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Composite Likelihood Inference for
Multivariate Gaussian Random Fields

Moreno Bevilacqua, Alfredo Alegria, and Daira Velandia,
and Emilio Porcu

In the recent years, there has been a growing interest in proposing covariance mod-
els for multivariate Gaussian random fields. Some of these covariance models are very
flexible and can capture both themarginal and the cross-spatial dependence of the compo-
nents of the associatedmultivariateGaussian randomfield.However, effective estimation
methods for these models are somehow unexplored. Maximum likelihood is certainly a
useful tool, but it is impractical in all the circumstances where the number of observa-
tions is very large. In this work, we consider two possible approaches based on composite
likelihood for multivariate covariance model estimation. We illustrate, through simula-
tion experiments, that our methods offer a good balance between statistical efficiency
and computational complexity. Asymptotic properties of the proposed estimators are
assessed under increasing domain asymptotics. Finally, we apply the method for the
analysis of a bivariate dataset on chlorophyll concentration and sea surface temperature
in the Chilean coast.
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1. INTRODUCTION

In the last years, there has been a great demand for models describing the evolution of
environmental or geophysical spatial processes. In particular, there is a considerable need
for modeling the simultaneous behavior of different variables observed in the same spatial
region and for providing accurate prediction maps with associated uncertainties.

Multivariate Gaussian random fields (MGRF throughout) are important tools to model
and predict these kind of data. Since optimal prediction at unknown locations requires the
knowledge of the covariance function, a common practice in geostatistics is to select some
parametric classes of covariance functions, so that the covariance is known up to a parameter
vector, being estimated through some estimation method.
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Nevertheless, modeling the covariance function of such MGRF is not an easy task. For
instance, the linear model of coregionalization [LMC , see Wackernagel (2003)] has been
criticized for having a number of drawbacks, and we refer the reader to Porcu et al. (2013),
Gneiting et al. (2010) and Genton and Kleiber (2015) among others.

The lack of flexible multivariate models has justified recent efforts (see Genton and
Kleiber (2015) for a review). Among them, Gneiting et al. (2010) and Apanasovich et al.
(2012) extend the Matérn model to the multivariate case and Li and Zhang (2011) pro-
pose a class of asymmetric models obtained from stationary multivariate symmetric covari-
ance models. These models are very flexible and can capture both the marginal and the
cross-spatial dependence, as well as different levels of smoothness associated, the colocated
correlation between the components and the possible presence of asymmetry in the data.

Literature concerning estimation of MGRF has been focussed on the LMC model.
Goulard and Voltz (1992) and Pelletier et al. (2004) proposed to estimate it extending least
square-type estimators, while Zhang (2007) proposed a ML estimation method capable of
handling high-dimensional data exploiting the EM algorithm.

Effective estimation methods, outside the LMC model, for covariance models are some-
how unexplored.Maximum likelihood (ML) is probably the best method of estimationwhen
dealing with MGRF, but the exact computation of the likelihood, for N irregularly spaced
data, requires O((Np)3) operations and O((Np)2) memory, with p being the number of
components of the MGRF.

In the case of scalar-valued fields, different approaches have been proposed in order
to find estimation methods with a good balance between computational complexity and
statistical efficiency for large data set. Some of these approaches are based on the composite
likelihood (CL) method as, for instance, in Bevilacqua et al. (2012), Bevilacqua and Gaetan
(2015), Stein et al. (2004) and Eidsvik et al. (2014).

Composite likelihood (Lindsay 1988) is a general class of estimation methods based on
the likelihood of marginal or conditional events (see Varin et al. (2011) for a review), useful
for performing statistical inference in complex problemswhere standard likelihoodmethods
are difficult to apply. In this paper, we propose two estimation methods for multivariate
covariance models, based on CL idea: the former being based on weighted cross- pairwise
likelihood (pl1) and the latter being based on weighted pairs of pairwise likelihoods (pl2).

We discuss pros and cons of the two methods, including the type of weights that can
improve the statistical and computational efficiency, the computation of the standard errors
and the asymptotic properties of the estimates under increasing domain asymptotics. We
show that the pl1 and pl2 estimation methods are useful tools when estimating the covari-
ance model of aMGRF. This is done through simulations experiments, considering different
covariance models, such as the multivariate Matérn, the LMC and the asymmetric model
proposed in Li and Zhang (2011), using the multivariate covariance tapering (CT) (Bevilac-
qua et al. 2016) as benchmark.

Finally, we apply the proposedmethod to the analysis of a large bivariate dataset (approx-
imatively 70000 observations) on chlorophyll concentration and sea surface temperature in
the Chilean coast. In particular, we fit a bivariate Matérn model, and consider the prob-
lem of model selection between three different versions of the bivariate Matérn (separable,
constrained and full).
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The paper is organized as follows. Section 2 briefly reviews somemultivariate covariance
models and their estimation throughMLmethod. Section 3 describes our proposal. In Sect. 4,
through a simulation study, we compare pl1 and pl2 from statistical and computational
efficiency point of view, using ML and CT methods as benchmark. The real data example is
described in Sect. 5. Finally, in Sect. 6, we give some conclusions. Supplementary material
contains the asymptotic results of the proposed methods.

2. MULTIVARIATE COVARIANCE MODELS AND MAXIMUM
LIKELIHOOD

Let Z(s) = {(Z1(s), . . . , Z p(s))T } be a p-variate Gaussian field with continuous spatial
index s ∈ R

d . The assumption of Gaussianity implies that the first- and second-order
moments characterize completely the finite-dimensional distributions. In particular, we
assume weak stationarity throughout, so that the mean vector μ = E(Z) is constant and the
covariance function between Z(s1) and Z(s2), for any pair s1, s2 in the spatial domain, is
represented by a mapping C : R

d → Mp×p defined through

C(h) = [
Ci j (h)

]p
i, j=1 = [

cov
(
Zi (s1), Z j (s2)

)]p
i, j=1 , h = s1 − s2 ∈ R

d . (1)

The function C(h) is called matrix-valued covariance function. Here, Mp×p is the set of
squared, symmetric and positive definite matrices. For i = j , the functions Cii are called
autocovariances ormarginal covariances of Zi (·), i = 1, . . . , p, while for i �= j themapping
Ci j is called cross-covariance between Zi (·) and Z j (·). The matrix- valued mapping C must
be positive definite, which means that, for a given realization Z = (Z(s1)T , . . . , Z(sN )T )T ,
the (Np) × (Np) covariance matrix � := [C(sm − sn)]Nm,n=1 is positive definite, where
Z(si ) = (Z1(si ), . . . Z p(si ))T and C(sm − sn) = [Ci j (sm − sn)]pi, j=1, form, n = 1, ..., N ,
is the generic submatrix. Hereafter for convenience of notation, we setCi j (sm−sn) = ci jmn .

On the other hand, the second-order properties of the MGRF can be represented by the
cross-variogram, defined as

2γi j (s1 − s2) = E[{Zi (s1) − Zi (s2)}{Z j (s1) − Z j (s2)}].

Note that, under weak stationarity assumptions, the linear identity

2γi j (h) = 2Ci j (0) − Ci j (h) − C ji (h)

shows that covariance and variogram are equivalent in terms of modeling.
In order to illustrate the estimation methods proposed in this paper, we shall assume

throughout that themappingC comes fromaparametric family ofmatrix-valued covariances
{C(·; θ), θ ∈ � ⊆ Rk}, with � an arbitrary parametric space. Recent literature has been
preoccupied on offering new models for matrix-valued covariances. For a thorough review,
the reader is referred to Genton and Kleiber (2015), with their exhaustive list of references.
Here, we shall merely list those parametric models that will be used through the paper. We
have already mentioned the linear model of coregionalization (LMC) that has been popular
for over 30 years (Wackernagel 2003). It consists of representing the p-variate Gaussian
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field as a linear combination of q-independent univariate fields, with q = 1, . . . , p. The
resulting matrix-valued covariance function takes the form:

C(h; θ) =
[ q∑

k=1

αikα jk Rk(h,βk)

]p

i, j=1

, (2)

with A := [αlk]
p,q
l,k=1 being a p × q-dimensional matrix with full rank and with Rk being

a univariate parametric correlation model with parameter vector βk . Clearly, we have θ =
(vec(A)T ,β1

T , . . . ,βq
T )T .

Constructive criticism about this model has been expressed, for instance, by Gneiting
et al. (2010), Apanasovich et al. (2012) and Daley et al. (2015). For instance, if αik �= 0 for
each i, k the smoothness of any component defaults to that of the roughest latent process.

Another popular construction, called separable, is obtained through:

C(h, θ) = [
ρi jσiσ j R(h,ψ)

]p
i, j=1 , ρi i = 1, (3)

with R(·,ψ) a univariate parametric correlation model, σ 2
i > 0 , i = 1, . . . , p, are the

marginal variances, and the ρi j is the colocated correlation coefficient between Zi (s) and
Z j (s). In this case, θ = (ρ,ψT , σ 2

1 , . . . , σ 2
p)

T where ρ is the vector containing all the
pairwise colocated correlation coefficients ρi j , i = 1, . . . , p − 1, j = i + 1, . . . , p. This
construction assumes that the components of the multivariate random field have the same
spatial correlation structure. Therefore, the model is not able to capture the different scales
and smoothness of the components. Note that the separable model is a special case of LMC
model in Eq. (2).

A generalization of the model (3), which allows to overcome this drawback, is:

C(h, θ) = [
ρi jσiσ j R(h;ψ i j )

]p
i, j=1

, ρi i = 1. (4)

Bevilacqua et al. (2015) use this general class in order to test the significance of the correla-
tion between the components of a bivariate Gaussian random field. In this general approach,
the difficulty lies in deriving conditions on the model parameters that result in a valid mul-
tivariate covariance model. For instance, Gneiting et al. (2010) proposed a special case of
the construction in Eq. (4), with R belonging to the Matérn family, being defined through:

R(h;ψ) = 21−ν

�(ν)

(‖h‖
α

)ν

Kν

(‖h‖
α

)
, (5)

whereψ = (α, ν), α > 0 is the scale parameter, and ν > 0 is a smoothness parameter. In the
bivariate case, the authors find necessary and sufficient conditions based on the parameters
for positive definiteness, while for the case p ≥ 3 they only offer sufficient conditions. This
kind of construction allows for a nice closed form, together with the possibility of different
spatial scales and smoothness, different variances and colocated correlation parameters.

The previous models are symmetric, i.e., they assume that Ci j (h) = C ji (h), but in some
circumstances, such hypothesis can be restrictive. In this case, asymmetric models must be
taken into account, as proposed in Li and Zhang (2011):
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C(h, θ) = [C∗
i j (h + ai − a j ;ϑ)]pi, j=1, (6)

whereC∗
i j (h,ϑ) is a valid symmetric parametric covariancemodel.Here θ=(ϑ, a1, . . . , a p)

T

where ai ∈ R
d , for i = 1, . . . , p, are the vector parameters which allows to introduce asym-

metry in the symmetric model.
Since we are assuming that the state of truth is represented by some parametric family of

matrix-valued covariances {C(·; θ), θ ∈ � ⊆ R
k}, we may use the abuse of notation �(θ)

for the covariancematrix�, in order to emphasize the dependence on the unknownparameter
vector. For a N -dimensional realization from a p-variate Gaussian field, the log-likelihood
can be written as

l(θ) = −1

2
log |�(θ)| − 1

2
Z T [�(θ)]−1Z. (7)

The most time-consuming part when calculating (7) is to evaluate the determinant and
inverse of�(θ). The most widely used algorithms, such as Cholesky decomposition, require
up to O((Np)3) operations and O((Np)2) memory, and this can be prohibitive if N is
large. Various approximation methods have been developed to address this computational
problem. For instance, the CT method has been proposed in order to reduce the number of
operations and memory requirement in the case of scalar- valued Gaussian fields, for both
estimation (see Kaufman et al. (2008), Shaby and Ruppert (2012), Bevilacqua et al. (2016)
in the multivariate case) and prediction (Furrer et al. 2006). The method consists in setting
to zero certain elements of the covariance matrix �(θ), by multiplying �(θ) element by
element with a sparse matrix coming from a multitaper function. Let us denote with T (d)

the Np × Np matrix associated with a multitaper function as, for instance, those described
in Bevilacqua et al. (2016).

The “tapered” covariance matrix is then obtained through �CT (θ) = �(θ)◦T (d), where
◦ denotes the Schur product. The multitaper vector parameters d include the (possibly
different) compact supports, these being fixed in a way to determine the desired level of
sparseness for the construction above. Then, the tapered likelihood is defined as:

lCT (θ ,d) = −1

2
log |�CT (θ)| − 1

2
Z T (�CT (θ)−1 ◦ T (d))Z, (8)

and algorithms for sparse matrices can be exploited in order to compute (8) efficiently.

3. COMPOSITE LIKELIHOOD METHODS

We propose two alternative versions of the CL approach in the multivariate context:

(a) First, let us consider the bivariate random vector based on the cross-pairs Y i jmn =
[
Zi (sm), Z j (sn)

]T , for i, j = 1, . . . , p and m, n = 1, . . . , N , with associated log-
likelihood

li jmn(θ) = −1

2

(
log |Qi jmn| + Yᵀ

i jmnQ
−1
i jmnY i jmn

)
, θ ⊂ �,
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where

Qi jmn =
(
ciimm ci jmn

− c j jnn

)

. (9)

Here for convenience of notation, we drop out the dependence on θ of the generic element
ci jmn . We define the index set �1 = �

(1)
1 ∪ �

(2)
1 ∪ �

(3)
1 , where

�
(1)
1 = {(i, j,m, n) : m = 1, . . . , N − 1, n = m + 1, . . . , N , i= j=1, . . . , p},

�
(2)
1 = {(i, j,m, n) : m = 1, . . . , N , n = m, . . . , N , i=1, . . . , p − 1, j=i+1, . . . , p},

�
(3)
1 = {(i, j,m, n) : m=1, . . . , N − 1, n=m + 1, . . . , N ,

j=1, . . . , p − 1, i= j + 1, . . . , p}.

Then, the first objective function, based on cross-pairs, is defined as

pl1(θ) =
∑

(i, j,m,n)∈�1

li jmn(θ)wi jmn, (10)

where wi jmn are positive suitable weights.

(b) The second version of CL we propose is based on the four- dimensional random
vector X i jmn = [

Zi (sm), Zi (sn), Z j (sm), Z j (sn)
]T , for i, j = 1, . . . , p andm, n =

1, . . . , N , with associated log-likelihood

gi jmn(θ) = −1

2

(
log |	i jmn| + XT

i jmn	
−1
i jmnX i jmn

)
,

where

	i jmn =

⎛

⎜⎜⎜
⎝

ciimm ciimn ci jmm ci jmn

− ciinn ci jnm ci jnn
− − c j jmm c j jmn

− − − c j jnn

⎞

⎟⎟⎟
⎠

. (11)

Thus, the second approach of the CL we propose is defined as:

pl2(θ) =
∑

(i, j,m,n)∈�2

gi jmn(θ)wi jmn, (12)

where the index set �2 is defined as:

�2 = {(i, j,m, n) : i = 1, . . . , p − 1, j = i + 1, . . . , p,

m = 1, . . . , N − 1, n = m + 1, . . . , N }.

Therefore, themaximumCL estimator for bothmethods is given by θ̂a=argmaxθ pla(θ),
a = 1, 2. Some comments are in order:

• The function pl1(θ) involves the marginal pairwise log-likelihood associated with the
i − th component for i = 1, . . . , p and the cross-pairwise log-likelihood. In fact,
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pl1(θ) can be rewritten as

pl1(θ) =
p∑

i=1

N−1∑

m=1

N∑

n=m+1

liimn(θ)wi imn +
p−1∑

i=1

p∑

j=i+1

N∑

m=1

N∑

n=m

li jmn(θ)wi jmn

+
p−1∑

j=1

p∑

i= j+1

N−1∑

m=1

N∑

n=m+1

li jmn(θ)wi jmn .

The first term is the contribution of each pairwise likelihood associated with the i − th
component. The second and the third terms, instead, involve the cross-pairwise log-
likelihoods. The reason to split the contribution of the cross-pairwise log-likelihood
into two parts is that li jmn(θ) �= l j imn(θ) because ci jmn(θ) �= c jimn(θ) under asym-
metry. In the special case of multivariate symmetric models, pl1(θ) simplifies to

pl1(θ) =
p∑

i=1

N−1∑

m=1

N∑

n=m+1

liimn(θ)wi imn +
p−1∑

i=1

p∑

j=i+1

N∑

m=1

N∑

n=1

li jmn(θ)wi jmn . (13)

Genton et al. (2015) use (13) in order to estimate multivariate max stable processes
considering only multivariate symmetric covariances of a certain type.

• The role of the weights wi jmn in pla(θ), a = 1, 2, is to save computational time and
to improve statistical efficiency. Weight functions with compact support have clear
computational advantages and can improve the statistical efficiency, as shown in Joe
and Lee (2009), Davis and Yau (2011) and Bevilacqua et al. (2012). A possible choice
for the weights wi jmn in Eqs. (10) and (12) is the simple cutoff function:

umn(κi j ) =
{
1, hi jmn ≤ 1

0, hi jmn > 1
, (14)

where hi jmn = ‖sm − sn‖
κi j

, or alternatively, a smoother function such as a correlation

function with compact support can be used. An example is the Bohman function
(Gneiting 2002):

vmn(κi j ) =

⎧
⎪⎨

⎪⎩

(
1 − hi jmn

) (
sin(2πhi jmn)

2πhi jmn

)
+

(
1 − cos(2πhi jmn)

2π2hi jmn

)
, hi jmn ≤ 1

0, hi jmn > 1
.

(15)
The choice of the compact supports, κi j ’s, in the weight function is not in general an
easy task. Bevilacqua et al. (2012) proposed, in the univariate case, a formal criterion
based on the optimization of the trace of the Godambe information matrix, but this
method can be computationally hard. An ad hoc strategy is to fix the compact support
as a fraction of the (empirically estimated) practical range of the covariance function
(Bevilacqua and Gaetan 2015). We follow this strategy in the simulation study.
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Note that with the proposal denoted pl1, it is possible to use different types of weights.
In particular, Eq. (10) shows that it is possible to use different weights for the marginal
and cross-pairwise likelihoods. Instead, for the pl2 case, only weights of the second
type are allowed. For instance, if p = 2, then we can use w11mn , w22mn and w12mn for
pl1, while for pl2 we can just use w12mn . In this respect, pl1 is more flexible since it
allows to consider different weight functions.

• For the pl1 case, a bivariate Gaussian distribution must be evaluated at each sum and a
4-variate Gaussian distribution in the second case. The order of computation is, in the

first case,O
(

Np(Np−1)
2

)
, while in the second case, it isO

(
Np(N−1)(p−1)

4

)
, when con-

sidering the unweighted version of the two methods. When considering the weighted
versions, the order of computation depends also on the choice of the (compactly
supported) weight functions. In the simulation study, we compare the computational
performance of the two methods using both the weighted and unweighted versions.

• One of the benefits of pl1 and pl2 is that, as outlined in Varin et al. (2011), composite
likelihood requires only model assumptions on the lower-dimensional marginal den-
sities and not detailed specification of the full joint distribution. Varin et al. (2011) call
this feature robustness of composite likelihood. In our case, only a two- dimensional
or a four-dimensional Gaussian assumption is required for pl1 and pl2, respectively.
In this sense, pl1 is more robust than pl2.

• Throughout the study, we have supposed to work in the isotopic case (Wackernagel
2003). Under this setting, each component of the MGRF is observed at the same
location sites. In the heterotopic case, such randomfield Zi (·), i = 1, . . . , p is observed
at points sni , n = 1, . . . , Ni , at possibly different location sites. In this case, a little
modification of the index set �1 in pl1 is needed in order to take into account the
different location sites and the different number of locations. Note that pl2 is not
defined in this case unless Ni = N j for i �= j .

In the Supplementary material, we show that the maximum CL estimators are consistent
and asymptotically normal under increasing domain asymptotics. Under these results, the
inverse of the Godambe information matrix Ga , defined through

Ga(θ) = Ha(θ)Ja(θ)−1Ha(θ)T , a = 1, 2, (16)

where

Ha(θ) = −E[∇2 pla(θ)], Ja(θ) = E[∇ pla(θ)∇ pla(θ) T ], a = 1, 2, (17)

is the asymptotic variance of the pla , a = 1, 2 estimators. In the Supplementary material,
we offer closed-form expressions for the matrices Ha(θ) and Ja(θ), for a = 1, 2.

Computation of the standard errors requires consistent estimation of the matrices Ha(θ)

and Ja(θ), for a = 1, 2. This can be achieved through the plug-in estimates Ha (̂θa) and
Ja (̂θa), a = 1, 2. Nevertheless, the latter becomes computationally unfeasible for large data
sets since it is of order O((Np)4). In order to estimate Ja (̂θa), we extend to the multivariate
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case the subsampling method as described in Heagerty and Lumley (2000). Provided that
W−1 Ja (̂θa) converges to a matrix J ∗

a as n → ∞, where W is the sum of the weights
involved in the estimation, we use the subsampling method in order to obtain an estimate Ĵ ∗

a

of J ∗
a and then estimate Ja (̂θa) through W Ĵ ∗

a . Given S1, . . . , SM subsets of {1, 2, . . . , n},
associated with the observation points {s1, s2, . . . , sn}, the estimator is defined as

Ĵ ∗
a = 1

M

M∑

k=1

1

W (k)
a

∑

(i, j,m,n)∈�a

(i ′, j ′,m′,n′)∈�a

[∇ pla]i jmn[∇ pla]ᵀi ′ j ′m′n′, wi jmnwi ′ j ′m′n′ , a = 1, 2,

(18)
where W (k)

a = ∑
(i, j,m,n)∈�a

wi jmn . Here, the pairs (i, j) and (i ′, j ′) belong to Sk and the
analytic expression of [∇ pla]i jmn , a = 1, 2 is offered in the Supplementary material. The
subsets are derived gathering the points that fall in a collection of overlapping subregions
of the same shape of the region of observations but of smaller volume (Lee and Lahiri
2002). Then, the asymptotic covariance matrix of θ̂a can then be estimated by using the
subsampling approximation

̂G−1
a (̂θa) = H−1

a (̂θa)(W Ĵ ∗
a )H−1

a (̂θa). (19)

and standard error estimation of each parameter is computed by taking the square root of

the diagonal elements of ̂G−1
a (̂θa). As outlined in Bevilacqua et al. (2012), computational

reasons can drive the choice of the number of subsets M . For instance, if M grows at a rate
O((Np)2/3), evaluation of J ∗

a implies an order of computation O((Np)2) that is the same
of Ha and pla .

Finally, as in the classical likelihood framework, model selection based on CL is feasible.
Model selection is a major problem in multivariate spatial statistics, since when increasing
the number of components of the vector random field, the complexity of the associated
covariance models grows up quickly, and the choice of a parsimonious model can be trou-
blesome. Following Varin and Vidoni (2005), the CL information criterion (CLIC) selects
the model maximizing

CLIC(̂θa) = pla (̂θa) + tr(Ja (̂θa)Ha (̂θa)
−1), (20)

where the estimation of Ja (̂θa) has been discussed previously.

4. SIMULATION STUDY

The aim of this section is to compare the performance of pl1 and pl2, with ML estima-
tion method, from statistical and computational efficiency point of view. Multivariate CT,
described in Sect. 2, is used as benchmark. We work under the bivariate case (p = 2), and in
particular, we consider N location sites, being uniformly distributed on the square [0, 1]2.
In the simulation study, since we want to compare pla , a = 1, 2 with ML, we choose a
relatively small number of observations by fixing N = 300 so that we are considering 600
observations. The maximum distance between the location sites is κmax = 1.339.
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We consider two bivariate covariance models, the former being obtained through Eqs.
(4) and (5), fixing νi j = 0.5; this choice relates to bivariate exponential model, defined as

C(h, θ) =
[
ρi jσiσi e

− ‖h‖
ψi j

]2

i, j
, (21)

where ρi i = 1 and θ = (ρ12, ψ11, ψ12, ψ22, σ
2
1 , σ 2

2 )T . Here, σ 2
m > 0 and αi i > 0,

i = 1, . . . 2 are, respectively, the variance and scale parameters, while ψ12 > 0 and ρ12

are, respectively, the cross-scale and the correlation parameter that describes the marginal
correlation between the components.

The second model is a special case of the bivariate LMC model in Eq. (2):

C(h; θ) =
[

2∑

k=1

αikα jke
− ‖h‖

βi

]p

i, j=1

, (22)

where βi > 0 and [αlm]2l,m=1 is a matrix of rank 2.
Multivariate CT is performed considering a separable bivariate taper function, given by

[T (h, b)]2i, j=1 (Bevilacqua et al. 2016), where T (h, b) is a univariate compactly supported

correlation function of the Wendland type i.e, T (h; b) =
(
1 + 4 ‖h‖

b

) (
1 − ‖h‖

b

)4

+. This is
a special case of a general class of tapers proposed in Daley et al. (2015). In this case, the
taper matrix is given by T (b) = 1⊗ W where 1 is a 2× 2 unit matrix and W is the N × N
sparse correlation matrix associated with the Wendland function. In the simulation study,
the compact support b has been fixed in order to achieve 2.5% of nonzero values in the
tapered matrices.

4.1. STATISTICAL EFFICIENCY COMPARISON

Comparison in terms of statistical efficiency is taken through the sample relative mean
squared error, defined through

REa(θ i ) = MSEML(θ i )

MSEa(θ i )
, a = 1, 2,CT (23)

for i = 1, . . . , k where MSEML(θ i ), MSECT (θ i ) and MSEa(θ i ) are the sample mean
squared error of ML, CT and pla , a = 1, 2, respectively, associated with the generic
parameter θ i .

As global measure of relative efficiency, we consider

GREa(θ , k) =
(
det(VML(θ))

det(Va(θ))

)1/k

, a = 1, 2,CT

where VML, VCT and Va , a = 1, 2 are the sample variance–covariance matrices of ML, CT
and pla , respectively, k is the number of parameters involved in the estimation, and det(F)

is the determinant of the matrix F .
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Figure 1. Boxplots of the bivariate exponential model (scenario A) estimates using maximum likelihood (ML)
covariance tapering (CT) and CL using (plwa ) and not using (pla ) (a = 1, 2) compact support weight functions
when the correlation between the components is 0.5.

We consider three scenarios (denoted “A,” “B,” “C”), and for each scenario, we simulate
1000 realizations from a bivariate zero mean GRF, using Cholesky decomposition. Then,
we estimate using ML, CT and both weighted and unweighted pla , a = 1, 2. Let us give
more details about the indicated scenarios:

(A)The model in Eq. (21) with constraints on the scales parameters. Specifically, we
set σ 2

1 = σ 2
2 = 1, ψi i = prii

3 , i = 1, 2, ψ12 = ψ11+ψ22
2 and ρ12 = 0.1, 0.5, 0.9,

where pr11 = 0.2 and pr22 = 0.15 are the practical ranges for the first and second
components. In this case, θ = (ρ12, ψ11, ψ22, σ

2
1 , σ 2

2 )T and we estimate through CT
and pla , for a = 1, 2 with the following weight function :

• For pl1, we choose wi imn = umn(κi i ) with κi i = prii
2 , i = 1, 2 and w12mn =

vmn(κ12) with κ12 = 0.5(κ11 + κ22)

• For pl2, we choose w12mn = umn(κ) with κ = κ11+κ22+κ12
3 and for CT we fix

b = κ .
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Note that in pl1 we choose the marginal compact supports as a fraction of the practical
ranges, and for pl2 and CT, we fix the compact support equal to the practical range. Table 1
shows REa(θ i ), i = 1, . . . , 5 and GREa(θ, 5) for a = 1, 2,CT when ρ12 = 0.1, 0.5, 0.9.
In the same Table, we report the results for unweighted pl1 and pl2.

Note that, when increasing the correlation between the random fields from 0.1 to 0.9,
the relative efficiency of the colocated and scale parameters changes substantially for pl1,
but not for pl2. By contrast, the efficiencies of the variance parameters are not affected by
the correlation. Table 1 also shows that using compactly supported weight functions is a
good choice for both methods when looking at the global measure of relative efficiency.
Nevertheless, the relative efficiency of variances parameters does not improve when consid-
ering the weighted version. Overall pl2 improves the global measure of relative efficiency
of pl1 of 10 percent approximatively. CT performs satisfactorily, in particular for the ρ12

and variances parameters, but pl2 outperforms CT in terms of global measure of efficiency.
Figure 1 depicts the boxplots of each parameter for ML, CT and weighted and unweighted
pla a = 1, 2.

(B) The model in Eq. (22), with β1 = 0.2/3, β2 = 0.15/3, αi i = √
1 − x i = 1, 2,

and the constraint α12 = α21 = √
x , with x = 0.003, 0.067, 0.29. Under this

setting, the bivariate random field has unit variance, with marginal practical ranges
equal to pr11 = 0.2 and pr22 = 0.15 and correlation between the components
approximatively equal to 0.1, 0.5, 0.9 when x = 0.003, 0.067, 0.29, respectively. In
this case, θ = (α11, α12, α22, β1, β2)

T . We estimate with CT and pla a = 1, 2, using
the same weights and the same compact support b in CT method, as in scenario A.
Table 2 shows REa(θ i ) , i = 1, 2, 3, 4, 5 and GREa(θ , 5) for a = 1, 2,CT when
ρ12 = 0.1, 0.5, 0.9.
Note that, when increasing the correlation between the random fields from 0.1 to 0.9,
the relative efficiency of α12 and the scale parameters β1 and β2 change substantially
for pl1, but not for pl2. By contrast, the efficiencies α11 and α22 parameters are not
affected by the correlation. Table 2 shows that also in this scenario, using compactly
supported weight functions is a good choice for both methods from global relative
efficiency point of view. As in scenario A, pl2 improves the global relative efficiency
of pl1 of 10 percent approximatively. CT relative efficiency is overall good, in par-
ticular when estimating αi i , i = 1, 2. Also in this scenario, pl2 outperforms CT in
terms of global relative efficiency.

We replicate the simulation study using unconstrained versions of the covariance models
in Eqs. (21) and (22), and the conclusions are very similar to those associated with scenarios
A and B.

(C) The asymmetric model defined in Eq. (6) with p = 2 and C∗
i j (h, ·) equal to the

separable bivariate exponential model was obtained by considering ψ = ψi j for
i, j = 1, 2 in the scenario (A). As outlined in Li and Zhang (2011), a1 and a2 are not
jointly identifiable, so we set a1 = [0, 0]T and a2 = [k, k]T . We set σ 2

1 = σ 2
2 = 1,

ψ = 0.1/3, k = −0.1 and consider different colocated correlation that is ρ12 =
0.15, 0.25, 0.35. In this case, θ = (k, ρ12, ψ, σ 2

1 , σ 2
2 )T , but we note some numerical

evidence of multimodality of the CL surface when estimating θ . For this reason, we
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fix the colocated parameter and then we estimate with ML, CT and pla a = 1, 2,
using the same weights and the same compact support b of CT as in scenario (A)
but with d = κmax/3. Table 3 shows RE(θ i ) , i = 1, 2, 3, 4 and GRE(θ , 4) for CT,
weighted and unweighted pla a = 1, 2. Note that when increasing the correlation,
pl1 performs better than pl2 when estimating the scale parameter and the relative
efficiency associated with the asymmetry parameter is better for pl2. The global
measure of efficiency suggests that pl1 performs very similar to pl2 for this specific
model. Finally, CT is very inefficient when estimating the asymmetry parameter.
This suggests that the use of symmetric bivariate tapers, as proposed in Daley et al.
(2015), can be very inefficient when estimating asymmetric models.

We can summarize our findings as follows:

• The use of compactly supported weight functions allows to improve significantly the
global statistical relative efficiency of pla , a = 1, 2.

• pl2 generally outperforms pl1 in terms of global statistical relative efficiency.

• CT shows in general good statistical relative efficiency, in particular for some specific
parameters. Nevertheless, pl2, in its weighted version, performs slightly better than
CT.

4.2. COMPUTATIONAL EFFICIENCY COMPARISON

In order to give an idea of the computational gains of pl1 and pl2 with respect to ML
and CT, we consider nw = N ×2w location sites, being uniformly distributed on the square
Ww = [0, 2w] × [0, 2w], w = 0, 1, . . . , 7. The case w = 0 has been used as simulation
setting in the previous section. In Table 4, we report times in seconds (in terms of elapsed
time using the R function proc.time) for the evaluations of the ML, CT, pla , a = 1, 2
functions, by considering the unweighted and weighted versions of both methods. Results
in Table 4 have been obtained using an upcoming version of the package CompRandFld
(Padoan and Bevilacqua 2015), where ML, CT and pla , a = 1, 2 have been implemented.
While carrying out the experiment, we have used a 2.4 GHz processor with 16 GB of
memory.

The compact support of the weight functions and the bivariate taper has been fixed
equal to 0.3. Computational advantages are clear for both types of CL when increasing the
number of location sites. In particular, when increasing the number of observations, pl1
slightly outperforms pl2, especially in the unweighted version. Considerable computational
gains are obtained when pl1 and pl2 are evaluated with compactly supported weights. For
instance, when w = 5, pl1 and pl2 are, respectively, 5800 and 20600 times faster than the
standard likelihood. For CT, we use the sparse matrix implementation in the R package
spam (Furrer and Sain 2010). The spam package allows users to separate structural and
numerical computations needed for Cholesky factorization. The result is that for a given
sparsity structure, the full factorization needs to be done once only. This can save a lot of time
and memory requirement when the tapered likelihood function is evaluated repeatedly. The
time in Table 4 is associatedwith the computation of theCholesky factor, the log determinant
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Table 4. Time in seconds for evaluating the standard likelihood l(.), pl1 and pl2 using and not using compactly
supported weights functions with compact support equal to 0.3 and lCT (0.3)with associated percentage
of nonzero values in the covariance-tapered matrices for w = 0, 1, . . . , 7. When w = 6, 7, time in
seconds for l(.) and lCT (0.3) is not reported for computational reasons.

w 2nw l(.) lCT (0.3) % pl1(0.3) pl1 pl2(0.3) pl2

0 600 0.3 0.3 21.85 0.03 0.1 0.03 0.1
1 1200 1.1 0.6 6.51 0.04 0.3 0.03 0.3
2 2400 4.3 1.1 1.78 0.05 1.1 0.04 1.2
3 4800 24.5 2.3 0.43 0.10 3.9 0.05 4.7
4 9600 203.0 28.6 0.15 0.28 15.1 0.10 18.1
5 19, 200 5996.1 259.6 0.03 1.02 58.4 0.29 71.2
6 38, 400 – – – 3.87 192.1 1.04 241.2
7 76, 800 – – .– 15.4 617.3 4.08 808.0

of the covariance matrix and the quadratic form in (5), given a fixed sparsity structure. In
Table 4, we also report the percentage of nonzero values in the covariance-tapered matrices.
Although in our experiment the covariance-taperedmatrices are highly sparse (0.03% of non
zero elements when w = 5 for instance), pla a = 1, 2 methods are clearly computationally
preferable with respect to the CT approach when increasing the number of location sites.
Further, computational gains in the CT approach could be obtained tapering the covariance
matrix only (Furrer et al. 2016), this choice leading to a biased estimator. Note the times for
ML and CT when w = 6, 7 are not reported, since evaluations of ML and CT functions in
these cases take a very long time in our machine. Our results are consistent with those of
Bevilacqua and Gaetan (2015), where a comparison between CL based on pairs and CT is
performed in the univariate case.

Since pla , a = 1, 2 are highly amenable to parallelization, further computational gains
can be obtained using parallel computing as, for instance, in Eidsvik et al. (2014). The
package CompRandFld uses a sequential implementation of pla , a = 1, 2 so, potentially,
results in Table 4 could be considerably improved. Finally, a clear advantage of pla , a = 1, 2
with respect to ML and CT is in terms of memory storage, as it requires only 2× 2, or 4× 4
covariance matrices.

5. A REAL DATA EXAMPLE

In marine ecosystems, rising atmospheric CO2 and climate change are associated with
concurrent shifts in temperature, circulation, stratification, nutrient input, oxygen content
and ocean acidification, with potentially wide-ranging biological effects (Doney et al. 2012).
An association of great interest is the concurrent shifts in temperature and the relationship
with the presence of nutrients in the ocean, because of identifying changing trends in global
marine phytoplankton.

This section analyzes satellite ocean data from MODIS/NASA. Specifically, we analyze
the monthly average of chlorophyll concentration (Microgram per liter (µg/L)) and sea
surface temperature (◦K) during march of 2011 in the north of Chile observed in a regularly
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Figure 2. Maps of residuals of chlorophyll concentration (left) and sea surface temperature (right) in the Chilean
coast.

spaced grid with a resolution of 4 km, for a total of 35295 locations sites, i.e., 70590
observations. ML and CT estimations are clearly unfeasible in this case. It is well known
that there is a negative correlation between the two variables (Behrenfeld et al (2006) and
Boyce et al. (2010)).

We keep out the location sites where the measurement of at least one of the two variable
has not been recorded (598 location sites). We then use spline regression, as implemented
in the R package mgcv (Wood 2006), with a fixed number of knots, in order to remove the
cyclic pattern of both variables along the longitude and latitude directions. A preliminary
analysis (see the, for instance, the empirical cross-variograms in Fig. 2) suggests that the
residuals can be considered as a realization of a zero mean weakly stationary and isotropic
bivariate Gaussian random field. As outlined by an anonymous Referee, the empirical cross-
variogram estimates the average variance of the first-order contrast, but it is not informative
of possible local nonstationary behaviors. Figure 2 shows the maps of the residuals, and
as expected, a local nonstationary behavior near the coast is apparent for both chlorophyll
concentration and sea surface temperature in particular at latitude [−26, 22] and longitude
[−72, 71].

We specify the bivariate covariancemodel in Eq. (21) in an increasing order of complexity
(separable version, constrained version as in the setting A of the simulation study and
unconstrained version). We then estimate through pl1, using the weight functions w11mn =
u11mn(70), w22mn = u22mn(50) and w12mn = k12mn(60), as well as through pl2, using
w12mn = u12mn(60). The choice of the different compact supports in the weight functions
for pl1 is due to the different spatial dependence (see Fig. 3). Table 5 reports pla , a = 1, 2
estimates with the associated standard errors, computed using subsampling technique as
described in Sect. 3. Note that the estimation of colocated parameter, variances and scale(s)
parameters is very similar for both methods in each considered model. As expected, the
estimation of the parameter ρ12, expressing the marginal correlation between chlorophyll
concentration and sea surface temperature, is negative.
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Figure 3. Comparison of the empirical (cross) variograms estimation with full exponential variogram model
(model 3) estimated with pl1. First semivariogram is associated with chlorophyll, and second semivariogram is
associated with temperature.

Table 5 reports the value of the CL information criteria (CLIC) for pla a = 1, 2 for each
covariance model considered. In both cases, the model selected is Model 3. Note that the
flexibility of this model allows to estimate a smaller cross-scale parameter α12 with respect
the marginal scale parameters αi i , i = 1, 2.

Finally, Fig. 3 shows the comparison between the empirical semi(cross)-variograms and
the estimated semi(cross)- variograms associated with the model C estimated using pl2.
The comparison shows a good fitting of the estimated model C with the empirical (cross)
variogram.

6. CONCLUDING REMARKS

CL is an appealing method of estimation when dealing with large datasets. As outlined
in Bevilacqua and Gaetan (2015), CL is a large class of estimating functions, and for a
given estimation problem, it is not clear how to choose within this class. Some insights are
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Table 5. pla , a = 1, 2 estimates with associated standard errors for models 1, 2, 3 and associated CL information
criteria (CLIC).

1 2 3

pl1 pl2 pl1 pl2 pl1 pl2

σ 2
11 9.80e-02 9.94e-02 9.76e-02 9.782e-02 9.75e-02 9.77e-02

(1.4e-02) (1.3e-02) (1.e-02) (1.5e-02) (1.5e-02) (1.4e-02)
σ 2
22 1.94e-05 1.94e-05 1.97e-05 1.96e-05 1.97e-05 1.96e-05

(1.6e-06) (1.5e-06) (1.7e-06) (1.5e-06) (1.7e-06) (1.5e-06)
ρ12 −0.288 −0.298 −0.290 −0.290 −0.290 −0.290

(9.4e-02) (5.3e-02) (9.3e-02) (5.4e-02) (1.0e-01) (5.9e-02)
α11 66.63 68.67 62.98 65.42 62.98 63.77

(5.21) (5.52) (6.42) (6.29) (6.42) (6.53)
α12 - - - - 51.20 52.94

(13.99) (11.63)
α22 - - 71.71 71.96 71.74 70.39

(7.69) (7.84) (7.68) (7.25)
CLIC −140876799 −212867004 −140853167 −212834694 −140852194 −212095990

given in Castruccio et al. (2016), where different types of marginal CLs are compared from
statistical efficiency viewpoint. In the Gaussian case, if the choice of the CL is driven by
computational reasons only, then the CL based on pairs has clear computational advantages
with respect to other types of CLs. For this reason, we consider this type of CL when esti-
mating multivariate Gaussian random fields. In particular, in this paper we have proposed
two possible approaches, based on weighted composite likelihood methods, for the estima-
tion of MGRF. The first is based on cross-pairwise likelihood, while the second is based on
pairs of marginal pairwise likelihoods. Through numerical examples, we have compared the
two methods using the maximum likelihood and covariance tapering as benchmarks when
estimating different types of multivariate covariance models. The second version generally
outperforms the first from statistical efficiency point of view, but it cannot be used in the
heterotopic case.

The numerical examples show that the weighted versions have better performance from
statistical efficiency point of view and considerable computational gains with respect to the
unweighted versions. CT is a good competitor of both methods; nevertheless, our methods
are clearly preferable in terms of computational complexity when considering very large
datasets. The benefit of our methods in terms of memory requirement with respect to ML
and CT is apparent since it requires only very small covariance matrices storage. Moreover,
since our methods are highly amenable to parallelization, further computational gains can
be achieved, using parallel computing techniques as described, for instance, in Lee et al.
(2010) and Suchard et al. (2010).

Our methods can be easily extended to the estimation of multivariate space time covari-
ance models when considering fully symmetric covariance models. For estimation of asym-
metric covariance models (Stein 2005; Gneiting et al. 2007), asymmetry in time should be
taken into account in CL following the lines of section 3. Finally, since our methods require
model assumptions on the lower-dimensional marginal densities, they can be very useful for
multivariate non Gaussian random field estimation where, typically, the likelihood function
does not have a simple form, as in Genton et al. (2015).
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