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This paper introduces new estimators for population total and mean in a finite popula-
tion setting, where ranks (or approximate ranks) of population units are available before
selecting sample units. The proposed estimators require selecting a simple random sam-
ple and identifying the population ranks of sample units. Selection of the sample can
be performed with- or without-replacement. The population ranks of the selected units
of with-replacement samples are determined among all population units. On the other
hand, the ranks of the sample units of without-replacement samples are identified in
two different ways: (1) The rank of a sample unit is determined sequentially among the
remaining population units after excluding all previously ranked sample units from the
population; (2) The ranks are determined among all units in the population. By condi-
tioning on these population ranks, we construct a set of weighted estimators, develop
a bootstrap re-sampling procedure to estimate the variances of the estimators, and con-
struct percentile confidence intervals for the population mean and total. We show that the
new estimators provide a substantial amount of efficiency gain over their competitors.
We apply the proposed estimators to estimate corn production in one of the counties in
Ohio.

Key Words: Finite population; Horvitz–Thompson estimator; Inclusion probabilities;
Coefficient of variation; Ranked set sampling; Judgment post stratified sampling.

1. INTRODUCTION

In many survey sampling studies, in addition to the variable of interest, researchers often
have additional auxiliary information to improve statistical inference. In many instances,
this auxiliary information may not be accurate, cannot be turned into a numerical covariate,
or may be even subjective. Even though it contains valuable information, use of this type
of information is ignored in practice since it may require strong modeling assumptions.
For example, ratio and regression estimators are constructed based on auxiliary variables
under strong modeling assumptions. This paper uses rough information to provide ranks
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(or approximate ranks) for the population units to improve the information content of the
sample by avoiding strong modeling assumptions.

The auxiliary variables are very common in survey sampling studies.Hence, finite popula-
tion settings provide a natural platform to obtain exact or approximate ranks of all population
units. Ranking process can be achieved through the use of auxiliary variables, such as, size
of sampling units, previous survey outcomes, census tracks, etc. One such setting is given
in Husby et al. (2005), namely, The United States Department of Agriculture’s (USDA)
National Agricultural Statistics (NASS) county crop estimation program. This program
samples farms across the United States from the sampling frames that include obvious aux-
iliary variables, such as acreage in the farm, size of the farm, etc. These auxiliary variables
provide a reasonable mechanism to rank the farms based on their crop productions. The
detailed description of the USDA/NASS county estimation program can be found in Iwig
(1993).

In an infinite population setting, use of subjective information has generated extensive
research interests in judgment post stratified (JPS) and ranked set sampling (RSS) designs.
Readers can find the recent research activities and detailed description of JPS sampling
designs inMacEachern et al. (2004), Frey andFeeman (2012, 2013), Frey andOzturk (2011),
Stokes et al. (2007), Wang et al. (2006, 2008, 2012), and Ozturk (2014a, 2014b). Ranked set
sampling design is originally developed to keep the overall cost of data collection minimal
in estimating mean pasture yield in agricultural fields in an infinite population setting by
McIntyre (1952, reprinted in 2005). In recent years, there has been a surge in research in RSS
sampling designs both in finite and infinite population settings. A tiny slice of literature in
finite population setting includes Patil et al. (1995), Jafari Jozani and Johnson (2011, 2012),
Frey (2011), Gokpinar and Ozdemir (2010), Ozturk and Jafari Jozani (2013), Al-Saleh and
Samawi (2007), Ozdemir and Gokpinar (2008) and Ozturk (2014c). A comprehensive up-
to-date literature review both in JPS and RSS can be found in a recent review paper inWolfe
(2012).

Both RSS and JPS sampling designs use ranking information from a few units in a set, not
from the entire population, to divide the data into homogeneous groups of judgment strata.
This ranking process is subjective and does not require strongmodeling assumptions. It only
needs a consistent ranking scheme to create ranks for the units in a set without requiring an
established standard of measurement. On the other hand, RSS and JPS use ranks locally in a
set and ignores the global ranking information in the population. This paper, unlike JPS and
RSS sampling designs, concentrates on global ranking information in the entire population
and creates informative samples.

The paper considers finite population settings and assumes the ranks of population units
are available before sampling. It selects a simple random sample (SRS) of n units from
a finite population of size N either with- or without-replacement. For each selected unit
in the sample, we measure the characteristic of interest along with its population rank.
If the sample is selected with-replacement, the rank of the selected unit is determined
from the entire population including all population units. If the sample is taken without-
replacement, the population ranks can be determined in two different ways. In the first
approach, before selecting the sample, ranks are assigned in the entire population includ-
ing all units, and then a simple random sample without replacement is selected along
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with the population ranks of the sample units. In the second approach, ranks are deter-
mined sequentially. The rank of a sample unit is determined among the remaining pop-
ulation units by excluding all the previously selected sample units from the population.
Even though these two approaches yield without-replacement SRS samples, they create
different ranking structures in the sample. Hence, replacement policies and ranking struc-
tures lead to three different designs: design-0 , design-1, and design-2. Designs-0 selects
the sample with replacement and assigns the ranks in the entire populations; design-1
selects the sample without-replacement and assigns the ranks sequentially; and finally,
the design-2 selects the sample without-replacement and assigns the ranks in the entire
population.

Ranking structures in these sampling designs provide a lot of information about the exact
(or approximate) population location of the sample units. This location information can be
used to borrow additional information from other unmeasured population units to improve
the information content of the sample. For each measured unit, we consider selecting addi-
tional H − 1 unmeasured units without replacement from the remaining population units
to form a set of size H . The relative position of each measured unit in these sets can be
computed through its rank in the set by conditioning on its population rank. The rank of the
measured unit in a set of size H yields a discrete conditional probability distribution given
the population rank of the same measured unit. These conditional probabilities of within-set
ranks further provide a mechanism to compute conditional inclusion probabilities for the
population units. The final sample in this process consists of three pieces of information:
measured values, conditional ranking probabilities, and the conditional inclusion probabil-
ities. Even though the measured observations form an SRS sample in design-0, design-1,
and design-2, the conditional probabilities are different. Hence, these designs show different
characteristics.

Section 2 provides detailed developments for the construction of design-0, design-1,
and design-2. For each design, we construct a probability distribution for the approximate
location of the measured units among the unmeasured population units in a set of size H and
compute the first-order conditional inclusion probabilities of the population units given the
population ranks of a sample. Section 3 uses ranking information and conditional inclusion
probabilities to construct estimators for the population mean and total. Section 4 provides
empirical evidence to compare the proposed estimators with its competitors. Section 5
develops a bootstrap re-sampling procedure to estimate the variance of the estimators and
to construct percentile confidence intervals for the population mean and total. Section 6
applies the proposed estimators to USDA 1992 Ohio corn data. Finally, Sect. 7 provides a
concluding remark.

2. CONSTRUCTION OF SAMPLING DESIGNS

Consider a finite population of N units labeled asP = {u1, . . . , uN }. For each population
unit ui , we assume that its population rank si , 1 ≤ si ≤ N , is known. If the population ranks
are not known, we assume that there exists an auxiliary variables Y highly correlated with
the variable of interest X . We then estimate the population rank of X from the population
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rank of the auxiliary variable Y . In the remaining part of the paper, we use si to denote the
true population rank of the unit ui whether it is estimated or not.

Design-0 We select a simple random sample, U = {us1 , . . . , usn }, with-replacement
from P and measure all of them for the variable of interest X , X = (X1, . . . , Xn). We
then identify the population ranks of the measured units, S = {s1, . . . , sn}, where s j is the
population rank of X j . Our sample then consists of n measurements and population ranks
that correspond to these measured units:

XS = {
X j , s j

}
, j = 1, . . . , n. (1)

We note that since the sample is selected with replacement, some pair (Xi , si ) may appear
more than once in the sample. If we ignore the ranks in Eq. (1), XS becomes a simple
random sample, and the inference can be developed based on standard theory in finite
population setting. Since S contains the true (or estimated) population ranks of the sample
units, it provides a lot of information about the approximate location (in relative sense) of
the sample units in the population. This location indicator allows us to borrow additional
information from another H − 1, 1 ≤ H ≤ N − 1, unobserved population units without a
measurement. To achieve this goal, for each selected unit us j , we consider selecting H − 1
additional units at random without-replacement from the remaining N − 1 population units
and form a set of size H

Uj,H = {us j , ut1 , . . . , utH−1}, th �= s j , h = 1, . . . , H − 1, (2)

where uth is the th-th smallest unit among N population units. Let Rs j be the rank of X j ,
random variable obtained from us j , in the set Uj,H . The conditional probability that Rs j is
equal to h given that X j is the s j -th smallest unit in the population can be computed by

α(0)(h|s j ) = P(Rs j = h|X j = xs j ) =
(
s j−1
h−1

) (
N−s j
H−h

)

(
N−1
H−1

) . (3)

The above expression shows that the rank of random variable X j in a set of size H has
a conditional probability distribution over integers (1, . . . , H) given that X j is the s j -th
smallest unit in the population. This conditional distribution helps us to borrow information
from additional H − 1 unmeasured units in the population in addition to the information
each measured unit has in the sample.

We now look at the problem from a different perspective. Instead of treating X as a simple
randomsample,we treat it as a sample of independent order statistics by conditioning on rank
vector R = {Rs1 , . . . , Rsn } generated by Eq. (3). It is clear that the conditional distribution
of X j given that it has a rank Rs j = h j in a set of size H is the same as the h j -th order

statistics, X(h j )
D= X j |Rs j = h j . Let XH |S = (X(h j ), . . . , X(hn)) be the n order statistics

based on this conditional distribution.
Let β(0)(i, h|s j ) be the probability that the h-th order statistics in set Uj,H equals to the

i-th smallest unit in the population given that Rs j = h. This conditional probability can be
computed from
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β(0)(i |h, s j ) = P(X(Rs j )
= xi |Rs j = h) =

(
i−1
h−1

) (
N−i
H−h

)

(
N
H

) .

One can interpret β(0)(i |h, s j ) as the probability mass function of the h-th order statistics
given that the rank of X j equals to h, Rs j = h. By using α(0)(i, h|s j ) and β(0)(i, h|s j ), we
obtain the conditional probability that random variable X j equals to the i-th smallest value
in the population given the population rank (s j ) of X j

β(0)(i |s j ) = P(X j = xi |s j ) =
H∑

h=1

β(0)(i |h, s j )α
(0)(h|s j ).

Then the conditional inclusion probability of the i-th population unit in the sample XH |S
is given by

π(0)(i |S) = 1 −
n∏

j=1

(1 − β(0)(i |s j )).

Note that π(0)(i |S), i = 1, . . . , N , are not the inclusion probabilities of the sample X . They
are the inclusion probabilities of the sample XH |S. Since i is arbitrary, we can replace it
with s j . In this case, π(0)(s j |S) would be the probability that population unit us j in sample
X would be included in sample XH |S .

Remark 1. If either H = 1 or H > 1 and α(0)(h|s j ) = 1/H for h = 1, . . . , H , then
β(0)(i |s j ) = 1/N for j = 1, . . . , n and i = 1, . . . , N . The inclusion probabilities in these
cases reduce to π(0)(i |S) = 1 − ( N−1

N )n, i = 1, . . . , N .

For design-0, the data structure of the sample will be denoted by

{
X j , α

(0)(h|s j ), π(0(s j |S)
}

, h = 1, . . . , H, j = 1, . . . , n.

Design-1Design-1 selects the sample units without replacement from the population and
measures all of them, X = (X1, . . . , Xn). Unlike design-0, where ranks in S are computed
from all units in the population, the population ranks of the measured units are identified
sequentially by removing all of the previously rankedunits in the sample from the population.
Let s∗

j be the rank of the unit u j after removing all the previously ranked units from the
population. Since the ranks of the selected units are assigned sequentially, we introduce
additional notation to accommodate the ranking structure. Let P− j be the finite population
of size N + 1 − j after removing j − 1 units from the original population P

P− j = {All population units excluding the first j − 1 units in the sample}.

Since the population rank of each selected unit is determined after removing all previously
selected units from the population, the sample with this new ranking structure becomes

U∗ = {us∗1 , us∗2 , . . . , us∗n },
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where us∗j is the j-th selected unit in the sample that has a rank s∗
j in population P− j ,

and S∗ = {s∗
1 , . . . , s

∗
n } is the set of the ranks obtained from the reduced populations. The

expression s∗
j = s j − ∑n

k=1 I (sk < s j ) provides the connection between s∗
j in the reduced

population and s j in the full population. In this sample, for each selected unit us∗j , we again
construct a set of size H to borrow information from additional H − 1 unmeasured units
from population P− j :

U∗
j,H = {us∗j , ut∗1 , . . . , ut∗H−1

}, j = 1, . . . , n,

where ut∗h is the t∗h -th smallest unit in population P− j . Let Rs∗j be the rank of us∗j in the set

U∗
j,H . The conditional distribution of Rs∗j given that s∗

j ∈ P− j is given by α(1)(h|s∗
j ):

α(1)(h j |s∗
j ) = P(Rs∗j = h j |s∗

j ∈ P− j ) =
(
s∗j −1
h j−1

) (
N− j+1−s∗j

H−h j

)

(
N− j
H−1

) .

As in design-0, we again consider a conditional sample XH |S∗ given the population
ranks S∗. By adopting the notation of design-0, the conditional probability that the h-th
order statistics in set U∗

j,H equals to the i-th smallest unit in the population P− j given that
Rs j = h is given by

β(1)(i, |h, s∗
j ) = P(X(h) = xi |Rs∗j = h) =

(
i−1
h−1

) (
N− j+1−i

H−h

)

(
N− j+1

H

) , xi ∈ P− j .

In design 1, the conditional probability that random variable X j equals to the i-th smallest
value in the populationP− j given its population rank (s∗

j ) follows from the total probability
law over the conditional distribution of rank: R∗

s j

β(1)(i |s∗
j ) = P(X j = xi |s∗

j ) =
H∑

h=1

β(1)(i |h, s∗
j )α

(1)(h|s∗
j ), xi ∈ P− j .

To compute the conditional inclusion probability of the i-th population unit in the sample
XH |S∗ given the rank vector S∗, π(1)(i |S∗), we use the sequential algorithm given in Frey
(2013) in a slightly different context. To compute π(1)(i |S∗), we first need to develop some
additional notation due to sequential identification of population ranks. For j = 0, . . . , i−1,
letW ( j, d) be the probability that first d units in the sample include j units smaller than the i-
th unit and not the i-th unit. It is obvious that, if d = 0, the values of {W ( j, 0), 0 ≤ j ≤ i−1}
can be computed from

W ( j, 0) =
{
1, j = 0
0, otherwise.

The values of W ( j, d) for d > 0 can be computed from a recursive relationship between
adjacent selection steps. Assume that the values of {W ( j, d), 0 ≤ j ≤ i − 1} are known for
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a fixed d. There are then two ways to obtain the values of {W ( j, d + 1), 0 ≤ j ≤ i − 1}
from stage d: (1) There could be j units smaller than the i-th unit among the first d selected
units in the sample and the next selected unit in the sample is larger than the i-th unit in
the population. (2) There could be j − 1 units smaller than the i-th unit among the first d
selected units in the sample and the next selected unit in the sample is smaller than the i-th
unit in the population. These two statements define a recursive equation as follows:

W (0, d + 1) = T (0, d)

N−d∑

λ=i+1

β(1)(λ|s∗
d )

and for j = 1, . . . , i − 1

W ( j, d + 1) = W ( j, d)

N−d∑

λ=i+1− j

β(1)(λ|s∗
d ) + W ( j − 1, d)

(i−1)−( j−1)∑

λ=1

β(1)(λ|s∗
d ).

Going through this recursive equation for d = 1, . . . , n, we compute the probability
{W ( j, n), 0 ≤ j ≤ i − 1}. The probability that the i-th unit is not included in the sample
is then given by

∑i−1
j=0 W ( j, n). The first-order conditional inclusion probability of the i-th

unit given S∗ and H is then given by

π(1)(i |S∗) = 1 −
i−1∑

j=0

W ( j, n), i = 1, . . . , N

Note that even though it is not explicitly stated in the notation, W ( j, d) is a conditional
probability for given population rank vector S∗. The data structure of design-1 will be
denoted by

{X j , α
(1)(h|s∗

j ), π
(1)(s∗

j |S∗)}, h = 1, . . . , H, j = 1, . . . , n

Design 2 We select a simple random sample, X = (X1, . . . , Xn), of size n without
replacement and identify their ranks, S = (s1, . . . , sn), in population P

U = {us1 , us2 , . . . , usn }.

To borrow additional information from the unmeasured population units, we select n disjoint
sets, each of size H − 1. We then randomly match these n sets with selected units in set U
to form n sets, each of size H

Uj,H = {us j , ut1 , . . . , utH }, j = 1, . . . , n.

The conditional probability distribution of the rank Rs j of X j in setUj,H given that X j has
the rank s j in the population P is given by

α(2)(h|s j ) = P(Rs j = h j |s j ) =
(
s j−1
h j−1

) (
N−s j
H−h j

)

(
N−1
H−1

) , h j = 1, . . . , H.
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In a similar fashion, in the sample XH |S, the conditional probability that the h-th order
statistics in set Uj,H equals to the i-th smallest unit in the population P given that Rs j = h
is given by

β(2)(i |h, s j ) = P(X(h) = xi |Rs j = h) =
(
i−1
h−1

) (
N−i
H−h

)

(
N
H

) , xi ∈ P.

In Eq. (4), the sum over possible values of h yields the conditional probability that X j equals
to i-th smallest unit in the population given the population rank s j

β(2)(i |s j , H) =
H∑

h=1

β(2)(i |h, s j )α
(2)(h|s j ). (4)

The first-order conditional inclusion probabilities given the population ranks of the observed
measurements then follow from

π(2)(i |S) =
n∑

j=1

β(2)(i |s j ), i = 1, . . . , N .

Finally, the data structure of the sample from design-2 is denoted with

{X j , α
(2)(h|s j ), π(2)(s j |S)}, h = 1, . . . , H, j = 1, . . . , n.

Remark 2. If either H = 1 or H > 1 and α(2)(h|s j ) = 1/H for h = 1, . . . , H , then
β(2)(i |s j ) = 1/N for j = 1, . . . , n and i = 1, . . . , N . The inclusion probabilities in these
cases reduce to π(2)(i |S) = n/N , i = 1, . . . , N .

3. ESTIMATORS FOR POPULATION MEAN AND TOTAL

In this section, we introduce three estimators for population mean and total for each
sampling design. The estimators for population total use the data structures established in
the previous section:

T (L)
1 =

{∑n
j=1w

(L)
1 ( j |S)X j L = 0, 2

∑n
j=1w

(L)
1 ( j |S∗)X j L = 1

T (L)
2 =

{
N
H

∑H
h=1

∑n
j=1w

(L)
2 (h, j |S)X j L = 0, 2,

N
H

∑H
h=1

∑n
j=1w

(L)
2 (h, j |S∗)X j L = 1

and

T (L)
3 =

{
N
H

∑H
h=1

∑n
j=1w

(L)
3 (h, j |S)X j L = 0, 2

N
H

∑H
h=1

∑n
j=1w

(L)
3 (h, j |S∗)X j L = 1
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where

w
(L)
1 ( j |S) = 1

π(L)(s j |S)
, w

(L)
2 (h, j |S) = α(L)(h|s j )∑n

j=1α
(L)(h|s j ) ,

w
(L)
3 (h, j |S) =

α(L)(h|s j )
π(L)(s j |S)

∑n
j=1

α(L)(h|s j )
π(L)(s j |S)

.

We note that design-1 estimators always use population ranks S∗ in the reduced populations
P− j , j = 1, . . . , n, to compute the conditional probabilities α(1)(h|s∗

j and π(1)(s∗
j |s∗

j , H).

Estimator T (L)
1 is motivated from Horvitz–Thompson estimator (Horvitz and Thompson

1952), where units having smaller inclusion probability in the sample is given higher weight.
On the other hand, it should be clear that T (L)

1 is not a Horvitz–Thompson estimator since
π(L)(i |S) andπ(L)(i |S∗) are not inclusion probabilities for sample X . They are the inclusion
probabilities for sample XH |S and XH |S∗ , respectively.

The estimator T (L)
2 is motivated from JPS estimator in MacEachern et al. (2004), where

each measured observation is prorated to H ranking classes. The prorate is proportional to
the probability that the measured unit has rank h in a set of size H . This prorating process
creates H strata. Hence, improvement over simple random sample (SRS) estimator can be
anticipated form the theory of stratified sampling design in survey sampling. Even though
the estimators T (0)

2 and T (2)
2 have the same form, they yield different efficiency results

since the sample X is constructed with and without replacement in design-0 and design-1,
respectively.

The estimator T (L)
3 uses the same idea as in estimator T (L)

2 , but it gives more weight to
observations that are less likely to be included in the sample to reduce the variance of the
estimator. One then anticipates that the estimator T (L)

3 performs better than the other two
estimators.

Estimators for the population mean can be obtained by dividing T (L)
r with N

μ̂(L)
r = 1

N
T (L)
r , r = 1, . . . , 3, L = 0, 1, 2.

4. EMPIRICAL EVIDENCE

In this section, we investigate the efficiency of the estimators. Even though it is theoret-
ically possible to construct the probability distributions of the estimators by computing the
weight functions over all possible values of S, this would computationally be intensive even
for moderate sample and population sizes. Hence, to reduce the computational burden, we
use a simulation study to investigate the properties of the estimators.

Simulation study considered two sets of sample (n) and set (H ) sizes, n = 20, 50
and H = 2, 5, respectively. Ranking accuracy is controlled by the correlation coefficient
ρ = 1.00, 0.75, 0.5 between X and Y . Datasets are generated from discrete normal and
exponential distributions of size N = 300. Discrete normal and exponential populations
are generated by xi = Q((i − 0.5)/N ), i = 1, . . . , N , where Q is the quantile function
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Table 1. Biases of the the estimators μ̂
(L)
r , r = 1, 2, 3 and SRS mean.

n H ρ μ μ̂
(0)
1 μ̂

(0)
2 μ̂

(0)
3 μ̂

(1)
1 μ̂

(1)
2 μ̂

(1)
3 μ̂

(2)
1 μ̂

(2)
2 μ̂

(2)
3 SRS

20 2 1.00 0 −0.002 −0.002 −0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000
20 2 1.00 100 2.013 0.001 0.000 −1.126 0.004 0.002 −1.106 0.004 0.003 0.007
20 2 0.75 0 0.006 0.006 0.005 −0.005 −0.006 −0.006 −0.006 −0.006 −0.006 −0.006
20 2 0.75 100 1.901 0.008 0.006 −1.142 −0.003 −0.001 −1.099 −0.003 −0.001 −0.005
20 2 0.50 0 0.003 0.003 0.003 −0.007 −0.008 −0.009 −0.008 −0.008 −0.009 −0.006
20 2 0.50 100 2.070 0.007 0.006 −1.038 −0.001 −0.001 −1.018 −0.001 −0.001 −0.000
20 5 1.00 0 0.001 0.001 0.001 −0.004 −0.005 −0.003 −0.005 −0.005 −0.003 −0.010
20 5 1.00 100 0.469 −0.005 −0.003 −2.463 −0.002 −0.002 −2.356 −0.002 −0.002 −0.006
20 5 0.75 0 −0.004 −0.004 −0.003 −0.002 −0.004 −0.004 −0.003 −0.004 −0.004 −0.002
20 5 0.75 100 0.606 −0.009 −0.010 −2.511 −0.003 −0.003 −2.432 −0.003 −0.003 −0.003
20 5 0.50 0 0.003 0.003 0.003 0.000 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001
20 5 0.50 100 0.462 −0.000 0.000 −2.482 0.013 0.014 −2.404 0.013 0.014 0.011
50 2 1.00 0 0.002 0.002 0.001 0.002 0.001 −0.000 0.001 0.001 −0.000 0.003
50 2 1.00 100 7.265 0.002 0.001 −0.404 −0.001 −0.001 −0.369 −0.001 −0.001 −0.003
50 2 0.75 0 0.004 0.004 0.003 0.001 0.000 0.001 0.000 0.000 0.001 −0.000
50 2 0.75 100 7.289 0.003 0.003 −0.409 −0.001 −0.002 −0.391 −0.001 −0.002 −0.001
50 2 0.50 0 0.006 0.006 0.006 0.001 0.001 0.001 0.001 0.001 0.001 −0.000
50 2 0.50 100 7.267 −0.001 −0.001 −0.401 0.003 0.003 −0.380 0.003 0.003 0.003
50 5 1.00 0 −0.000 −0.000 −0.001 0.001 −0.001 −0.000 −0.001 −0.001 −0.000 −0.003
50 5 1.00 100 6.690 0.000 −0.000 −0.948 0.001 −0.000 −0.888 0.001 0.000 0.002
50 5 0.75 0 0.001 0.001 0.001 0.002 0.000 0.000 0.001 0.001 0.000 0.000
50 5 0.75 100 6.670 0.002 0.002 −0.964 −0.001 −0.000 −0.849 −0.001 0.000 −0.004
50 5 0.50 0 −0.001 −0.000 −0.000 −0.000 −0.000 −0.000 −0.001 −0.001 −0.000 −0.003
50 5 0.50 100 6.653 −0.004 −0.004 −0.973 −0.003 −0.003 −0.867 −0.003 −0.003 −0.005

Datasets are generated from discrete standard normal distribution and shifted by μ. Simulation size is 1000.

of either standard normal or standard exponential distribution depending on the underlying
population. Simulation size is taken to be 1000.

Ranking accuracy is simulated by perceived size ranking model in Dell and Clutter
(1972). This model, for the population values x = (x1, . . . , xN ), selects an N dimensional
random vector, ε = (ε1, . . . , εN ), from a normal distribution havingmean zero and variance
τ 2. These two vectors are added to create a ranking vector y = x + ε. The ranks of the
observations in the vector y are used to predict the ranks of the values (x) of population
units. The accuracy of ranking is controlled by the correlation coefficient: ρ = corr(Y, X) =

1√
1+τ 2/σ 2

, or equivalently by the variance τ 2, where σ 2 is the variance of X .

Tables 1 and 2 present the biases of the estimators for discrete normal and exponential
distributions. It is clear from these tables that the estimator μ̂

(L)
1 has a substantial amount

of bias in all sampling designs when the population mean is large, or equivalently when
the coefficient of variation, CV= σ/μ, is small. For example, the biases of the estimator
μ̂

(L)
1 are practically zero when μ = 0, but they become very large for μ = 100. The other

estimators, μ̂
(L)
r , r = 2, 3; L = 0, 1, 2, appear to be essentially unbiased for all μ and

sampling designs. Since the biases of the estimators μ̂
(L)
1 , L = 0, 1, 2, are very large when

the coefficient of variation is small, these estimators are not considered any further in this
paper.
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Table 2. Biases of the the estimators μ̂
(L)
r , r = 1, 2, 3 and SRS mean.

n H ρ μ μ̂
(0)
1 μ̂

(0)
2 μ̂

(0)
3 μ̂

(1)
1 μ̂

(1)
2 μ̂

(1)
3 μ̂

(2)
1 μ̂

(2)
2 μ̂

(2)
3 SRS

20 2 1.00 0 0.023 0.001 −0.000 −0.012 −0.004 −0.005 −0.012 −0.004 −0.005 0.002
20 2 1.00 100 2.006 −0.006 −0.008 −1.066 −0.010 −0.010 −1.030 −0.010 −0.010 −0.007
20 2 0.75 0 0.028 0.007 0.004 −0.007 0.001 0.000 −0.007 0.001 0.000 0.005
20 2 0.75 100 1.961 −0.006 −0.008 −1.070 0.000 −0.001 −1.047 0.000 −0.001 0.006
20 2 0.50 0 0.013 −0.008 −0.008 −0.018 −0.008 −0.009 −0.018 −0.008 −0.008 −0.006
20 2 0.50 100 2.012 −0.003 −0.005 −1.094 0.005 0.004 −1.069 0.005 0.004 0.009
20 5 1.00 0 −0.000 −0.008 −0.010 −0.033 −0.014 −0.014 −0.034 −0.014 −0.014 −0.006
20 5 1.00 100 0.369 −0.012 −0.015 −2.616 −0.012 −0.013 −2.527 −0.012 −0.013 −0.000
20 5 0.75 0 0.002 −0.006 −0.008 −0.029 −0.007 −0.008 −0.029 −0.007 −0.008 0.003
20 5 0.75 100 0.594 −0.011 −0.013 −2.687 −0.010 −0.011 −2.591 −0.010 −0.011 0.003
20 5 0.50 0 0.002 −0.005 −0.008 −0.032 −0.011 −0.012 −0.033 −0.011 −0.012 −0.004
20 5 0.50 100 0.334 −0.017 −0.016 −2.575 −0.004 −0.005 −2.528 −0.004 −0.005 0.004
50 2 1.00 0 0.070 −0.004 −0.004 −0.007 −0.004 −0.003 −0.007 −0.004 −0.003 −0.002
50 2 1.00 100 7.343 0.002 0.000 −0.413 −0.005 −0.005 −0.377 −0.005 −0.004 −0.003
50 2 0.75 0 0.066 −0.007 −0.006 −0.008 −0.005 −0.006 −0.008 −0.005 −0.005 −0.003
50 2 0.75 100 7.350 −0.002 −0.002 −0.405 −0.005 −0.005 −0.365 −0.005 −0.005 −0.004
50 2 0.50 0 0.069 −0.004 −0.003 −0.009 −0.005 −0.005 −0.008 −0.005 −0.005 −0.004
50 2 0.50 100 7.378 0.004 0.004 −0.428 −0.008 −0.008 −0.396 −0.008 −0.008 −0.008
50 5 1.00 0 0.062 −0.006 −0.006 −0.016 −0.008 −0.007 −0.016 −0.008 −0.007 −0.008
50 5 1.00 100 6.703 −0.005 −0.005 −0.948 −0.004 −0.003 −0.872 −0.004 −0.003 −0.002
50 5 0.75 0 0.063 −0.004 −0.004 −0.015 −0.009 −0.010 −0.017 −0.009 −0.010 −0.002
50 5 0.75 100 6.798 −0.003 −0.003 −0.878 −0.005 −0.005 −0.838 −0.004 −0.005 −0.001
50 5 0.50 0 0.065 −0.002 −0.002 −0.008 0.001 0.001 −0.007 0.001 0.001 0.001
50 5 0.50 100 6.706 −0.006 −0.006 −0.912 −0.002 −0.003 −0.903 −0.002 −0.003 0.002

Datasets are generated from discrete standard exponential distribution and shifted by μ. Simulation size is 1000.

Tables 3 and 4 present the relative efficiencies of μ̂
(L)
r , r = 2, 3, and SRS mean with

respect to the estimator μ̂
(2)
3

R(L)
r = MSE(μ̂

(L)
r )

MSE(μ̂
(2)
3 )

, r = 2, 3; L = 0, 1, 2, and RSRS = MSE(SRS)

MSE(μ̂
(2)
3 )

.

The values of R(L)
r > 1 and RSRS > 1 indicate that the estimator μ̂

(2)
3 outperforms μ̂

(L)
r ,

and SRS mean, respectively.
There are several important features in Tables 3 and 4 that need to be discussed. It is clear

that RSRS/R
(L)
r > 1, for r = 2, 3 and L = 0, 1, 2, which indicates that all of the proposed

estimators have higher efficiencies than SRS mean. The efficiency gain is substantial if the
ranking information is accurate and set size is large. For example, in Table 3, the efficiencies
of μ̂

(0)
2 , μ̂(0)

3 , μ̂(1)
2 ,μ̂(1)

3 , μ̂(2)
2 , and μ̂

(2)
3 with respect to SRS mean are 5.480 (13.809/2.52),

11.604 (13.809/1.19), 6.529 (13.809/2.115), 14.310 (13.809/0.965), 5.960 (13.809/2.317),
and 13.809, respectively, when n = 20 ,H = 5, ρ = 1, and μ = 0. Even if ρ = 0.50, the
new estimators are still better than SRS mean. On the other hand, the efficiency gain is not
as high as the ones under perfect ranking.

Tables 3 and 4 also reveal that the relative efficiencies of design-0 estimators are generally
lower than the efficiencies of design-1 and design-2 estimators. This is mostly due to the
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Table 3. Relative efficiencies of μ̂
(L)
r , r = 2, 3 and SRS estimators with respect to μ̂

(2)
3 , R(L)

r =
MSE(μ̂

(L)
r )/MSE(μ̂

(2)
3 ) and RSRS = MSE(SRS)/MSE(μ̂

(2)
3 ).

n H ρ μ R(0)
2 R(0)

3 R(1)
2 R(1)

3 R(2)
2 RSRS

20 2 1.00 0 2.044 1.138 1.775 0.989 1.827 3.728
20 2 1.00 100 1.787 1.004 1.798 0.992 1.849 3.770
20 2 0.75 0 1.214 1.039 1.161 0.998 1.172 1.597
20 2 0.75 100 1.294 1.032 1.226 0.998 1.241 1.787
20 2 0.50 0 1.078 1.026 1.058 0.999 1.062 1.216
20 2 0.50 100 1.146 1.084 1.065 0.999 1.069 1.232
20 5 1.00 0 2.520 1.190 2.115 0.965 2.317 13.809
20 5 1.00 100 2.393 1.109 2.244 0.969 2.449 14.688
20 5 0.75 0 1.119 1.033 1.055 1.000 1.068 1.873
20 5 0.75 100 1.145 1.013 1.089 0.999 1.106 2.256
20 5 0.50 0 1.053 1.059 0.999 1.002 1.001 1.185
20 5 0.50 100 1.010 1.012 0.999 1.001 1.002 1.247
50 2 1.00 0 2.309 1.246 1.765 0.960 1.915 3.970
50 2 1.00 100 2.293 1.247 1.776 0.964 1.925 3.997
50 2 0.75 0 1.319 1.071 1.191 0.991 1.228 1.755
50 2 0.75 100 1.474 1.201 1.203 0.991 1.243 1.811
50 2 0.50 0 1.139 1.072 1.052 0.999 1.061 1.198
50 2 0.50 100 1.533 1.421 1.077 0.995 1.093 1.305
50 5 1.00 0 2.887 1.095 2.121 0.926 2.759 17.708
50 5 1.00 100 2.792 1.129 2.107 0.912 2.732 17.356
50 5 0.75 0 1.386 1.221 1.091 0.993 1.144 2.380
50 5 0.75 100 1.202 1.091 1.075 0.992 1.121 2.198
50 5 0.50 0 1.186 1.161 1.017 1.002 1.025 1.328
50 5 0.50 100 1.154 1.135 1.009 1.003 1.017 1.241

Datasets are generated from discrete standard normal distribution and shifted by μ. Simulation size is 1000.

replacement policy of the design-0, where units are selected with replacement. Among these
three designs, it appears that design-1 is the most efficient one. For example, R(2)

2 /R(1)
2 > 1.

This can be anticipated from the fact that design-1 determines the ranks of sample units
sequentially by removing all the previously ranked units in the sample from the population.
This sequential ranking provides stronger data structure in the sample in design-1 than the
one in design-2, and hence increases the efficiency. On the other hand, design-1 and design-2
are comparable in their efficiency for the estimators μ̂

(1)
3 and μ̂

(2)
3 . They practically have the

same efficiency, R(1)
3 ≈ 1. The estimator μ̂

(2)
3 is slightly less efficient when ρ = 1, but for

the other values of ρ, ρ < 1, the estimators are essentially equivalent in their efficiencies.
The efficiencies of the estimators in Tables 3 and 4 appear to be increasing function of

set size H . To investigate the impact of set size further, we performed another simulation
study using discrete normal population (μ = 10 and σ = 10) of size N = 100 with ρ = 1.
In this part of the simulation study, sample and simulation sizes are taken to be 20 and 1000,
respectively. Figure 1 plots the mean square errors (MSEs) of the estimators μ̂

(L)
r , r = 2, 3;

L = 0, 1, 2 against set size H . It is clear that MSEs are the decreasing functions of set size
H for H ≤ 15 and almost flat for H > 15. The reason that the MSE plots become flat for
large H can be anticipated from the behavior of α(L)(h|s j ). For large H , this probability
will be very small (or zero) for the values of h that are inconsistent with s j . For example, if
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Table 4. Relative efficiencies of μ̂
(L)
r , r = 2, 3 and SRS estimators with respect to μ̂

(2)
3 , R(L)

r =
MSE(μ̂

(L)
r )/MSE(μ̂

(2)
3 ), and RSRS = MSE(SRS)/MSE(μ̂

(2)
3 ).

n H ρ μ R(0)
2 R(0)

3 R(1)
2 R(1)

3 R(2)
2 RSRS

20 2 1.00 0 1.354 0.982 1.356 0.996 1.379 2.312
20 2 1.00 100 1.485 1.060 1.390 0.994 1.416 2.400
20 2 0.75 0 1.070 0.965 1.124 0.999 1.132 1.480
20 2 0.75 100 1.046 0.926 1.107 0.999 1.115 1.435
20 2 0.50 0 0.984 0.966 1.014 1.001 1.014 1.073
20 2 0.50 100 1.065 1.000 1.067 0.998 1.072 1.270
20 5 1.00 0 1.684 1.055 1.548 1.023 1.620 5.848
20 5 1.00 100 1.632 1.051 1.547 1.026 1.622 6.109
20 5 0.75 0 1.242 1.094 1.093 1.007 1.107 2.001
20 5 0.75 100 1.092 0.990 1.089 1.012 1.099 1.977
20 5 0.50 0 0.976 0.976 1.006 1.003 1.009 1.242
20 5 0.50 100 1.020 1.025 0.993 1.001 0.996 1.188
50 2 1.00 0 1.548 1.085 1.370 0.980 1.443 2.457
50 2 1.00 100 1.696 1.207 1.370 0.982 1.443 2.477
50 2 0.75 0 1.124 0.995 1.123 0.994 1.147 1.478
50 2 0.75 100 1.200 1.050 1.107 0.994 1.130 1.457
50 2 0.50 0 1.126 1.085 1.035 0.997 1.044 1.155
50 2 0.50 100 1.129 1.085 1.032 0.997 1.039 1.135
50 5 1.00 0 2.034 1.258 1.515 1.075 1.734 6.814
50 5 1.00 100 1.955 1.140 1.510 1.078 1.726 6.653
50 5 0.75 0 1.359 1.235 1.092 1.024 1.124 1.917
50 5 0.75 100 1.215 1.079 1.124 1.025 1.163 2.072
50 5 0.50 0 1.085 1.078 1.003 1.001 1.010 1.168
50 5 0.50 100 1.191 1.156 1.018 1.012 1.024 1.287

Datasets are generated from discrete standard exponential distribution and shifted by μ. Simulation size is 1000.
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Figure 1. The plots of the simulated mean square errors of the estimators μ̂
(L)
r , r = 2, 3, L = 0, 1, 2, with respect

to set size H . Samples (n = 20) are generated from a discrete normal distribution of size N = 100 with mean
μ = 10, σ = 10 and perfect ranking ρ = 1. Simulation size is 1000.
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s j is small, then large values of h yields α(L)(h|s j ) ≈ 0. Hence, the contribution of these
ranking classes would be negligible to reduce the MSE of the estimators.

Figure 1 also indicates that design-1 estimators yield smaller MSEs than the design-0
and design-2 estimators. In design-1, population ranks of the selected units are determined
sequentially after removing all the previously selected units. This sequential ranking induces
stronger data structure (presumably negative correlations among measured observations).
Hence, design-1 yields higher efficiency results than the other designs in finite population
setting.

5. BOOTSTRAP VARIANCE ESTIMATE AND CONFIDENCE
INTERVAL

In this section, we develop statistical inference for populationmean, but similar inference
can also be developed for population total with a slight change in the notation. The exact
sampling distribution of the estimator is not computationally feasible for reasonable sample
and population sizes. Therefore, to reduce the computational burden, we use bootstrap
distribution to draw statistical inference.

Discussion in the previous section indicates that design-1 performs slightly better than
the other two designs. On the other hand, the computation of the conditional inclusion
probabilities in design-1 requires extensive computing time when the population and/or
sample sizes are large. Since the estimators μ̂

(1)
3 and μ̂

(2)
3 are equivalent in their efficiencies

for all practical purposes, to increase the bootstrap simulation size, we develop the inference
based on design-2 estimator μ̂

(2)
3 .

Let θ be the parameter of interest. The parameter θ can be considered as a statistical
functional θ = F(P). The estimate of θ then can be obtained from plug-in method by
replacing P with empirical population P̂ , θ̂ = F(P̂). The empirical bootstrap population
P̂ should preserve without replacement structure of design-0, design-1, and design-2. Let
x(L)
S = {x j , s j }; j = 1, . . . , n, be the measured values of the simple random sample,

U = {us1, . . . ,Usn }, selected from population P based on design-L , L = 0, 1, 2. Let D be
the integer part of the ratio N/n. We construct empirical bootstrap population by repeating
set x(L)

S D times and selecting d = N −Dn pairs at random from x(L)
S to create an empirical

population of size N :

P̂(L) = {x(L)
S , . . . , x(L)

S , z1, . . . , zd},

where zt , t = 1, . . . , d, are randomly selected pairs from x(L)
S . It is clear that the size of the

empirical population is the same as the original population. The bootstrap samples are then
selected without replacement from population P̂(L). Let x∗ = {x∗

j , a j }; j = 1, . . . , n, be a

re-sample from population P̂(L), where ai ∈ S for i = 1, . . . , n. For each b = 1, . . . , B, let
x∗
b = {x∗

j,b, a j,b}; j = 1, . . . , n, be a re-sample selected from P̂(L), we apply our estimator
to each one of these bootstrap re-samples to obtain
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μ̂
(L)∗
2,b = N

H

H∑

h=1

n∑

j=1

w
(L)
2 (h, j |Ab, H)x∗

j,b, and

μ̂
(L)∗
3,b = N

H

H∑

h=1

n∑

j=1

w
(L)
3 (h, j |Ab)x

∗
j,b, b = 1, . . . , B,

where Ab = (a1,b, . . . , an,b). The bootstrap variance estimates of the estimators in μ̂
(L)
r ,

r = 2, 3, are then given by

BV (μ̂(L)
r ) = 1

B − 1

B∑

b=1

(
μ̂

(L)∗
r,b − ¯̂μ(L)∗

r

)2
, r = 2, 3,

where ¯̂μ(L)∗
r is the mean of μ̂

(L)∗
r,b , b = 1, . . . , B.

A (1−γ )100%bootstrappercentile confidence interval is constructedby (Qγ /2
r , Q1−γ /2

r ),
where Qa

r is the a-th quantile of μ̂
(L)
r satisfying a = P(μ̂

(L)
r < Qa

r |P). The quantiles Qγ /2
r

and Q1−γ /2
r are obtained from bootstrap distribution of μ̂

(L)
r .

In order to investigate the properties of bootstrap variance estimate of μ̂
(2)
r , for r = 2, 3,

and the bootstrap percentile confidence interval of population mean, we performed another
simulation study. The simulation parameters are taken to be n = 30, 50, H = 2, 5, ρ =
1, 0.75, 0.5. The shift parameter μ is selected to be μ = 0, 100. Datasets are generated
from discrete normal and exponential distributions. Simulation and bootstrap replications
are selected to to be 2000 and 1000, respectively.

Table 5 presents 95% coverage probabilities (C) of the bootstrap percentile confidence
intervals based on estimators μ̂

(2)
r , r = 2, 3, and SRS mean. Table 5 reveals that coverage

probabilities are reasonably close to the nominal coverage probability 0.95 for discrete
normal distribution. The coverage probabilities for the discrete exponential distribution
appear to be slightly lower than the nominal level for small sample sizes. This may be due to
the fact that super-population exponential distribution is a skewed distribution.Hence, itmay
require larger sample sizes to satisfy the regularity conditions of the bootstrap procedure in
Booth et al. (1994).

Table 6 presents bootstrap (B) and simulated (S) variance estimates of the estimators
μ̂

(2)
r , r = 2, 3 and SRS mean. It is obvious that bootstrap variance estimates are almost

identical to those estimated from simulation study. The simulation results provide a con-
vincing evidence that variance estimates of the proposed estimators can be computed from
bootstrap distribution.

6. APPLICATION

In this section, we apply the proposed sampling designs and estimators to 1992 Ohio
corn yield data which were used by the Ohio Agricultural Statistics Department in its
county estimation program. This dataset includes responses from farms in the USDA’s
NationalQuarterlyAgricultural Survey and from farms responding to theOhio supplemental
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Table 5. Coverage probabilities (C) of 95% bootstrap percentile confidence intervals of population mean based

on estimators μ̂
(2)
r , r = 2, 3.

N (0, 1) + μ Exp(1) + μ

n H ρ μ C(μ̂
(2)
2 ) C(μ̂

(2)
3 ) C(SRS) C(μ̂

(2)
2 ) C(μ̂

(2)
3 ) C(SRS)

30 2 1.00 0 0.931 0.926 0.935 0.914 0.895 0.924
30 2 1.00 100 0.926 0.923 0.929 0.904 0.881 0.916
30 2 0.75 0 0.931 0.928 0.936 0.905 0.903 0.905
30 2 0.75 100 0.930 0.926 0.933 0.914 0.906 0.912
30 2 0.50 0 0.938 0.938 0.940 0.921 0.925 0.924
30 2 0.50 100 0.934 0.933 0.934 0.907 0.908 0.909
30 5 1.00 0 0.909 0.897 0.929 0.880 0.830 0.924
30 5 1.00 100 0.910 0.900 0.927 0.891 0.848 0.928
30 5 0.75 0 0.943 0.945 0.929 0.910 0.910 0.922
30 5 0.75 100 0.934 0.930 0.936 0.904 0.910 0.908
30 5 0.50 0 0.924 0.922 0.935 0.926 0.917 0.926
30 5 0.50 100 0.939 0.933 0.939 0.912 0.910 0.914
50 2 1.00 0 0.945 0.943 0.947 0.920 0.915 0.932
50 2 1.00 100 0.934 0.932 0.938 0.925 0.915 0.927
50 2 0.75 0 0.943 0.943 0.939 0.919 0.917 0.918
50 2 0.75 100 0.937 0.938 0.942 0.924 0.927 0.923
50 2 0.50 0 0.936 0.939 0.938 0.923 0.919 0.922
50 2 0.50 100 0.949 0.948 0.946 0.931 0.933 0.930
50 5 1.00 0 0.925 0.922 0.936 0.900 0.864 0.933
50 5 1.00 100 0.927 0.920 0.938 0.898 0.854 0.930
50 5 0.75 0 0.945 0.945 0.938 0.924 0.923 0.934
50 5 0.75 100 0.941 0.936 0.938 0.921 0.924 0.925
50 5 0.50 0 0.942 0.942 0.942 0.923 0.922 0.924
50 5 0.50 100 0.943 0.941 0.949 0.934 0.935 0.940

Dataset is generated from discrete standard normal and exponential distribution, and shifted by μ. Simulation size
is 2000, the bootstrap simulation size is 1000.

survey, Husby et al. (2005). (Also, see Ohio Department of Agriculture, 1993, for published
estimates based on these data). The success of the proposed sampling designs depends
heavily on accurate ranking information of the population units. To get a reasonably correct
rank ordering of the population units, we select our population as one of the counties from
the Ohio Corn Data having 202 farms. Hence, the population size is N = 202. In this
population, there are five variables: corn production (bushels, X ), farm size (acreage, Y1),
group size (Y2), acre planted (Y3), and acre harvested (Y4). Our interest lies in estimation of
the mean corn production in the county. The constructions of the proposed sampling designs
require rank ordering of 202 farms based on their corn production. We use the variables Y1,
Y2, Y3, and Y4 as auxiliary variables to predict rank ordering of X . There is high correlation
between X and the other auxiliary variables, ρk = cor(X,Yk), r = 1, . . . , 4. The histogram
of X reveals that the population is strongly skewed right. The parameters of this population
are given in Ozturk (2014c) and reproduced in Table 7.

The auxiliary variable group size Y2 is an integer-valued random variable which only
takes values 1, 2, and 3. There are also ties in other auxiliary variablesY1, Y3, andY4. In order
to break the ties, we generated a random vector ε of size N = 202 from a normal distribution
with mean 0 and standard deviation 0.001 and constructed y∗

j = y j + u, j = 1, . . . , 4.
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Table 6. Bootstrap(B) and simulation (S) variance estimates of the estimators μ̂
(2)
r , r = 2, 3.

Dist n H ρ μ B(μ̂
(2)
2 ) B(μ̂

(2)
3 ) B(SRS) S(μ̂

(2)
2 ) S(μ̂

(2)
3 ) S(SRS)

N (0, 1) 30 2 1.00 0 0.015 0.008 0.030 0.014 0.008 0.029
30 2 1.00 100 0.015 0.008 0.030 0.014 0.008 0.029
30 2 0.75 0 0.021 0.017 0.030 0.020 0.017 0.029
30 2 0.75 100 0.022 0.018 0.030 0.020 0.017 0.029
30 2 0.50 0 0.025 0.023 0.029 0.024 0.022 0.029
30 2 0.50 100 0.027 0.025 0.030 0.025 0.023 0.029
30 5 1.00 0 0.005 0.002 0.031 0.005 0.002 0.029
30 5 1.00 100 0.005 0.002 0.032 0.005 0.002 0.029
30 5 0.75 0 0.016 0.015 0.030 0.016 0.015 0.029
30 5 0.75 100 0.016 0.014 0.030 0.015 0.014 0.029
30 5 0.50 0 0.025 0.025 0.030 0.023 0.022 0.029
30 5 0.50 100 0.023 0.023 0.029 0.023 0.023 0.030
50 2 1.00 0 0.007 0.004 0.016 0.008 0.004 0.016
50 2 1.00 100 0.008 0.004 0.017 0.008 0.004 0.016
50 2 0.75 0 0.011 0.009 0.017 0.011 0.009 0.016
50 2 0.75 100 0.011 0.009 0.016 0.011 0.009 0.016
50 2 0.50 0 0.015 0.014 0.016 0.015 0.014 0.016
50 2 0.50 100 0.014 0.013 0.016 0.014 0.013 0.016
50 5 1.00 0 0.003 0.001 0.017 0.002 0.001 0.016
50 5 1.00 100 0.003 0.001 0.017 0.003 0.001 0.016
50 5 0.75 0 0.009 0.008 0.017 0.009 0.008 0.016
50 5 0.75 100 0.009 0.008 0.017 0.009 0.008 0.016
50 5 0.50 0 0.013 0.013 0.017 0.013 0.012 0.016
50 5 0.50 100 0.013 0.012 0.017 0.013 0.012 0.016

Exp(1) 30 2 1.00 0 0.017 0.011 0.029 0.016 0.011 0.029
30 2 1.00 100 0.017 0.012 0.030 0.016 0.011 0.028
30 2 0.75 0 0.024 0.022 0.030 0.022 0.020 0.028
30 2 0.75 100 0.023 0.020 0.030 0.021 0.018 0.029
30 2 0.50 0 0.025 0.024 0.029 0.024 0.023 0.029
30 2 0.50 100 0.028 0.027 0.031 0.025 0.024 0.029
30 5 1.00 0 0.008 0.005 0.030 0.007 0.004 0.029
30 5 1.00 100 0.007 0.004 0.030 0.007 0.004 0.029
30 5 0.75 0 0.018 0.017 0.029 0.017 0.015 0.029
30 5 0.75 100 0.017 0.016 0.030 0.015 0.014 0.028
30 5 0.50 0 0.023 0.023 0.029 0.022 0.021 0.029
30 5 0.50 100 0.024 0.024 0.031 0.022 0.021 0.029
50 2 1.00 0 0.010 0.007 0.017 0.009 0.006 0.016
50 2 1.00 100 0.009 0.006 0.016 0.009 0.006 0.016
50 2 0.75 0 0.013 0.012 0.017 0.012 0.011 0.016
50 2 0.75 100 0.013 0.011 0.016 0.012 0.011 0.016
50 2 0.50 0 0.014 0.013 0.017 0.014 0.013 0.016
50 2 0.50 100 0.014 0.014 0.016 0.014 0.013 0.016
50 5 1.00 0 0.004 0.003 0.016 0.004 0.002 0.016
50 5 1.00 100 0.004 0.002 0.016 0.004 0.002 0.016
50 5 0.75 0 0.009 0.008 0.016 0.009 0.008 0.016
50 5 0.75 100 0.009 0.008 0.016 0.009 0.008 0.016
50 5 0.50 0 0.014 0.014 0.017 0.013 0.013 0.016
50 5 0.50 100 0.012 0.012 0.016 0.012 0.011 0.016

Datasets are generated from discrete standard normal and exponential distributions, and shifted by μ. Simulation
size is 2000, the bootstrap simulation size is 1000.
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Table 7. Population characteristics of an Ohio county in 1992 Ohio corn data, ρk = corr(X, Yk ).

Parameters X Y1 Y2 Y3 Y4

Mean 16688.089 330.583 1.762 121.960 108.634
Median 9291 200 2 73.5 62.5
St. dev 18622.160 333.265 0.755 130.740 119.216
ρk 0.903 0.746 0.940 0.988

Table 8. Biases (Bi) and relative efficiencies (R) of the estimators μ̂
(2)
2 , μ̂(2)

3 , μ̂Ra, μ̂Reg, and SRS mean.

n H ρ Bi(μ̂(2)
2 ) Bi(μ̂(2)

3 ) Bi(SRS) Bi(Ra) Bi(Reg) R2 RSRS RRa RReg

20 10 0.904 −274.441 −318.453 32.469 −87.861 −281.115 1.133 3.243 1.582 1.527
20 10 0.746 −196.169 −214.271 32.469 −50.931 −253.829 1.037 2.069 1.179 1.209
20 10 0.940 −298.586 −343.230 32.469 −116.539 −334.427 1.268 5.172 2.246 2.052
20 10 0.988 −348.944 −403.992 32.469 −131.604 −367.597 1.403 6.791 2.872 2.592
30 6 0.904 −88.250 −109.436 106.752 −1.544 −138.622 1.242 3.226 1.559 1.451
30 6 0.746 −26.834 −30.915 106.752 47.555 −86.799 1.111 2.118 1.208 1.209
30 6 0.940 −91.972 −110.112 106.752 −15.179 −155.947 1.431 4.778 2.087 1.800
30 6 0.988 −109.835 −133.306 106.752 −21.209 −169.171 1.558 5.760 2.449 2.065
50 4 0.904 −53.277 −50.203 −1.164 −26.087 −82.107 1.315 2.904 1.361 1.223
50 4 0.746 −53.945 −50.456 −1.164 −27.349 −96.345 1.165 2.043 1.143 1.127
50 4 0.940 −53.382 −48.561 −1.164 −30.702 −83.071 1.479 3.826 1.640 1.357
50 4 0.988 −57.896 −54.425 −1.164 −32.935 −86.846 1.553 4.234 1.775 1.435

Simulation and bootstrap replication sizes are 3000 and 2000, respectively.

Since all entries in y∗
j are unique, the rank ordering of vector x with no ties is estimated

from y∗
j , j = 1, . . . , 4.

By treating these 202 farms as a finite population, we performed another simulation study
to investigate the biases and efficiencies of μ̂

(2)
2 and μ̂

(2)
3 . In this part of the simulation, we

also included ratio (μ̂Ra) and regression (μ̂Reg) estimator of the population mean

μ̂Ra = 1

N

∑n
j=1 x j∑n
j=1 s j

N (N + 1)

2
and μ̂Reg = B̂0 + B̂1(N + 1)/2,

where B̂0 and B̂1 are the estimated regression coefficients, regressing x j on s j . Simulation
study also considered the bootstrap estimates of standard deviations of the estimators and
coverage probabilities of the percentile confidence intervals. Samples in the simulation are
selected with the following sample and set size combination, (n, H) = (20, 10), (30, 6),
and (50, 4). Simulation and bootstrap replication sizes are taken to be 3000 and 2000,
respectively.

Table 8 presents the biases (Bi) of μ̂
(2)
2 ,μ̂(2)

3 ,μ̂Ra, μ̂Reg, and SRS mean. It also contains
the relative efficiencies of the estimator μ̂

(2)
3 with respect to μ̂

(2)
2 , SRS sample mean, μ̂Ra,

and μ̂Reg
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Table 9. Coverage probabilities of bootstrap percentile confidence intervals of population mean based on estima-

tors μ̂
(2)
r ), r = 2, 3, and SRS mean.

n H ρ μ̂
(2)
2 μ̂

(2)
3 SRS

20 10 0.904 0.852 0.850 0.898
20 10 0.746 0.868 0.870 0.898
20 10 0.940 0.820 0.814 0.898
20 10 0.988 0.803 0.781 0.898
30 6 0.904 0.899 0.893 0.919
30 6 0.746 0.903 0.904 0.919
30 6 0.940 0.881 0.867 0.919
30 6 0.988 0.876 0.854 0.919
50 4 0.904 0.919 0.921 0.928
50 4 0.746 0.920 0.924 0.928
50 4 0.940 0.910 0.913 0.928
50 4 0.988 0.908 0.905 0.928

Simulation and bootstrap replication sizes are 3000 and 2000, respectively.

R(2)
2 = MSE(μ̂

(2)
2 )

MSE(μ̂
(2)
3 )

, R(2)
SRS = MSE(SRS)

MSE(μ̂
(2)
3 )

,

R(2)
Ra = MSE(μ̂Ra)

MSE(μ̂
(2)
3 )

and R(2)
Reg = MSE(μ̂Reg)

MSE(μ̂
(2)
3 )

.

Again relative efficiencies greater than one indicate that the estimator μ̂(2)
3 has smaller mean

square error.
Biases in Table 8 follow a pattern similar to the ones we have observed in Tables 1 and 2.

For large set sizes, the estimators have slightly larger negative biases than SRS estimator.
This can be anticipated from the fact that the proposed estimators borrow information from
unmeasured units in a set of size H . For skew distributions and large set sizes H , effects of
extreme observations in the sample are divided into H different strata, Hence the influence of
extreme observations on the estimator is reduced. For this reason, for skewed distributions,
the estimators provide a slightly under-estimation for the population mean.

The relative efficiencies also follow the similar pattern as in Tables 3 and 4 . The esti-
mator μ̂

(2)
3 is the best estimator, and the efficiencies increase with the quality of ranking

information, set, and sample sizes. Efficiency gain with respect to SRS sample mean, ratio,
and regression estimators is substantial if the ranking information is reasonably accurate.

The same dataset is analyzed in Ozturk (2014c) using RSS design by combining ranking
information from different sources. Sampling designs in this paper are different from the
RSS designs used in Ozturk (2014c). Our designs select simple random samples and con-
struct weights based on global ranking information in the entire population, whereas Ozturk
(2014c) uses local ranking information in a given set of size H . Since we use global ranking
information in the population, our estimator performs better than RSS designs in Ozturk
(2014c).

Table 9 presents the coverage probability of the bootstrap percentile confidence interval
for population mean based on estimators μ̂

(2)
2 , μ

(2)
3 and SRS mean. All these coverage
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Table 10. Bootstrap (B)- and simulation (S)-based estimates of standard deviation of the estimators, μ̂(2)
r , r =

2, 3, and SRS mean.

n H ρ S(μ̂
(2)
2 ) S(μ̂

(2)
3 ) S(SRS) B(μ̂

(2)
2 ) B(μ̂

(2)
3 ) B(SRS)

20 10 0.904 2310.295 2162.324 3935.808 2045.848 1931.809 3704.009
20 10 0.746 2779.303 2727.653 3935.808 2489.629 2436.527 3704.009
20 10 0.940 1926.164 1696.295 3935.808 1703.761 1507.485 3704.009
20 10 0.988 1754.517 1455.366 3935.808 1555.989 1320.373 3704.009
30 6 0.904 1936.858 1736.645 3123.546 1834.772 1651.334 3032.236
30 6 0.746 2263.906 2147.285 3123.546 2142.044 2028.269 3032.236
30 6 0.940 1708.115 1425.513 3123.546 1608.442 1342.961 3032.236
30 6 0.988 1621.721 1295.439 3123.546 1518.565 1212.606 3032.236
50 4 0.904 1530.260 1334.536 2275.824 1512.304 1326.992 2240.971
50 4 0.746 1717.860 1591.619 2275.824 1690.895 1564.606 2240.971
50 4 0.940 1413.872 1162.421 2275.824 1386.626 1143.265 2240.971
50 4 0.988 1377.160 1104.657 2275.824 1343.104 1074.441 2240.971

Simulation and bootstrap replication sizes are 3000 and 2000, respectively.

probabilities appear to be close to the nominal value 0.95 for large sample sizes. Since the
population has strong skewness to right, for small sample sizes, the coverage probabilities are
slightly smaller than the nominal coverage probability 0.95. Table 10 presents the standard
error estimates of the estimators. Again the bootstrap estimate of standard deviations are
close to the estimate of the standard deviation of the estimators from simulation.

7. CONCLUDING REMARK

We have developed three sampling designs to estimate the population total and mean in
a finite population setting. The proposed sampling designs select a simple random sample
and identify their population ranks. Selection of the sample could be either with- or without-
replacement. Replacement policy and the way that population ranks of selected units are
identified define the three different sampling designs: design-0, design-1, and design-2.
In these designs, population ranks of the measured units provide information about the
relative positions of the sample units in the population. This positional information is used
to borrow additional information fromother unmeasured units in the population to reduce the
uncertainty in the sample. We introduced three different estimators for the population mean
and total for each one of these sampling designs. We show that the estimators perform better
than simple random sample estimator as long as there is meaningful ranking information to
rank the population units. The efficiencies of the estimators are an increasing function of
the correlation coefficient between the response and auxiliary variable.

The population ranks of the selected units can be considered as covariate. These ranks
are not strongly attached to the measured values. They can be ignored completely, and the
sample can be analyzed as a simple random sample. Similar to a ranked set sample, where
strong tie is established between the rank and measurement, it is possible to attach ranking
information to the measured units strongly to induce further stratification in the data, but the
resulting sample may not be reduced to a simple random sample. In this case, the properties
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of this sample need to be developed further. One of our current project investigates this type
of sampling design.
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