to overcome any substantial
lack of fit should be the gold standard. However, each of these modifications is technically
challenging and thus difficult to realize for practitioners, and corresponding models are also
much more demanding to fit computationally. When viewed in isolation, then each of these
extensions will usually still be computationally feasible. However, simultaneously address-
ing several such patterns will in general be infeasible. Thus, while conceptually it would
seem to be most natural to simply overcome the limitations of HMM formulations that
cause criteria-based order selection to fail, this is not always a useful strategy in practice.
Rather than spending considerable time and effort on technically challenging non-standard
HMM formulations, practitioners will probably seek more pragmatic, goal-oriented ways
to overcome the caveats of information criteria in the context of order selection.

Finally, while overall positive in the particular scenarios considered, the focus of the ICL
on clear separation of the state-dependent distributions is not desirable in general. For exam-
ple, routine movements of most mammals, that is, movements occurring during an animal’s
daily activities, can be dissected into three primary behavioral modes: resting, foraging and
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traveling. While a traveling mode will typically imply movement patterns clearly distinct
from those in the other twomodes, it is intuitively clear that the movement metrics (e.g., step
length) observed in resting and foraging modes, respectively, can actually be very similar,
which would typically translate to associated state-dependent distributions that do clearly
overlap. In corresponding analyses, both within ecology and in other settings, the sensitivity
of the ICL with regard to overlapping state-dependent distributions may hinder inference on
genuinely distinct modes. In SupplementaryMaterial, we provide two additional simulation
experiments (Scenarios 9 and 10) showing biologically realistic situations where the ICL
performs much worse than the BIC due to overlapping emission distributions. Since the
general behavior of the ICL criterion is still poorly understood, we do not recommend its
uncritical use in practice.

4. PRAGMATIC ORDER SELECTION

Given the difficulties outlined above, we suggest the following pragmatic step-by-step
approach to selecting the number of states of an HMM:

Step 1 decide a priori on the candidate models, in particular the minimum and the
maximum number of states that seem plausible, and fit the corresponding range of
models;

Step 2 closely inspect each of the fitted models, in particular by plotting their estimated
state-dependent distributions andbyconsidering theirViterbi-decoded state sequences;

Step 3 use model checking methods, in particular residual analyses, to obtain a more
detailed picture of the fitted models, and to validate or invalidate any given candidate
model;

Step 4 consider model selection criteria for guidance as to how much of an improve-
ment, if any, is obtained for each increment in the number of states;

Step 5 make a pragmatic choice of the number of states taking into account findings
from Steps 2–4, but also the study aim, expert knowledge and computational consid-
erations;

Step 6 in cases where there is no strong reason to prefer one particular model over
another (or several other) candidate model(s), results for each of these models should
be reported.

The proposed strategy applies only to the unsupervised learning case (cf. Sect. 2.2). The
exact procedure we suggest within each step, and the underlying rationale, is detailed below.

4.1. STEP 1: DECIDING ON CANDIDATE MODELS

Regarding Step 1, it is good practice, not only for HMMs, to restrict model selection only
to those candidate models that are plausible a priori. Considering additional, implausible
models increases the likelihood of an undesired selection bias, where, roughly speaking, a
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model is selected not by merit but because it got lucky, with the data at hand giving a more
favorable picture of the model than would be obtained if more data were available (Zucchini
2000). When applying HMMs in movement ecology in particular, we have experienced that
it is seldom useful to consider models with more than four states, (a) because the biologists,
who know their study species extremely well, typically expect 2–4 behavioral states to be
present, and (b) because models with more than four states typically turn out to be difficult
to interpret.

4.2. STEP 2: INSPECTING THE FITTED MODELS

The aim of Step 2 is to develop an understanding of the key patterns picked up in the data
by fitted candidatemodels, and how these relate to biological expectations and the study aim.
This often goes a long way in helping to make an informed choice on the number of states.
For example, consider the standard HMM formulation that is nowadays routinely applied
in movement ecology, where each state is associated with a distinct correlated random walk
movement behavior (Morales et al. 2004). In these settings, the two-state models almost
always exhibit the same key pattern, with one state associated with large step lengths and
small turning angles (sometimes labeled the “exploring” or “traveling” state) and the other
state associated with much shorter step lengths and many more reversals (the “encamped”
or “foraging” state). It is then usually interesting to see what happens when a third state is
included. In many cases, this will lead to either the “encamped” state or the “exploratory”
state splitting up into two states. In the former case, the two states resulting from splitting
the “encamped” state could, for example, correspond to “foraging” and “resting” states,
respectively. (We reiterate at this point that these interpretations are not to be taken too
literally, as the HMM states are in general not going to correspond exactly to behavioral
states.) When further increasing the number of states, it could for example happen that
a state is split, but there is no biological reason to distinguish the resulting two states (cf.
Scenario 2 in Sect. 3), or that the key structure of themodel is unchanged, with the additional
state explaining only a handful of observations (cf. Scenario 1 in Sect. 3). In general, it is
our experience that the more states are included, the more difficult it becomes to assign
biological meaning to the states. Overall, the purpose of Step 2 thus is to get an overview
of the suitability of the models, in relation to biological expectations and intuition, to the
study aim, but also to each other (i.e., what additional feature of the data is explained by the
model with N + 1 states that cannot be explained by the model with N states).

4.3. STEP 3: MODEL CHECKING

The main purpose of Step 3 is model validation, that is the assessment if any given
candidate model adequately represents the data-generating process. Validation of HMMs
via model checking is covered in detail in Chapter 6 in Zucchini et al. (2016), such that here
we focus on the investigation of the role of the number of states. In particular, in order to
make an informed choice of the number of states, it is important to understand what causes
the potential preference for models with many states.
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In the context of HMMs, a model check based on pseudo-residuals (Patterson et al.
2009) could, for example, reveal that the right tail of the empirical step length distribution
can be better captured by a three-state model than a two-state model. This could be due
to inflexibility of the state-dependent distribution assumed, rather than a genuine, that is
biologically meaningful, third state responsible for the most extreme step lengths. As a
second example, the empirical distribution of the data may be captured accurately by a
two-state model, yet the residuals obtained for the two-state model exhibit much stronger
autocorrelation than those for the three-statemodel. This could be an indication of a violation
of the dependence assumptions.

In case of an identification of weaknesses in the model within Step 3, it needs to be
decided whether or not any assumption violation ought to be addressed as part of the model
formulation. For example, more flexible distributional families can be employed (e.g., a
mixture). When there is only a single such problem to overcome, then it will often be
feasible to formulate and fit corresponding more complex models. However, when dealing
with complex time series, there is usually a bit of everything: a minor lack of fit caused by
inflexible state-dependent distributions, a correlation structure not fully captured by a first-
order Markov chain, heterogeneity which is not fully accounted for, etc. Simultaneously,
addressing all these features in the data within an HMM will very quickly lead to heavily
parameterized models, the estimation of which might be very unstable, if feasible at all. In
those cases, it will often be preferable to use a simpler, more stable model which ignores
features that are not pertinent to the aim of the study. For example, if the focus lies on the
effects of environmental covariates on the state-switching dynamics, then a minor lack of
fit in the marginal distribution of the observations may not make any difference.

4.4. STEP 4: CONSIDERING MODEL SELECTION CRITERIA

As demonstrated in Sect. 3, model selection criteria can be misleading when it comes to
order selection. Nevertheless, Step 4 should be implemented to get an overall assessment
of the candidate models. If the improvements in say the BIC are large when increasing
the number of states, then this could be an indication that the additional states are indeed
required. However, it may just as well be an indication that the additional states merely
absorb some structure missing in the model, but have no clear (biological) meaning. A large
difference in AIC, BIC, ICL or any other criterion alone does not prove that the model
with the higher number of states is most suitable. However, if the inclusion of additional
states substantially improves the AIC or BIC, then this does usually indicate problems of
the simpler model, which should be investigated.

4.5. STEP 5: PRAGMATIC ORDER SELECTION

At this point, a lot of information has been gathered which should facilitate the selection
of an appropriate number of states. In our view, order selection should take into account:

• realism of the fitted candidate models, assessed using expert knowledge (as per Step
2);
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• the results from model checking, in particular in relation to the study aim (Step 3);

• model selection criteria for guidance (Step 4);

• potentially computational considerations, if relevant.

As a consequence, the selection of the number of states will necessarily be somewhat
subjective. However, we have experienced that a thorough implementation as detailed in
Steps 1–4 will usually make it fairly easy to pick a suitable N . First of all, the inspection
of the fitted models within Step 2 will often leave only two or perhaps three candidate
models as reasonable contestants (cf. Sect. 5). Together with thorough model checks as
implemented within Step 3, the advantages and disadvantages of the remaining contestants
often become apparent, such that a final pragmatic choice of N can be made. In movement
ecology, pragmatic order selection was effectively implemented for example in Morales
et al. (2004) and DeRuiter et al. (2016).

As in any other statistical modeling exercise, order selection in HMMs can of course
be an iterative process. That is, after going through Steps 1–4, it may become clear that
alternativemodel formulations need to be considered, for instancemodifying the dependence
assumptions, such that one needs to return to Step 1.

4.6. STEP 6: REPORTING OF SEVERAL MODELS

While it will sometimes be straightforward to make a pragmatic choice as described in
Step 5, there will certainly also be cases where two or more candidate models may seem
more or less equally suitable after following the steps detailed above. In those cases, it
is our view that best scientific practice is to report the results of all suitable models (as
recommended also by Burnham and Anderson 2002). In the context of order selection for
HMMs, this translates to acknowledging uncertainty and presenting results accordingly.
However, at least within movement ecology, this is hardly ever done (but see Morales et al.
2004; DeRuiter et al. 2016).

5. CASE STUDY: MUSKOX MOVEMENT

We demonstrate the workflow of our suggested pragmatic approach to order selection
using movement data collected for a single adult female muskox in east Greenland, which
was observed for a period of nearly 3 years. The raw data set comprises T = 25103 hourly
location observations obtained using GPS collars (including about 1% missing locations).
These were used to calculate the hourly step lengths and turning angles, to which we fitted
fairly basic HMMs, using gamma distributions for the step lengths and von Mises distribu-
tions for the turning angles.

Following Sect. 4, we first ought to decide a priori on theminimumandmaximumnumber
of states that seem plausible (Step 1). The most dominant behavioral states are expected to
be “resting/ruminating,” “feeding” and “moving.” Thus, from a biological perspective, three
or four behavioral states for muskoxen seem most reasonable (Schmidt et al. 2016). Since it
is not clear if exactly these behavioral modes will manifest themselves for the given data set,
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Figure 6. Estimated state-dependent distributions formodelswith 2–5 states (one row for eachmodel, gamma step
length distributions in the left column, von Mises turning angle distributions in the middle column), and associated
decoded state sequences (right column). The state-dependent distributions are weighted with the proportion of
time the corresponding state is occupied according to the stationary distribution of the Markov chain.

we included models with 2–5 states in our candidate set. Parameter estimation was carried
out using maximum likelihood as implemented in the R package moveHMM (Michelot
et al. 2016).

For Step 2 (inspecting the fitted models), Fig. 6 displays the emission distributions esti-
mated for the step lengths and the turning angles, respectively, as well as a Viterbi-decoded
sequence of states for a subset of observations. For the two-state model, the fitted distribu-
tions exhibit the standard pattern typically found with these models, with one state involving
large steps and directedmovement and the other statemuch smaller steps andmany reversals.

When adding a third state, the state associated with the smallest steps now involves
hardly any movement (Fig. 6). This corresponds well to the (biological) expectation of a
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“resting”/“ruminating” state. With the low-activity state focusing on this virtually station-
ary behavior, the other two states now provide a more nuanced differentiation of active
movement behavior. More precisely, one of the more active states involves relatively long
steps (mean≈ 286 m) on average and few turnings (directed movement), while the other
active state involves moderate steps (mean≈ 59 m) and many turnings. The former pattern
is strongly indicative of a movement mode without any clear foraging activity, while the lat-
ter suggests foraging behavior with small localized search movements. These results make
biological sense and agree with previous empirical findings (Schmidt et al. 2016).

The four-state model can most easily be compared to the two-state model described
above. Roughly speaking, when going from two to four states, both the more active and the
less active modes are split into two separate states. While the split of the inactive state seems
biologically sensible (see above discussion), it is much less clear if the distinction between
“moving” and “long-distance traveling” is really necessary and useful. As discussed in Sect.
3.3, in such a situation it would be natural to try to effectively merge these states via the use
of a more flexible emission distribution, for instance a mixture distribution.

Adding a fifth state does not add any clear value and muddles interpretation (Fig. 6).
In the corresponding model, there are now two states which involve hardly any movement
(with hourly step length means of 3.4 and 10.8 m, respectively), which could simply be
artifacts of temporal variation in GPS measurement error (here expected to be ca. 10 m).

We restrict model checking (Step 3) to the pseudo-residuals of the step lengths, since
turning angles are not as easily amenable to a residual analysis due to their circular nature
(Langrock et al. 2012). Figure 7 shows the quantile–quantile plots of the pseudo-residuals
and their autocorrelation functions (ACFs), for each estimated model. The pseudo-residuals
of the two-state model indicate a fairly substantial lack of fit in both the upper and the
lower tail, while the models with three states or more appear to provide a reasonable fit
of the marginal distribution of the step lengths. However, for all models considered, the
respective ACFs clearly indicate another source of lack of fit, namely that there is some diel
variation in the data, which is not taken into account within our models. As we have seen
in the simulation experiments (Sect. 3), this may already cause criteria to point to models
with more states than biologically sensible. And indeed, the sample ACF of the residuals
obtained in case of the five-state model shows a less strongly marked diel pattern than the
ACF of the residuals for the two-state model.

For Step 4 (considering criteria), Table 2 displays the AIC, BIC and ICL values for each
model fitted. Both AIC and BIC favor the five-state model. In fact, the two are further
improved when considering even more states (results not shown). This could indicate that
there is much more structure in the data than assumed by a basic HMM as the ones fitted
here. Indeed, muskox move in a highly seasonal and dynamic environment (the Arctic)
where environmental conditions can change rapidly over time (e.g., weather patterns) and
space (e.g., heterogeneity in availability of vegetative cover). The movement patterns of
muskoxen are therefore too complex to be fully captured with a simple three-state HMM
with strong dependence assumptions. Notably, the ICL does not point to the most complex
model being fitted but to the four-state model.

At this point, there are two options, and it depends on the aim of the study which of the
two should be pursued. First, it may be relevant to explicitly account for the diel patterns
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Figure 7. Quantile-quantile plots and autocorrelation functions of the pseudo-residuals obtained for the four
different models fitted (with 2–5 states, from top to bottom) to the muskox movement data.
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Table 2. AIC, BIC and ICL values obtained for the different models fitted to the muskox movement data.

No. states No. parameters AIC BIC ICL

2 12 350,199.3 350,296.7 354,829.3
3 21 345,285.4 345,455.8 351,544.5
4 32 343,404.9 343,664.6 350,159.9
5 45 342,782.0 343,147.2 351,247.7

The models selected by the different criteria are highlighted in bold face font.

exhibited by the muskox, say when investigating the state-switching dynamics in relation
to internal and external drivers (Li and Bolker 2017). In that case, one needs to return to
Step 1 and formulate corresponding candidate models and then proceeding with Steps 2–6.
It could also be worthwhile to investigate whether more flexible emission distributions, for
instance mixtures, would substantially improve the fit of the models with only two or three
states. Second, it may be the case that the diel variation and any minor lack of fit of the
emission distributions can be neglected because it does not interfere with the study aim. For
example, the primary interest may lie in identifying the spatial regions in which an animal
is most likely to forage during a specific time window in which diurnal or environmental
variation is low (i.e., high Arctic summer with 24 h of daylight and abundant vegetation).
In such a case, whether or not the exact correlation structure of the state process is captured
will likely have very little influence on the state decoding.

As this case study is supposed to merely illustrate the workflow of the pragmatic order
selection approach suggested, we do not pursue the former of the two options. If the latter
route is taken, then taking into account the findings from above, it is clear that either the
three-state or the four-state model constitutes a pragmatic yet justified choice (Steps 5, 6).

6. DISCUSSION

In this paper, we have demonstrated why model selection criteria are problematic with
respect to choosing the number of states of an HMM. More specifically, AIC and BIC
tend to favor models with too many states, since any structure in the data that is neglected
in the model formulation will, to some extent, be absorbed (“mopped up”) by additional
model states that do not have a clear interpretation anymore. Since the performance ofmodel
selection criteria strongly depends on the severity of any deviations of theHMMformulation
from the unknown true process, we believe that no one-size-fits-all objective and universally
applicable criterion canbedeveloped for order selection inHMMs.The ICLcriterion appears
to overcome several of the problems associated with the more established AIC and BIC,
yet it does not come without its own limitations, namely a sensitivity to overlapping state-
dependent distributions. Therefore, we proposed a pragmatic step-by-step approach to order
selection which, while lacking objectivity, we believe is the best possible practical solution.

We focused exclusively on inference based on maximum likelihood and did not inves-
tigate order selection under a Bayesian paradigm. In principle, the possibility to use priors
to effectively exclude models with undesirably large numbers of states seems appealing.
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Robert et al. (2000) proposed reversible jump Markov chain Monte Carlo algorithms in
particular for choosing the number of states. Notably, those authors also find that “adding
structure [...] to amodel pushes the posterior distribution of k towards smaller values” (where
k is the number of states), which indicates that the conceptual problem arises in both infer-
ential frameworks. Overall, we do believe that the Bayesian framework may in principle
offer opportunities for formalizing the concept of pragmatic order selection, but also that
a certain level of subjectivity is unavoidable—to use priors to enforce a small number of
states in our view effectively just shifts the problem.

Many of the key principles brought forward in this paper have previously been presented
in the area of cluster analysis (Hennig 2015). In the context of finding the “true” number of
clusters for a given data set, Hennig argues that there is a “misguided desire for uniqueness
and context-independent objectivity.” Similarly, there may also be different concepts of
what constitutes a “true” state of an HMM. Corresponding definitions may be based on the
data alone, on external a priori information, or on HMM fitting results, and are to be seen in
relation to the study aim. As also pointed out in Hennig (2015), the researcher’s modeling
decisions need to be made transparent. While the pragmatic approach to order selection
presented in this paper clearly depends on subjective decisions made by the researcher, a
corresponding analysis nevertheless will be as scientific, if not more scientific, than any
allegedly objective choice.

The somewhat problematic notion of a “true” state is in fact exacerbatedwithinmovement
ecology, where the meaning of a state may strongly depend on the time interval the Markov
chain operates on, and hence on the sampling protocol. Nevertheless, there is a strong desire
within the community to use statistical models to infer actual behavioral states from tracking
data. In those cases, pragmatic order selection will often lead to the choice of a model with
a small number of interpretable states, at the expense of a lack of fit of the corresponding
model, and potentially biased estimation in particular of the state-dependent distributions.
The muskox case study illustrates this trade-off: here a model with five or more states, while
superior in the goodness of fit, would not be useful in say determining drivers of resting and
foraging behavior, simply because there is no clear correspondence between model states
and behavioral states. In other situations, for instance when interest lies in forecasting, it
can of course be preferable to use a larger model, essentially with too many states, which
fits the data well.

Overall, the selection of the number of states clearly is an important yet challenging issue,
which requires statistical expertise and modeling experience, but also a good understanding
and intuition of the data and research question at hand. Within statistical ecology, this
underlines the need for statisticians and ecologists to closely collaborate in all stages of an
analysis.

[Received January 2017. Accepted May 2017. Published Online June 2017.]
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