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Non-Stationary Dependence Structures for
Spatial Extremes

Raphaël Huser and Marc G. Genton

Max-stable processes are natural models for spatial extremes because they provide
suitable asymptotic approximations to the distribution of maxima of random fields. In
the recent past, several parametric families of stationary max-stable models have been
developed, and fitted to various types of data. However, a recurrent problem is themodel-
ing of non-stationarity. In this paper, we develop non-stationary max-stable dependence
structures in which covariates can be easily incorporated. Inference is performed using
pairwise likelihoods, and its performance is assessed by an extensive simulation study
based on a non-stationary locally isotropic extremal t model. Evidence that unknown
parameters are well estimated is provided, and estimation of spatial return level curves
is discussed. The methodology is demonstrated with temperature maxima recorded over
a complex topography. Models are shown to satisfactorily capture extremal dependence.

Key Words: Covariate; Extremal t model; Extreme event; Max-stable process; Non-
stationarity.

1. INTRODUCTION

Max-stable processes have drawn attention in the recent past, by providing an asymptoti-
cally justified framework for modeling spatial extremes, and allowing extrapolation beyond
observed data (see, e.g., Davison et al. 2012). Although max-stable processes cannot be
characterized by a parametric family, the canonical approach is to fit flexible parametric
max-stable models. However, in practice, strong constraints are usually imposed: the max-
stable models considered up to now are usually stationary (i.e., shift-invariant) and isotropic
(i.e., rotation-invariant). Neglecting non-stationarity at extreme levels may not only provide
a poor description of the data, but more importantly, it may also have dramatic consequences
on the estimation of return levels (i.e., extrapolation to high quantiles) for spatial quantities,
as illustrated in Fig. 1.While it is relatively straightforward to construct non-stationarymod-
els formarginal distributions, e.g., by letting the underlying parameters depend on covariates
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Figure 1. True return level curves for the spatial functionals INT j (left), MIN j (middle), and MAX j (right),
j = 1, 2, for domains S1 = [0, 0.2] × [0, 1] (solid) and S2 = [0.8, 1] × [0, 1] (dashed), based on the extremal
t model. Black curves correspond to the stationary case, and red curves to the strongly non-stationary case; more
details are given in Sect. 5 (Color figure online).

or splines (Chavez-Demoulin and Davison 2005; Cooley et al. 2007; Northrop and Jonathan
2011; Davison and Gholamrezaee 2012), it is more difficult to model non-stationarity in
the dependence structure. Furthermore, even if a suitable family of non-stationary models
can be identified, performing inference may be awkward if the dataset is not spatially rich
enough. Since rare events are scarce by nature, it is even more tricky to detect non-stationary
patterns at extreme levels, and there have been very few attempts to tackle this important
issue so far. A related problem is the incorporation of substantive knowledge, e.g., from
physical processes, into max-stable processes. In particular, information might be gained
by including meaningful covariates in the dependence structure.

In an analysis of extreme snow depths, Blanchet and Davison (2011) proposed splitting
the region of study into distinct homogeneous climatic zones to which stationary models
werefitted separately, andwhere anisotropywas dealtwith simple geometric deformations of
the space. Although their approach simplifies the problem at first sight, it yields a physically
unrealistic description of extreme events at the boundary between zones,while the number of
parameters also increases dramatically. Another solution advocated by Cooley et al. (2007)
is to map the original latitude–longitude space to an alternative “climate space” in which
stationarity may be a reasonable assumption, but this might lead to unrealistic realizations
and conclusions in the original space. Alternatively, Smith and Stephenson (2009) and Reich
and Shaby (2012) proposed Bayesian non-stationary max-stable models. The latter are,
however, intrinsically linked to the Smith (1990) model, which is built from very smooth
storm profiles and therefore lacks flexibility (though the Reich–Shaby model cures this
somewhat by having an additional parameter controlling the amount of noise). Furthermore,
Bayesian max-stable models are difficult to fit (Ribatet et al. 2012), although Thibaud et al.
(2015) recently showed how this may be performed in relatively moderate dimensions. In
the bivariate case, de Carvalho and Davison (2014) proposed a non-parametric approach
linking different spectral densities through exponential tilting. Castro et al. (2015) extended
this to covariate-dependent spectral densities; see also de Carvalho (2015). However, these
methods are computationally intensive and difficult to apply in large dimensions.

In the classical geostatistics literature, several non-stationary models have been sug-
gested. Paciorek and Schervish (2006) proposed a large family of non-stationary correlation
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functions based on Gaussian kernel convolutions, which can be constructed from known
stationary isotropic models. Nychka et al. (2002) built flexible non-stationary covariance
functions using multi-resolution wavelets. Fuentes (2001) and Reich et al. (2011) created
non-stationary models by mixing stationary covariance functions and letting the weights
depend on covariates. Jun and Stein (2007, 2008), Castruccio and Stein (2013), and Castruc-
cio and Genton (2016) advocated a spectral approach that provides flexible non-stationary
covariance models on the sphere. Alternatively, Sampson and Guttorp (1992), Perrin and
Monestiez (1999), Schmidt and O’Hagan (2003), and Anderes and Stein (2008) created
non-stationary processes by smooth deformations of isotropic random fields. Bornn et al.
(2012) proposed modeling non-stationarity through dimension expansion. Lindgren et al.
(2011) developed non-stationary models for Gaussian random fields and Gaussian Markov
random fields based on stochastic partial differential equations (SPDEs).

The present paper aims at merging ideas from extreme-value theory and classical geo-
statistics by proposing simple parametric models able to capture non-stationary patterns in
spatial extremes through covariates. To this end, a flexible approach based on max-stable
processes and Paciorek and Schervish’s correlation model is advocated. Loosely speaking,
the newmodels proposed here are formed by a first layer justified for extremes, within which
non-stationarity is handled with locally elliptical kernels, and by a second layer, where these
kernels are further described using covariates. As will be explained below, these models can
also be seen locally as smoothly deformed isotropic max-stable random fields. The use of
mixtures is advocated to capture different smoothness behaviors in distinct subregions.

The full likelihood for max-stable processes is intractable when the number of sites
exceeds D = 13 (see Castruccio et al. 2016), and for some models, the joint density can
only be computed for dimension D = 2. This explains why pairwise likelihoods (Lind-
say 1988; Varin et al. 2011) have become the standard tool for inference in this context
(Padoan et al. 2010; Thibaud et al. 2013; Huser and Davison 2014), although more efficient
approaches based on the point process characterization of extremes have recently been pro-
posed (Wadsworth and Tawn 2014; Engelke et al. 2015; Thibaud and Opitz 2015; Thibaud
et al. 2015).

In Sect. 2, max-stable processes are introduced and some properties and limitations of
the Smith–Stephenson model are discussed. In Sect. 3, we propose new non-stationary
max-stable models that are more flexible than the Smith–Stephenson model. In Sect. 4, we
discuss inference based on pairwise likelihoods, and in Sect. 5, we conduct a simulation
study to investigate the ability of the estimators to capture non-stationarity in the dependence
structure. We also investigate the effect of ignoring non-stationarity on the estimation of
spatial return levels. In Sect. 6, we illustrate the methods on temperature annual maxima
recorded in Colorado during 1895–1997, and we conclude with a discussion in Sect. 7.

2. MAX-STABLE PROCESSES

2.1. THEORETICAL FOUNDATION

Suppose that X1(s), X2(s), . . ., are independent and identically distributed random
processes with continuous sample paths on S ⊂ R

d , and that there exist sequences of
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functions an(s) > 0 and bn(s) such that the renormalized process of pointwise maxima
an(s)−1[max{X1(s), . . . , Xn(s)} − bn(s)] converges weakly to a process Z(s) with non-
degenerate margins, as n → ∞. Then, Z(s) must be max-stable, i.e., for any positive
integer k, the finite-dimensional distributions of Z(s) and max{Z1(s), . . . , Zk(s)}, where
Z1(s), . . . , Zk(s) denote independent replicates of Z(s), differ only through location and
scale coefficients. In particular, margins follow the generalized extreme-value distribution

G(z) = exp
(
− [1 + ξ(s){z − μ(s)}/σ(s)]−1/ξ(s)

+
)
, with spatially varying location, scale,

and shape parameters μ(s), σ (s) > 0, ξ(s), respectively. Furthermore, defining standard-
ized processes as Yi (s) = 1/[1 − Fs{Xi (s)}] (i = 1, 2, . . .) with Fs(x) the marginal
distribution of Xi (s) at location s, the limiting distribution of n−1 max{Y1(s), . . . ,Yn(s)} is
max-stable with unit Fréchet margins (i.e., GEVwith parametersμ(s) = σ(s) = ξ(s) = 1).
Such a limiting process is called simple max-stable. Standardization allows the treatment
of the margins to be separated from the dependence structure.

Simple max-stable processes have been characterized by de Haan (1984); see also
Schlather (2002) and de Haan and Ferreira (2006, §9.4). Given points {Pi ; i = 1, 2, . . .}
of a Poisson process with intensity p−2 (p > 0) and independent replicates {Wi (s); i =
1, 2, . . .} of a positive process W (s) (s ∈ S ⊂ R

d) with unit mean, the process created as

Z(s) = sup
i=1,2,...

PiWi (s) (1)

is a simple max-stable process. Conversely, under mild conditions, each continuous simple
max-stable process can be decomposed as in (1). Furthermore, for any set of D spatial
locations D = {s1, . . . , sD} ⊂ S, one has

Pr{Z(s1) ≤ z1, . . . , Z(sD) ≤ zD} = exp {−VD (z1, . . . , zD)} , (2)

where the so-called exponent measure is VD (z1, . . . , zD) = E [max {W (s1)/z1, . . . ,
W (sD)/zD}]. The exponent measure has a closed-form formula for specific choices of
W (s); see, e.g., Schlather (2002), Nikoloulopoulos et al. (2009), Genton et al. (2011), Huser
and Davison (2013), and Opitz (2013). A useful related quantity is the so-called extremal
coefficient θ(s1, s2) = VD(1, 1) ∈ [1, 2], D = {s1, s2}, giving a measure of dependence
between variables Z(s1) and Z(s2), or equivalently, extremal dependence between variables
Y (s1) and Y (s2): θ(s1, s2) = 1 corresponds to perfect dependence and θ(s1, s2) = 2 to
independence.

For more details about univariate and multivariate extremes, see Beirlant et al. (2004)
and Davison and Huser (2015), and for an account of spatial extremes, see the review papers
by Davison et al. (2012), Cooley et al. (2012), and Davison et al. (2013). See also the book
by de Haan and Ferreira (2006), which explains the technicalities in depth.

2.2. THE CELEBRATED SMITH MODEL AND ITS NON-STATIONARY EXTENSION

Thefirst stationarymax-stablemodel proposed in the literature is the Smith (1990)model,
which assumes in (1) that Wi (s) = φd(s − U i ;�), where the U i s are the points of a unit
rate Poisson process on S = R

d and φd(·;�) denotes the d-dimensional Gaussian density
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Figure 2. Simulations of Model (3) for locations s = (sx , sy) ∈ [0, 1]2. Top left stationary isotropic case with
�s = 0.12 I2. Top right non-stationary locally isotropic case with�s = 0.422−8|sx | I2.Bottom left non-stationary
homogeneously anisotropic case with �s = 0.422−8|sx |R, with R ∈ R

2×2 being a correlation matrix with
correlation 0.8. Bottom right general non-stationary case with (�s)11 = 0.422−8|sx |, (�s)22 = 0.422−8|1−sx |,
and (�s)12 = (�s)21 = {(�s)11(�s)22}1/2{eh(s) − 1}/{eh(s) + 1}, h(s) = 2 log(3)e−30(sx−0.5)2 . Realizations
are based on the same random seed. The contours correspond to θ(s1, s2) = 1.2, 1.5, 1.8 (narrow to wide), where
s1 is the center location (cross). The color scale indicates quantile probabilities.

functionwith zeromean and covariancematrix�. Although finite-dimensional distributions
are known in arbitrary dimensions (Genton et al. 2011), they are always degenerate for
D > d + 1, which raises the question of the suitability of the Smith model in practice.
The non-stationary extension proposed by Smith and Stephenson (2009) considers spatially
varying covariance matrices �s, capturing the small-scale dependence structure around
location s ∈ S. The generalized storm profiles are of the form:

Wi (s) = φd(s − U i ;�U i ). (3)

This model has the appealing property of being locally elliptic (a feature that we will retain
for the more general model proposed in Sect. 3), in the sense that infinitesimal contours of
the extremal coefficient form ellipses, see Fig. 2. Several special cases may be of interest
in practice: if contours are locally circular with �s = ω(s)2 Id , where ω(s) > 0 and Id
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is the d-by-d identity matrix, the model is locally isotropic (top right panel of Fig. 2), and
when ω(s) = ω > 0 for all s ∈ S, (3) reduces to the stationary isotropic case, i.e., the
classical Smith model (top left panel of Fig. 2). When �s = ω(s)2R for some fixed d-by-d
correlation matrix R, the model is not isotropic, but the anisotropy is homogeneous over
space; see the bottom left panel of Fig. 2. If ω(s) = ω > 0 for all s ∈ S, it reduces
to the stationary anisotropic case, illustrated by Blanchet and Davison (2011). Smith and
Stephenson (2009) provide bivariate margins in the homogeneously anisotropic case only;
in the Supplementary Material, calculations are performed in full generality for D = 2.

The extremal coefficient of the stationary Smithmodel satisfies θ(s1, s2) ≡ θ(‖h‖) → 2,
as ‖h‖ = ‖s1 − s2‖ → ∞, which implies that complete independence can be captured at
infinity. InZ, this is equivalent to the process beingmixing (Kabluchko and Schlather 2010).
In the Supplementary Material, we show that this property is also fulfilled by the Smith–
Stephenson model with �s = ω(s)2 Id (locally isotropic case) provided ω(s) = o(‖s‖); by
a simple extension, this is also true when �s = ω(s)2R, with R being a correlation matrix
(homogeneously anisotropic case). This result makes sense because if one has ω(s) =
O(‖s‖), the extent of a stormcentered at s increases at the same rate as the distance separating
s fromanyfixedother point s0, such that the stormcontributes to the supremum(1) at location
s0 with positive probability, no matter how far it is from s0.

Although the Smith–Stephenson model is easily interpretable, it has several limitations.
First, finite-dimensional distributions are known for D = 2 only. Second, pairwise densities
involve the cumulative distribution and density of quadratic forms of normal variables,
the computation of which may be intensive (see the Supplementary Material). Finally, as
illustrated in Fig. 2, this process is very smooth. Realizations are infinitely differentiable
in neighborhoods of all points that do not lie on the border between distinct storms, and
this appears too strong an assumption in most environmental applications. In fact, the storm
profiles are almost deterministic; randomness is solely created by the storm locationsU i and
storm intensities Pi in (1). More flexible non-stationary max-stable models with stochastic
storm profiles, generalizing (3), are proposed in Sect. 3.

3. FLEXIBLE NON-STATIONARY DEPENDENCE STRUCTURES

3.1. THE NON-STATIONARY EXTREMAL t MODEL

The extremal t model (Nikoloulopoulos et al. 2009; Opitz 2013) is defined by taking

W (s) = cdf max{0, ε(s)}df , cdf = 21−df/2π1/2 [
 {(df + 1)/2}]−1 , (4)

in (1),where df > 0, ε(s) is aGaussian processwith zeromean, unit variance, and correlation
function ρ(s1, s2), and 
(·) is the gamma function. The extremal t model does not capture
independence unless df → ∞ (Davison et al. 2012), but this issue may be resolved by
incorporating a random set element (Davison and Gholamrezaee 2012; Huser and Davison
2014), though the inference is more tricky. The model (4) has several interesting sub-
models, the stationary versions of which have been applied extensively. When df = 1,
(4) reduces to the Schlather (2002) model, which has been fitted in numerous applications
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(Davison and Gholamrezaee 2012; Davison et al. 2012; Ribatet 2013; Thibaud et al. 2013).
The Brown–Resnick process (Brown and Resnick 1977; Kabluchko et al. 2009) arises as a
limiting case of (4) as df → ∞ (Davison et al. 2012); its storm profiles may be expressed
as W (s) = exp{ε(s) − γ (s)}, where ε(s) is a Gaussian random field with semi-variogram
γ (h) such that ε(0) = 0 almost surely. The Brown–Resnick process extends the Smith
model (Huser and Davison 2013), and it can also be viewed as the generalization of the
Hüsler and Reiss (1989) multivariate extreme-value distribution to the spatial framework.
In practice, Brown–Resnick processes have proven to be quite flexible compared to the
Smith and Schlather alternatives (Davison et al. 2012; Jeon and Smith 2012). Model (4) not
only generalizes all aforementioned stationary max-stable models, but it is also the max-
attractor for the broad class of all suitably rescaled elliptical processes (Opitz 2013), which
provides strong support for its use in practice; as an illustration of its practical performance,
see Thibaud and Opitz (2015). The bivariate exponent measure for (4) may be expressed as

VD (z1, z2) = 1

z1
Tdf+1

[
(z2/z1)1/df − ρ(s1, s2)

(df + 1)−1/2 {
1 − ρ(s1, s2)2

}1/2
]

+ 1

z2
Tdf+1

[
(z1/z2)1/df − ρ(s1, s2)

(df + 1)−1/2 {
1 − ρ(s1, s2)2

}1/2
]

, (5)

where Tdf(·) is the Student t cumulative distribution function with df degrees of freedom.
Explicit expressions in dimension D are also available (see Thibaud and Opitz 2015).

Our approach to modeling non-stationarity in spatial extremes consists of combining the
extremal t model (4) with non-stationary correlation functions ρ(s1, s2) proposed in the
classical spatial statistics literature. As mentioned above, there exist several ways to con-
struct non-stationary correlation functions, spanning from space deformations to SPDEs,
and including wavelets, spectral methods, mixtures of stationary correlations, or kernel
convolutions. Hence, our methodology to tackle non-stationarity in extremes is very gen-
eral and can potentially yield a large variety of models, having their own advantages and
drawbacks. There are (at least) three desirable properties that we would like our model to
possess: simplicity, local ellipticity, and ease to incorporate covariates. We have found that
the kernel convolution approach advocated by Paciorek and Schervish (2006) is especially
satisfactory. These authors have proposed a very general construction of non-stationary cor-
relation functions that are based on known isotropic correlation models. Specifically, let
�s denote a (continuously) spatially varying d-by-d covariance matrix, and for any two
locations s1, s2 ∈ S with separation vector h = s2 − s1, define the quadratic form Qs1;s2
as

Qs1;s2 = hT
(

�s1 + �s2

2

)−1

h. (6)

Paciorek and Schervish (2006) show that for any isotropic correlation function R(‖h‖) valid
on Rd (d = 1, 2, . . .), the function

ρ(s1, s2) = |�s1 |1/4|�s2 |1/4
∣∣∣∣
�s1 + �s2

2

∣∣∣∣
−1/2

R
(
Qs1;s2 1/2

)
(7)
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Figure 3. Simulation of the extremal t model (4), with df = 5 and non-stationary correlation function (7), com-
binedwith (8), in [0, 1]2. Columns correspond to different smoothness scenarios, withα = 0.5, 1, 1.5 (left to right).
Locally isotropic (top row) and general non-stationary (bottom row) cases are displayed. The underlying spatially
varying matrices are �s = (2 df)2/α × �BR

s , where �BR
s = 0.422−8|sx | I2 (top row) or (�BR

s )11 = 0.422−8|sx |,
(�BR

s )22 = 0.422−8|1−sx | and (�BR
s )12 = (�BR

s )21 = {(�BR
s )11(�

BR
s )22}1/2{eh(s) − 1}/{eh(s) + 1}, where

h(s) = 2 log(3)e−30(sx−0.5)2 (bottom row). Realizations are from the same random seed. Contour curves cor-
respond to θ(s1, s2) = 1.2, 1.5, 1.8 (narrow to wide), where s1 is the center location (cross). The color scale
indicates quantile probabilities.

provides a valid non-stationary correlation function onRd (d = 1, 2, . . .). To avoid parame-
trization redundancy, the function R(‖h‖) can be assumed to have unit range.Many isotropic
correlation functions have been proposed in the literature (see, e.g., Cressie, 1993, Stein,
1999 or Cressie andWikle, 2011), making (7) a useful constructive device for non-stationary
correlation functions. One popular possibility is the powered exponential family

R(‖h‖) = exp
(−‖h‖α

)
, (8)

where α ∈ (0, 2] is a smoothness parameter, and the exponential and squared exponential
models correspond to α = 1 and α = 2, respectively. This correlation family generates
random fields with very rough (with α → 0) to analytical sample paths (with α = 2).
Hence, great flexibility can be obtained by combining (7) with (8). Since the max-stable
model in (4) inherits its sample path differentiability properties from the underlyingGaussian
process ε(s), the parameter α in (8) has a direct relationship with the smoothness of the
resulting max-stable process. To illustrate this, typical realizations from the non-stationary
extremal t model with df = 5 combined with (7) and (8) are displayed in Fig. 3.

Like the non-stationary Smith model, the correlation function (7) is locally elliptic, and
this attractive geometric property is therefore preserved for the resulting non-stationarymax-
stable random field. This implies that the latter can be seen locally as a smoothly deformed



478 R. Huser and M. G. Genton

isotropic max-stable process. To see this, fix s0 ∈ S and let s1, s2 ∈ N (s0) ⊂ S be two
locations within some small neighborhood N (s0) of s0. By continuity of the map s 	→ �s,
one has that �s2 ≈ �s1 ≈ �s0 and Qs1;s2 ≈ hT�−1

s0 h, where h = s2 − s1 is the lag

vector. Then, applying the spatial transformation s 	→ s� = �
−1/2
s0 (s− s0) in N (s0), where

�s0 = �
1/2
s0 �

T/2
s0 , one can easily verify that the correlation function on the new coordinate

system satisfies ρ(s�1, s
�
2) ≈ R(‖h�‖) with h� = s�2 − s�1; it is therefore locally isotropic.

Another appealing feature is that the proposed non-stationary extremal t model defined
above using (7) and (8) with covariance matrices�s = (2 df)2/α ×�BR

s converges as df →
∞ to the Brown–Resnick process with variogram 2γ (s1, s2) = (QBR

s1;s2)
α/2, where QBR

s1;s2
is defined in (6) using �BR

s . In particular, the Smith–Stephenson model (3) is recovered
when α = 2. In practice, this implies that it is enough to fit the non-stationary extremal t
model, as our approach generalizes (3); if df is found to be relatively large and α ≈ 2, then
it might also be interesting to consider the (more parsimonious) Smith-Stephenson model,
although it is more complex to fit.

3.2. COVARIATES

We now continue our modeling on the plane with d = 2, although our approach could
be applied in higher dimensions. In order to retain simplicity in our modeling of non-
stationarity, we seek to incorporate meaningful covariates in the extremal dependence struc-
ture. To this end,we propose furthermodeling the covariancematrices�s (s ∈ S) as follows:
let

�s =
(

ω2
x (s) ωx (s)ωy(s)δ(s)

ωx (s)ωy(s)δ(s) ω2
y(s)

)
, with, for example, (9)

log{ωx (s)} = XT
ωx

(s)βωx
, log{ωy(s)} = XT

ωy
(s)βωy

, logit[{δ(s)+ 1}/2] = XT
δ (s)βδ,

(10)
where Xωx (s), Xωy (s), and Xδ(s) denote vectors of covariates corresponding to location s,
and βωx

,βωy
, and βδ are the associated vectors of parameters measuring the importance of

covariates. The link functions in (10) ensure that ωx (s) > 0, ωy(s) > 0 and δ(s) ∈ (−1, 1),
but they could in principle be replaced by other functions that satisfy these conditions. The
construction (9) guarantees the positive definiteness of �s. The local correlation range at
station s with respect to the x (respectively y) axis is measured by the functions ωx (s)
(respectively ωy(s)), whereas δ(s) captures the local anisotropy level: if δ(s) = 0 and
ωx (s) = ωy(s), the resulting process is locally isotropic, i.e., infinitesimal contours are
circular everywhere, whereas if δ(s) �= 0, contours are slanted ellipses; see Fig. 3.

3.3. MAX-STABLE MIXTURES

Although the non-stationary model (4) appears quite flexible, one limitation is that it has
a single smoothness parameter for the whole region. This issue may be overcome by using
non-stationary Matérn correlation functions (Stein 2005; Anderes and Stein 2011), or by
using an approach based of mixtures. The latter is outlined below.
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The first type of mixture consists of max-mixtures of max-stable models. Let Z1(s)
and Z2(s) be independent max-stable processes with unit Fréchet margins defined on the
same space S. Then for any function 0 ≤ a(s) ≤ 1, the spatial process defined as Z(s) =
max[a(s)Z1(s), {1 − a(s)}Z2(s)] is a simple max-stable process with exponent measure

VD(z1, . . . , zD) = a(s)V 1
D(z1, . . . , zD) + {1 − a(s)}V 2

D(z1, . . . , zD), (11)

where V 1
D and V 2

D are the exponent measures of Z1(s) and Z2(s), respectively. The function
a(s) is a spatially varying proportion, determining which of the processes Z1(s) and Z2(s)
is dominant at location s. Model (11) is stationary if a(s) is constant over space and Z1(s)
and Z2(s) are stationary, but it can be made non-stationary by allowing a(s) to depend
upon covariates, e.g., logit{a(s)} = XT

a (s)βa , where Xa(s) is a vector of covariates for
location s and βa is the associated vector of parameters. Different smoothness behaviors
may be captured in different spatial regions, provided that Z1(s) and Z2(s) have different
degrees of differentiability. More complex non-stationary max-stable models Z(s) may be
constructed by considering a collection of independent stationary max-stable random fields
Z1(s), . . . , Zk(s) with unit Fréchet margins and associated proportions a1(s), . . . , ak(s) ∈
[0, 1] such that ∑k

i=1 a
i (s) = 1 for each s, yielding the simple max-stable process Z(s) =

maxi=1,...,k{ai (s)Zi (s)}. In practice, however, this modelmay involve toomany parameters.
The second type of mixture consists of sum-mixtures of Gaussian processes (Fuentes

2001; Reich et al. 2011) used in the formulation of the extremal t model. Specifically,
let ε1(s), ε2(s) be two Gaussian processes with zero mean, unit variance, and correlation
functions ρ1(s1, s2), ρ2(s1, s2), respectively, and let 0 ≤ a(s) ≤ 1 be a function defined
on S. Then, a non-stationary extremal t model may be obtained by considering the process
ε(s) = a(s)ε1(s) + {1 − a(s)}ε2(s) in the construction (4) with correlation function

ρ(s1, s2) = a(s1)a(s2)ρ1(s1, s2) + {1 − a(s1)}{1 − a(s2)}ρ2(s1, s2)
[a(s1)2 + {(1 − a(s1)}2]1/2[a(s2)2 + {(1 − a(s2)}2]1/2 . (12)

Again, the proportion a(s) may be modeled in terms of covariates. Similarly, different
smoothness behaviors over the space may be captured by the different mixture components.
As above, model (12) can easily be extended to higher-dimensional mixtures, though this
may lead to heavy parametrization. Although similar, the two types of max-stable mixtures
are not equivalent, as their corresponding exponent measures differ.

4. INFERENCE

4.1. PAIRWISE LIKELIHOOD

Likelihood inference for max-stable processes is not an easy task. The joint density
for max-stable processes stems from the differentiation of (2) with respect to z1, . . . , zD .
In dimension D = 2, this equals (V1V2 − V12) exp(−V ), where V1 = ∂VD(z1, z2)/∂z1,
etc., where the subscript D and the arguments are dropped for clarity. However, as D
increases, the size of this expression renders the full likelihood quickly intractable. To
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illustrate this, the number of terms in the full likelihood when D = 10, 20, 50, 100 is of
the order 105, 1013, 1047, 10115, respectively. To get around this computational bottleneck,
the use of pairwise likelihoods is now a common practice (see, e.g., Padoan et al. 2010).
Denoting the vector of unknown parameters by ψ ∈ � ⊂ R

p, log pairwise likelihoods for
model (2) may be expressed as

�(ψ) =
m∑
i=1

∑
( j1, j2)∈P

log
{
V1(zi; j1 , zi; j2)V2(zi; j1 , zi; j2) − V12(zi; j1 , zi; j2)

}−V (zi; j1 , zi; j2),

(13)
where zi; j denotes the i thblock maximum recorded at the j thstation, i = 1, . . . ,m, j =
1, . . . , D, and where the non-empty set P ⊂ Ptot = {( j1, j2) : 1 ≤ j1 < j2 ≤ D} defines
the pairs of observations included in the pairwise likelihood. If P = Ptot, all pairs are
considered in (13). Computational and statistical efficiency might however be gained by
carefully selecting a much smaller number of pairs (Huser and Davison 2014; Castruccio
et al. 2016). A possibility is to include a small fraction of informative pairs, i.e., typically the
most dependent ones, thoughHuser andDavison (2014) show that further improvementsmay
be obtained in special cases by including someweakly dependent pairs aswell. For stationary
isotropic processes, this might be achieved by including the closest pairs, whereas for non-
stationary max-stable processes one might consider pairs ( j1, j2) with the lowest extremal
coefficients θ(s j1 , s j2). Since the latter are unknown in practice, the choice of pairs might be
guided by pre-computed empirical extremal coefficients θ̂ (s j1 , s j2); however, simulations
(not shown) reveal that this approach creates bias, as data are used twice: to select the pairs
in the pairwise likelihood and to estimate the parameters by maximizing the latter. Under
temporal independence, the maximum pairwise likelihood estimator ψ̂ maximizing (13) is
strongly consistent, asymptotically Gaussian, and converges atm1/2 rate, and its asymptotic
variance is of the sandwich form, as is typical for misspecified likelihood estimators (Padoan
et al. 2010). More precisely, if ψ0 ∈ int(�) denotes the “true” parameter vector, then under
mild regularity conditions, one has the large sample approximation

ψ̂
·∼ Np(ψ0, J(ψ0)

−1K (ψ0)J(ψ0)
−1), m → ∞, (14)

where J(ψ) = E{−∂2�(ψ)/∂ψ∂ψT } ∈ R
p×p and K (ψ) = var{∂�(ψ)/∂ψ} ∈ R

p×p.
Uncertainty may be assessed by plugging estimates of the matrices J(ψ0) and K (ψ0) into
the asymptotic variance in (14); see Padoan et al. (2010). Alternatively, one can bootstrap
the independent replicates zi = (zi;1, . . . , zi;D)T , i = 1, . . . ,m, and re-estimate parame-
ters using the pseudo-samples, to assess the variability surrounding ψ̂ . Similar asymptotic
properties hold for mildly time-dependent processes (Davis et al. 2013; Huser and Davison
2014) in which uncertainty may be assessed using block bootstrap.

4.2. MODEL SELECTION

Model comparison is typically performed using the composite likelihood information
criterion (CLIC), defined as CLIC = −2�(ψ̂) + 2tr{J(ψ̂)−1K (ψ̂)}, which is comparable
to the Akaike information criterion. Another possibility is to use the composite Bayesian
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information criterion (CBIC), i.e., the counterpart of the classical Bayesian information cri-
terion. It is defined as CBIC = −2�(ψ̂)+ log(m)tr{J(ψ̂)−1K (ψ̂)}, and therefore penalizes
model complexity more than does CLIC. The lower the CLIC or CBIC, the better the model.
Theoretical properties of CLIC and CBIC have been investigated by Ng and Joe (2014) (in
which CLIC and CBIC are called instead CLAIC and CLBIC, respectively). In particular,
they show that CLIC has a tendency to select overcomplicated models. For a broad survey
of composite likelihood methods, see Varin et al. (2011).

5. SIMULATION STUDY

5.1. SETUP

In this simulation study, we assess the ability of the maximum pairwise likelihood esti-
mator (14) to estimate and detect non-stationarity dependence structures in a variety of
contexts. We also study the effect of neglecting non-stationarity on spatial return levels.

Throughout this section, we focus on the locally isotropic extremal t model illustrated
in the first row of Fig. 3 and consider various parameter combinations. Specifically, the
extremal t process with df = 1, 2, 5, 10 is simulated on [0, 1]2, using the non-stationary
correlation functionρ(s1, s2)defined in (7) based on the powered exponentialmodel (8)with
α = 0.5, 1, 1.5, 1.9 (rough to smooth). The underlying spatially varying covariancematrix is
taken to be of the form�s = (2 df)2/α ×ω(s)2 I2, where I2 is the 2-by-2 identitymatrix and
ω(s) = β12−β2|sx |, s = (sx , sy), with rangeβ1 > 0 andnon-stationary parameterβ2 ∈ R. To
investigate different non-stationary scenarios, we consider (β1, β2) = (0.1, 0) (stationary),
(0.1

√
2, 1) (weakly non-stationary), (0.2, 2) (mildly non-stationary), and (0.4, 4) (strongly

non-stationary). Although these scenarios exhibit different non-stationarity patterns, the
overall dependence strength is comparable in the sense that all cases satisfy ω(s) = 0.1
for any s = (0.5, sy ∈ [0, 1]). The df = 1 case corresponds to a non-stationary Schlather
process, whereas the df = 10 case is a crude approximation of a non-stationary Brown–
Resnick process (with α = 1.9 corresponding approximately to the non-stationary Smith
model); recall Sect. 3.1. In each case, m = 10, 20, 50, 100 independent replicates of these
processes are simulated at S = 10, 20, 50, 100 fixed locations uniformly sampled in the
unit square. Simulations are repeated 300 times to compute empirical diagnostics.

5.2. ESTIMATION AND DETECTION OF NON-STATIONARITY

We first investigate the performance of the maximum pairwise likelihood estimator
(14) to recover the true parameters under the correct model. We estimate parameters
ψ = (β1, β2, df, α)T with (14) using the 10% closest pairs; then we derive the empirical
biases, standard deviations, and root mean squared errors (RMSEs) from the 300 indepen-
dent experiments. RMSEs, typically dominated by the standard deviations, are reported in
Table 1.

We focus on the estimation of β1 and β2, which determine the non-stationary scenario.
The range parameter β1 is quite well identified overall. The corresponding RMSE is less
than 0.02, 0.04, 0.06, and 0.12 for β1 = 0.1, 0.1

√
2, 0.2, and 0.4, respectively, and it
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Table 1. Root mean squared error (×100) of the maximum pairwise likelihood estimator (14), using the 10%
closest pairs, for the locally isotropic extremal t with various parameter combinations.

(β1, β2) df Smoothness parameter α

0.5 1.0 1.5 1.9

(0.1,0) 1 2/42/12/3 1/21/11/4 1/14/10/5 1/11/10/5
2 2/41/30/3 1/21/27/3 1/13/23/5 0/10/22/4
5 2/32/113/3 1/17/92/3 0/11/92/3 0/10/100/3

10 1/27/434/2 1/15/302/3 0/11/277/3 0/8/417/3
(0.1

√
2, 1) 1 4/47/12/3 2/22/10/4 1/15/11/5 1/11/10/6

2 3/43/30/3 1/20/26/3 1/14/22/4 1/10/23/4
5 3/36/111/3 1/19/93/3 1/12/88/3 1/10/93/3

10 2/28/285/3 1/17/259/3 1/12/313/3 1/10/328/3
(0.2,2) 1 6/55/12/4 2/23/11/4 1/15/9/5 1/13/8/5

2 5/43/29/3 2/21/25/3 1/15/23/4 1/12/26/4
5 4/31/92/3 2/20/78/3 1/13/80/3 1/11/81/3

10 3/24/217/3 2/17/183/3 1/13/193/3 1/11/200/3
(0.4,4) 1 12/57/12/4 7/31/10/5 4/20/8/6 3/16/7/5

2 8/41/26/4 5/24/23/4 4/18/21/4 3/15/18/4
5 7/38/75/4 4/20/57/4 3/14/55/4 2/13/52/4

10 7/37/194/4 4/20/128/3 3/15/128/4 2/12/116/4

These diagnostics are computed for parameters β1/β2/df/α from 300 independent simulations of m = 100
independent max-stable processes simulated at S = 100 fixed locations in [0, 1]2.

decreases as the smoothness parameter α increases, and as the degrees of freedom (df)
increase. Furthermore, the higher the β1, the larger its RMSE, as expected. The RMSE for
the non-stationary parameter β2 follows a similar pattern, though large values of β2 seem
easier to estimate overall: for strongly non-stationary scenarios, the RMSE is quite small in
comparison to the actual value of β2. This is certainly due to the very rigid type of assumed
non-stationarity: a small perturbation of β2 entails a dramatic change in the dependence
structure.

To illustrate increasing-domain and infill asymptotic properties of the estimator (14),
Fig. 4 displays boxplots of parameter estimates, as a function of m and S for the extremal
t model with df = 5, α = 1, and (β1, β2) = (0.2, 2). As expected, the estimator appears
to be consistent as m increases. In addition, parameters are much better estimated if the
data are collected at a dense network of sites, although the estimator is not consistent as
S → ∞ for fixedm, as a result of the extremal-t model being non-mixing. Interestingly, the
estimated variances of β1/β2/df/α decrease by a factor 4.9/4.7/8.3/4.8 when the number
of independent repeated measurements increases from m = 20 to m = 100 (for S = 100),
whereas they drop by a factor 13.2/9.9/5.8/17.2 when the number of dependent spatial
measurements increases from S = 20 to S = 100 (for m = 100). Therefore, in finite
samples, having more stations may be (much) more valuable than having more temporal
replicates.

We now explore the ability of estimator (14) to detect the spatial heterogeneity. For
each simulated dataset, we fit the true non-stationary model and the (restricted) stationary
counterpart, computing in each case the corresponding CLIC and CBIC diagnostics defined
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Figure 4. Boxplots of parameter estimates obtained from data generated from the locally isotropic extremal
t process with df = 5, α = 1, and (β1, β2) = (0.2, 2). Estimator (14) was used, including the 10% closest
pairs. Green boxes (left of vertical dashed line) show the performance for a fixed number of locations, S = 100,
and an increasing number of independent replicates, m = 10, 20, 50, 100. Blue boxes (right of vertical dashed
line) show the performance for a fixed number of replicates, m = 100, and an increasing number of locations,
S = 10, 20, 50, 100. Horizontal red lines are true values (Color figure online).

in Sect. 4.1. These information criteria were computed using finite differences combined
with the direct method of Padoan et al. (2010). The empirical percentages that the CLIC and
CBIC are in favor of the true underlyingmodel (either stationary if β2 = 0, or non-stationary
otherwise) are calculated from the 300 experiments and reported in the Supplementary
Material for S = 100 and m = 100. Overall, non-stationarity in the dependence structure
seems easily detectable when the non-stationarity level is moderate to strong, with almost
100% of success in each case with the CLIC or CBIC. By contrast, the performance is
poor in near-stationary cases; this is especially striking for the CBIC, which penalizes
more model complexity. In case of stationarity, the CLIC selects the true model in about
65% of occasions, whereas the CBIC attains about 80% of success. This suggests that
these information criteria, but especially the CLIC, have “more power” to select bigger
models, and that they should be interpreted with care. This observation agrees with the
theoretical findings of Ng and Joe (2014). Furthermore, the ability to distinguish between
stationarity and non-stationarity improves when more data are available. For example, for
fixed S = 20 and parameters df = 5, α = 1, (β1, β2) = (0.2, 2), the CLIC percentages are
63, 79, 93, 99%, for m = 10, 20, 50, 100, respectively; similarly, for fixed m = 20, these
values are 42, 79, 98, 100%, for S = 10, 20, 50, 100, respectively.

5.3. EFFECT OF MODEL MISSPECIFICATION ON RETURN LEVELS

Neglecting non-stationarity when the data are truly non-stationary might have serious
consequences on the estimation of spatial return levels. To assess this, we consider the
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locally isotropic extremal t model on the Gumbel scale, with df = 5 and α = 1.5. For
(β1, β2) = (0.1, 0) (stationary case) and (β1, β2) = (0.4, 4) (strongly non-stationary case).

We compute return levels for the integral INT j = ∫
S j

Z(s)ds, the minimum MIN j =
mins∈S j {Z(s)}, and the maximum MAX j = maxs∈S j {Z(s)}, j = 1, 2, of the max-stable
process Z(s) over the domains S1 = [0, 0.2]×[0, 1] and S2 = [0.8, 1]×[0, 1]. In practice,
these domains are pixelated using a fine grid comprising 105 points with equal spacings
of 0.05. Assuming that Z(s) describes the annual maximum process for some quantity
of interest, we then derive the N -year return level for INT j and MIN j as the empirical
(1 − 1/N )-quantile calculated from one million independent simulations of Z(s). Return
levels zN ;MAX j for MAX j are derived using the exact formula zN ;MAX j = log{θ(S j )} −
log{− log(1 − 1/N )} and an estimate of the areal extremal coefficient θ(S j ) (Lantuéjoul
et al. 2011). The latter determines the effective number of independent extremes in region
S j ; for the stationary case, one finds θ(S1) = θ(S2) ≈ 8.6, and for the non-stationary case,
θ(S1) ≈ 4.2, θ(S2) ≈ 23.6, indicating that extremal dependence in S1 is much stronger
than in S2. Results are shown in Fig. 1.

One can see that misspecification (and therefore also misestimation) of spatial depen-
dence strongly affects the return levels of spatial quantities. Underestimation of dependence
implies underestimation of return levels for INT j and MIN j and overestimation of return
levels for MAX j (and vice versa). Although this depends on the level of non-stationarity,
the underlying parameters, and marginal distributions, in practice it is crucial to capture
correctly the non-stationarity in the dependence structure.

6. ANALYSIS OF TEMPERATURE MAXIMA

We now discuss an application to a temperature dataset recorded in Colorado during
the period 1895–1997, which is freely available on the National Center for Atmospheric
Researchwebsite.We selected stations in the Front Range area, with at least 40 years of data,
and extracted maxima over the months May–September (roughly corresponding to annual
maxima), bypassing therefore the modeling of seasonality. Figure 5 illustrates the locations
of the monitoring stations kept for the analysis, and summarizes the data availability.
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obtained from the fit of the spatial GEV(μ(s), σ (s), ξ(s)) model with parameters modeled as (conditionally
independent) latent Gaussian processes.

To estimate marginal distributions, we fitted a spatial GEV(μ(s), σ (s), ξ(s)) model to
observedmaxima, assuming conditional independencewith the parametersμ(s), σ (s), ξ(s),
modeled as latent stationary Gaussian processes. While the means of the location and scale
parameters μ(s), σ (s) were assumed to depend on longitude, latitude, and altitude, the
mean of the shape parameter involved only two distinct values for plains and mountains.
Quantile–quantile plots (not shown) suggest that marginal fits are good. Annual maxima
were then transformed to the unit Fréchet scale using the parameters’ estimatedmean and the
probability integral transform. Histograms of estimated parameters for the different stations
are displayed in Fig. 6. Shape parameters are all negative, indicating that distributions of
temperature annual maxima have an upper bound, which seems physically plausible.

We then fitted 16 stationary and non-stationary extremal t models to the transformed
data using the pairwise likelihood estimator (14) including all pairs of locations. These
models, summarized in Table 2, are based on the Paciorek–Schervish correlation function
(7) combinedwith (8) and are parametrized as in (9). They are either stationary (models 1–2)
or non-stationary (models 3–16), locally isotropic (models 1,3–5,9,11–13) or anisotropic
(models 2,6–8,10,14–16), based onGaussian sum-mixtures of the form (12) (models 1–8) or
non-mixtures (models 9–16). In the non-stationary models, altitude, longitude, and latitude
are used as covariates (on top of the intercept) in the modeling of the dependence ranges
ωx (s), ωy(s) (with logarithmic link) and the mixture coefficient a(s) (with logit link), as
suggested in (10) and Sect. 3.3. The anisotropy parameter δ(s) is kept constant. The degrees
of freedom, df, were found to be difficult to estimate and, after some analysis, were held
fixed at df = 5 (i.e., far from the Smith–Stephenson and Brown–Resnick families).

Figure 7 reports the estimatedCLIC andCBIC values of the fittedmodels; recall Sect. 4.1.
These two diagnostics agree on at least two main conclusions:

(i) Mixturemodels fit generally better, although they have three more parameters than
their non-mixture counterparts. The roughermixture component tends to be dominant
in the mountainous region, while the smoother one (though not very smooth) takes
over at lower altitudes.

(ii) Altitude is a major covariate to be considered in the modeling of extremal depen-
dence,whereas inclusionof further covariates (longitudeor latitude) does not improve
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Table 2. Extremal t max-stable models fitted to the temperature maxima.

# Stat. Iso. Mix. Covariates included in

ωx (s) ωy(s) δ(s) a(s) Nb. par.

1 Yes Yes No None – – – 2
2 Yes No No None None None – 4
3 No Yes No Alt. – – – 3
4 No Yes No Alt./Lon. – – – 4
5 No Yes No Alt./Lon./Lat. – – – 5
6 No No No Alt. Alt. None – 6
7 No No No Alt./Lon. Alt./Lon. None – 8
8 No No No Alt./Lon./Lat. Alt./Lon./Lat. None – 10
9 No Yes Yes None – – Alt. 5
10 No No Yes None none None Alt. 7
11 No Yes Yes Alt. – – Alt. 6
12 No Yes Yes Alt./Lon. – – Alt. 7
13 No Yes Yes Alt./Lon./Lat. – – Alt. 8
14 No No Yes Alt. Alt. None Alt. 9
15 No No Yes Alt./Lon. Alt./Lon. None Alt. 11
16 No No Yes Alt./Lon./Lat. Alt./Lon./Lat. None Alt. 13

For each of these models, we report whether they are stationary (Stat.), locally isotropic (Iso.), and based on
Gaussian sum-mixtures (Mix.). If a model is non-stationary, altitude (Alt.), longitude (Lon.), and latitude (Lat.)
may be used as covariates in the dependence ranges ωx (s), ωy(s) and the mixture coefficient a(s); recall (9) and
(10). The anisotropy parameter δ(s) is kept constant. If a model is locally isotropic, ωx (s) = ωy(s) and δ(s) = 0.
Mixture models are constructed from two correlation functions of the form (6) combined with (7), with different
smoothness parameters α1, α2, but based on the same matrix �s . The degrees of freedom are fixed to df = 5. The
total number of parameters to estimate (Nb. par.) is also reported.
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Figure 7. Difference of estimatedCLIC (left) andCBIC (right) values for all max-stablemodels fittedwith respect
to the best fit.Vertical blue linesmark the separation betweenmixture (1–8) and non-mixture (9–16)models.Models
used for comparison are highlighted in red (stationary isotropic model, 1), orange (best non-mixture model, 6),
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the fit by much. In non-mixture models, there is a huge drop in CLIC or CBIC val-
ues between model 1 (stationary isotropic model with two parameters) and model
3 (locally isotropic model, including altitude as a covariate, with only three para-
meters). In mixture models, point (i) underscores the importance of having different
degrees of regularity at different altitudes.

Among non-mixture models, it is worth considering non-stationary non-isotropic models
with covariates included in the dependence rangesωx (s),ωy(s). The best non-mixturemodel
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(left) model 1 (stationary isotropic extremal t model), (middle) model 6 (best non-mixture model), and (right)
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is model 8 (respectively 6) according to the CLIC (respectively CBIC), but CLIC tends to
select overcomplicated models. For mixture models with altitude included in the mixture
coefficient a(s), the use of further covariates in ωx (s), ωy(s) does not improve the fit by
much, although both diagnostics agree to select model 11 as the best model.

Figure 8 displays bivariate kernel density estimators for the pairs of empirical and fitted
extremal coefficients for model 1 (stationary isotropic benchmark), model 6 (best non-
mixture model according to the CBIC), and model 11 (best mixture model). Empirical
estimates are calculated using the projection method of Marcon et al. (2014) based on the
non-parametric Pickands dependence estimator of Capéraà et al. (1997). Extremal depen-
dence is slightly underestimated for model 1 (with a majority of points lying above the diag-
onal line), but extremal coefficients for non-stationary models tend to be generally closer
to the diagonal. The sum of squared distances between fitted and empirical extremal coeffi-
cients is 3.63, 3.12, 3.00 for models 1, 6, 11, respectively. Clearly, the stationary isotropic
model provides the worse fit, which confirms our previous conclusions, and even more
strongly supports the need for non-stationary dependence structures to incorporate mean-
ingful covariates.

7. DISCUSSION

The problem of building and fitting sensible non-stationary dependence models for spa-
tial extremes is not trivial. We have tackled this problem by proposing a very general
construction, combining max-stable processes (in particular the extremal t model), non-
stationary correlation functions, and mixtures. The advocated locally elliptic model is based
on Paciorek and Schervish (2006) and allows various non-stationary patterns to be flexi-
bly captured in the extremal dependence structure by incorporating meaningful covariates.
We have performed inference using pairwise likelihoods, which are computationally conve-
nient, andwe have shown by simulation that pairwise likelihoods can efficiently estimate the
unknown parameters, provided that the station network is dense. However, more efficient
approaches based on full likelihoods (Stephenson and Tawn 2005; Wadsworth and Tawn
2014; Thibaud and Opitz 2015) might be devised for the extremal t model.
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Various non-stationary max-stable models, including altitude, longitude, and latitude as
covariates,werefitted to adataset of temperaturemaxima inColorado, and thesemodelswere
shown to provide a better fitwith respect to the traditional stationary and isotropicmax-stable
counterpart, although there is still room for improvement. In particular, we have identified
altitude as an important covariate. In future work, other covariates, such as the slope or solar
radiation, might be used to improve the fit, perhaps from satellite data or regional climate
computer models. Alternatively, more flexible non-stationary models might be constructed
from a Bayesian perspective, though inference may be tricky and computationally very
intensive if standard Markov chain Monte Carlo algorithms are used (but see Thibaud et al.
2015). The creation of models for asymptotic independence, a degenerate case in the max-
stable paradigm, is also an important issue when data are non-stationary. One possibility
could be to “invert” the non-stationary max-stable models proposed above (see Wadsworth
and Tawn 2012; Davison et al. 2013).

Finally, we focused in this work on maxima, but more efficient approaches may be
achieved by considering peaks over high thresholds (Huser et al. 2016). This approach,
however, entails additional complications such as the modeling of temporal dependence,
the selection of a suitable threshold, and the non-validity of extremal models at low levels,
which might be even more difficult to handle when the data are non-stationary.

[Received November 2015. Accepted February 2016. Published Online March 2016.]
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