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Forest composition in the western region of the United States has seen a dramatic
change over the past few years due to an increase in mountain pine beetle damage.
In order to mitigate the pine beetle epidemic, statistical modeling is needed to predict
both the occurrence and the extent of pine beetle damage. Using data on the front range
mountains in Colorado between the years 2001–2010 from the National Forest Service,
we develop a zero-augmented spatio-temporal beta regression model to predict both the
occurrence of pine beetle damage (a binary outcome) and, given damage occurred, the
percent of the region infected. Temporal evolution of the pine beetle damage is captured
using a dynamic linear model where both the probability and extent of damage depend
on the amount of damage incurred in neighboring regions in the previous time period.
A sparse conditional autoregressive model is used to capture any spatial information not
modeled by spatially varying covariates. We find that the occurrence and extent of pine
beetle damage are positively associated with slope and damage in previous time periods.
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1. INTRODUCTION

1.1. PROBLEM STATEMENT AND DESCRIPTION OF DATA

The mountain pine beetle Dendroctonus ponderosae (MPB) is an insect that burrows,
resides, and reproduces in mature pine stands. Native to the forests of the western United
States, MPBs have, historically, played an important role in forest health by attacking weak-
ened trees—thus speeding development of a younger, more healthy forest. However, the
recent onset of warm summers and dry conditions has created an epidemic (Williams and
Liebhold 2002). In particular, multiple MPB outbreaks have caused wide spread tree mortal-
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Figure 1. (left) Elevation map of Colorado with overlaid spatial grid of study region and (right) example of
Colorado counties impacted by MPB damage contained within the spatial grid of the study region from 2002 to
2010.

ity in conifer forests including ponderosa and lodgepole pines since the early 1990s (Raffa
et al. 2008).

To estimate the extent of MPB damage over a region, ecologists often rely on annual aerial
detection surveys (ADS) to analyze spatial and temporal patterns of the damage (Harris et al.
2002, 2003). The primary motivation for this article comes from one such ADS conducted by
the Colorado State Forest Service (CSFS) for the front range mountains in Colorado during
the years 2001–2010. Each year, surveyors would fly over the survey area and digitally draw
in regions on a map to denote damaged areas. The ADS extends from the southern Rocky
Mountains in Colorado to southern Wyoming and the Black Hills of South Dakota, but we
focus on analyzing the data in the North Central Rocky Mountains in Colorado because this
area has more consistent pine tree cover. The gridded area in the left panel of Fig. 1 displays
the region of interest for this study.

When considered temporally, the ADS data represent a cumulative summary of damaged
areas. Notationally, let Ri t be the i th damaged region drawn in year t . For example, Ri t

represents one of the highlighted areas in the right panel of Fig. 1. The damaged areas in
year t are, then, the union of all the damaged regions drawn in years up to and including
time t . Mathematically, damaged regions in year t (Dt ) are given by Dt = ∪t ′≤t ∪Rt ′

i=1 Ri t ′

where Rt are the total number of damaged regions drawn in year t .
Statistically summarizing and modeling ADS data are an interesting challenge that can

benefit researchers by helping to make informed decisions for ground management actions
and aerial surveying based upon the probable damage in a particular area. Zhu et al. (2005,
2008); Zheng and Zhu (2008) consider data aggregated to a regular lattice where each grid
cell is assigned a binary response (infected or not infected) and use autologistic models to
model the spatio-temporal structure. We note that this type of aggregation for our ADS data,
however, would result in information loss. That is, classifying a grid cell as “infected” acts
as if the whole region has been infected when in reality only a portion of the region may
have been impacted. Proportions of damaged areas better capture the nature of the ADS
data than binary models.

To make ADS data more amenable to statistical modeling and following previous studies
of MPB damage, we aggregated the ADS data to a spatial grid with 42 rows and 55 columns
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Figure 2. Observed ỹgt for a t = 2001, b t = 2005 and c t = 2010. Note the strong spatial correlation between
sites and the monotonically increasing proportion of damaged area.

(G = 2310 total grid cells). On this grid, each cell represents an area of roughly 16 km2. This
grid size was chosen for three reasons. First, a resolution of 4 km is fine enough to capture
landscape variability in addition to climate variation between cells. Second, this aligns
with resolution of the meteorological dataset from the Parameter-elevation Regressions on
Independent Slopes Model (PRISM) (Daly et al. 2002) used in the analysis below. The left
panel of Fig. 1 displays the spatial grid.

In order to minimize information loss due to aggregation, the cumulative damage (rather
than a binary summary) for year t = 1, . . . , 10 where t = 1 corresponds to the year 2001
was calculated for each grid cell. That is, for each year, we calculated the percent of a grid cell
that fell within a damaged region in that year or any previous year. More concretely, let ỹgt

represent the cumulative MPB damage in grid cell g up to year t . The ỹgt are calculated as

ỹgt = 1

|Gg|
∫

Gg

1{s∈Dt }ds (1.1)

where Gg represents the spatial region of grid cell g, 1{·} is an indicator function and

Dt = ∪t ′≤t ∪Rt ′
i=1 Ri t ′ are the damaged regions up to year t . Some of the observed ỹgt

are displayed in Fig. 2. Note that ỹgt ∈ [0, 1) where ỹgt �= 1 because grid cells never
reach a “completely damaged” state. Furthermore, the ỹgt are monotonically increasing as
a function of t because, for the ADS data, the region of damaged areas only increases (once
damaged, a grid cell will always be damaged).

1.2. ARTICLE OVERVIEW AND OUTLINE

The goal of this work is to develop a modeling strategy for ỹgt to aid in understanding
and predicting MPB damage. The ultimate goal is to develop intervention strategies to
prevent further damage. Because the ỹgt ∈ [0, 1) and are monotonic, beta regression models
advocated by Kieschnick and McCullough (2003) and Ferrari and Cribari-Neto (2004) are
not a viable modeling strategy as these are only defined on the open interval (0, 1). More
appropriate is the work by Ospina and Ferrari (2010); Wieczorek and Hawala (2011); Ospina
and Ferrari (2012), and Wieczorek et al. (2012) who develop zero, one and zero-and-one-
augmented beta regression models. Perhaps most pertinent to the data described here is the
work by Hatfield et al. (2012) who develop a zero-augmented beta regression model with
individual-specific latent trajectories to explain the probability of a zero outcome and the
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mean of a non-zero outcome. None of these approaches for modeling random variables on
[0, 1), however, account for the monotonicity constraints which need to be imposed on the
ỹgt .

For this article, we develop a model to explain and predict both the occurrence of pine
beetle damage (a binary outcome) and, given damage occurred, the percent of the region
infected. We use a stick-breaking representation to account for the monotonicity constraints
of the cumulative damage (ỹgt ) over time. Specifically, using the stick-breaking represen-
tation, the ỹgt are expressed in terms of non-monotonic random variables (say, ygt ) with
support on [0, 1) and a zero-augmented spatio-temporal beta regression model is used to
model ygt . Following Hatfield et al. (2012), our model uses a beta regression model for
proportions on (0,1) and a binary component to model the probability of no MPB damage.
Our contribution, beyond the stick-breaking representation, is to add a spatial and temporal
term to the model to account for the spatial and temporal variation that occurs over the
Colorado region so as to exploit correlations to aid in predictions.

Temporal evolution of the pine beetle damage is captured using a dynamic linear model
where both the probability and extent of damage depend on the percent of damage incurred
in neighboring regions in the previous time period. The low rank conditional autoregressive
(CAR) models of Hughes and Haran (2013) are used to capture any spatial information not
modeled by spatially varying covariates (e.g., slope, elevation, etc.).

In Sect. 2, we use a stick-breaking representation to model the cumulative damages to
enforce monotonicity, discuss the prior assumptions made for each parameter as well as
outline how to perform statistical inference and prediction. Section 3 shows results of fitting
the model to the MPB dataset while Sect. 4 concludes and discusses opportunities for new
statistical and applied research.

2. A ZERO-AUGMENTED SPATIO-TEMPORAL MODEL FOR
MOUNTAIN PINE BEETLE DAMAGE

2.1. STATISTICAL MODEL

Let g = 1, . . . , G = 2310 denote the grid cells of the 42 × 55 spatial lattice shown in
the left panel of Fig. 1 and let t = 1, . . . , 10 denote the year where t = 1 refers to the
year 2001. Let x′

gt = (xgt1, . . . , xgt P ) denote a vector of P covariates (e.g., elevation and
precipitation; see Sect. 3). To ensure monotonicity of the cumulative damage to a grid cell,
let

ỹgt =
∑

t ′≤t

⎡

⎣ygt ′
∏

{i :i<t ′}
(1 − ygi )

⎤

⎦ (2.1)

where ygt ∈ [0, 1) are non-monotonic. The representation of ỹgt in (2.1) follows the stick-
breaking representation of the Dirichlet process by Sethuraman (1994). Intuitively, the ygt

represent the amount of MPB damage at time t to the undamaged portion of grid cell g. For
example, at time t = 1, 100 × yg1 % of the grid cell is damaged leaving 100 × (1 − yg1) %
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undamaged. At time t = 2, 100 × yg2 % of the undamaged portion, (1 − yg1), of the grid
cell is damaged with a cumulative damage of ỹg2 = yg1 + yg2(1 − yg1) and 100 × (1 −
yg1)×(1− yg2) % undamaged. We emphasize that ygt = 0 implies that there was no further
damage at time t .

Notice that in (2.1) there is a one-to-one relationship between ỹgt and ygt . Hence, under
the stick-breaking representation, a model ỹgt is induced by modeling ygt . We assume,
ygt = (1 − zgt )bgt where zgt ∈ {0, 1} is a Bernoulli random variable with Pr(zgt = 1) =
δgt ∈ (0, 1) and bgt ∈ (0, 1). Intuitively, zgt is an indicator variable for no damage, δgt is the
probability that there was no damage, and bgt is the amount of damage at time t conditional
on the event that there was damage (zgt = 0).

To model the probability of no damage, we assume,

logit(δgt ) = αδ + x′
gtβδ + ηδg + φδ

∑

g′∈Ng

dφδ

g′(t−1)
+ θδdθδ

g(t−1) (2.2)

where logit(δgt ) = log(δgt/(1 − δgt )), αδ is an intercept, βδ is a vector of coefficients
associated with xgt , ηδg is a spatially correlated random effect for grid cell g designed to
capture the effect of unmeasured, spatially correlated covariates associated with grid cell
g, φδ is the temporal effect of damage to the neighbors (Ng) of grid cell g, and θδ is the
temporal effect of damage to grid cell g.

In specifying a model, we use the dφδ
gt and dθδ

gt as measures of damage to grid cell g at
time t and allow them to take a value of either ygt or ỹgt . Which measure of damage (y or
ỹ) to use in (2.2) to capture temporal dynamics of MPB damage is not entirely clear. On
one hand, it may be the case that defining dφδ

gt = ỹgt is more appropriate because MPBs will
tend to migrate to a neighboring grid cell only after consuming the resources within that grid
cell. On the other hand, defining dφδ

gt = ygt may be more appropriate because a large value
of ygt could indicate a high MPB population which is likely to spread to neighboring grid
cells. Using both, however, is inappropriate because there is a one-to-one correspondence
between y and ỹ. We explore which measure of damage to use in Sect. 3.1 using variable
selection.

For non-zero damage, we assume bgt ∼ B(μgt , κgt ) where B(μgt , κgt ) is the beta
distribution with mean μgt ∈ (0, 1) and precision parameter κgt > 0. We use the para-
meterization advocated by Ospina and Ferrari (2012) so that the density function of bgt

is,

f (bgt | μgt , κgt ) = �(κgt )

�(μgtκgt )�((1 − μgt )κgt )
b

μgt κgt −1
gt (1 − bgt )

(1−μgt )κgt −1

with E(bgt ) = μgt and Var(bgt ) = μgt (1 − μgt )/(κgt + 1). We model μgt and κgt in the
same way as δgt with,

logit(μgt ) = αμ + x′
gtβμ + ημg + φμ

∑

g′∈Ng

d
φμ

g′(t−1)
+ θμd

θμ

g(t−1) (2.3)

log(κgt ) = ακ + x′
gtβκ + ηκg + φκ

∑

g′∈Ng

dφκ

g′(t−1)
+ θκdθκ

g(t−1) (2.4)
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where, as in (2.2), the β parameters represent main effects for the covariates xgt , the η

parameters represent spatially correlated random effects designed to capture the effect of
unmeasured covariates, the φ parameters capture possible temporal effects of neighboring
grid cells and the θ parameters capture the temporal dynamics of the grid cell itself.

2.2. PRIORS

We use vaguely informative priors for the φ and θ parameters. Specifically, we assume
that all of the φ and θ parameters are a priori independent N (0, 102) random variates.
Vague N (0, 102) priors are used for each of the α parameters.

For the β parameters, we desire to perform variable selection by learning the covariates
that are important in explaining MPB damage and shrinking the remaining coefficients.
We do not know a priori what variables to include in our model; therefore, we use the
Bayesian LASSO prior of Park and Casella (2008) for βδ , βμ, and βκ , which constrains the
coefficients to be shrunk toward zero. Specifically, for βδ we assume,

βδ ∼ Np (0, Dδτ ) ,

Dδτ = diag
(

τ 2
δ1, . . . , τ

2
δp

)

,

τ 2
δ1, . . . , τ

2
δp ∼

p
∏

i=1

λ2
δ

2
exp

{

−λ2
δτ

2
δi

2

}

dτ 2
δi ,

f
(

λ2
δ

)

∝
(

λ2
δ

)

exp
{

−2λ2
δ

}

,

where f (·) denotes a density function. Equivalent priors were used for βμ and βκ .
In total, there are 3 × 42 × 55 = 6930 η parameters which is a computational chal-

lenge. To help alleviate this problem, we use the sparse reparameterization of a conditional
autoregressive model with dimension reduction as developed by Hughes and Haran (2013).
Specifically, let A represent the 2310 × 2310 adjacency matrix of the grid cells with entries
given by diag(A) = 0 and Ai j = 1 if i and j are neighbors (share an edge) and 0 otherwise.

Let M be a 2310 × q matrix of the first q columns of the Moran basis P⊥ AP⊥ where
P⊥ = I − X(X ′ X)−1 X ′, the projection onto the orthogonal column space of X and X is
the 2310 × P matrix of time-constant covariates. We set ηg = m′

(g)η
� where m(g) is the

gth row of M and η� = (η�
1, . . . , η

�
q)′ is a vector of coefficients. We use the prior described

in Hughes and Haran (2013) which is derived from the intrinsic conditional autoregressive
(ICAR) model for η�

δ, η
�
μ, and η�

κ . Specifically, the prior for η�
δ is

p(ηδ
�|τ) ∝ τ q/2 exp

(

−τ

2
ηδ

�′
Qsηδ

�
)

where τ is a smoothing parameter and Qs = M ′ QM where Q = diag(A1) − A and 1 is a
vector of 1s. As shown in Hughes and Haran (2013), this sparse parameterization for {ηg}
has the effect of (i) alleviating confounding between the main effects (the β’s) and spatial
random effects by constraining spatial smoothing to the orthogonal column space of X and
(ii) reducing the dimension of (η1, . . . , η2310)

′ from 2310 to q. Based upon (Hughes and
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Haran 2013) and from preliminary model fitting, we chose to use ≈10 % of the total spatial
random effects, q = 250, as there was very little change in the estimates of the η parameters
using q > 250. Here, only the time-constant covariates were used to construct the Moran
basis, M. We explored using a time-varying basis using the time-varying covariates but
found that the basis functions changed very little over time. We admit, however, that while
including the time-varying covariates did not seem to impact this analysis, we note that this
may not be the case for all applications.

2.3. STATISTICAL INFERENCE AND PREDICTION

Let θ z = (αδ,βδ, η
�
δ, φδ, θδ, {τ 2

δi }i , λδ)
′ and θb = (αμ, ακ,βμ,βκ , η�

μ, η�
κ , φμ, φκ, θμ,

θκ , {τ 2
μi }i , {τ 2

κi }i , λδ, λκ)′ denote the vector of model parameters associated with {zgt } (the
zero-augmented piece) and {bgt } (the beta piece). Furthermore, let Z0 = {(g, t) : zgt = 0}
denote the set of indices where ygt �= 0. Given the stick-breaking weights {ygt = (1 −
zgt )bgt }gt , we have the following log-likelihood functions,

L (θ z) =
∑

g,t

[

zgt log(δgt ) + (1 − zgt ) log(1 − δgt )
]

, (2.5)

L (θb) =
∑

(g,t)∈Z0

log
[

f (bgt | μgt , κgt )
]

, (2.6)

where the forms for δgt , μgt , and κgt are given in Eqs. (2.2), (2.3), and (2.4), respectively.
The joint log-likelihood for (θ z, θb) is specified similarly to Ospina and Ferrari (2012) and
is given by L (θ z, θb) = L (θ z) + L (θb). Due to the simple forms for L (θ z) and L (θb)

above, we opt to estimate θ z and θb by drawing from their respective posterior distributions
using a Gibbs sampler where we first draw θ z ∼ f (θb | θ z, {ygt }) then θb ∼ f (θb |
θ z, {ygt }).

The complete conditional distributions f (θb | θ z, {ygt }) and f (θb | θ z, {ygt }) are not
available in closed form. Because of this, we use an adaptive Metropolis algorithm based on
Haario et al. (2001) to update θ z and θb. Specifically, we use Gaussian proposal distributions
where the variance of the proposal is set to be the variance of all previous draws. To obtain
estimates of the parameters, we ran a chain for 1,000,000 iterations to ensure that the MCMC
standard errors were small enough (Flegal et al. 2008).

An important component in this study is predicting what regions will be damaged (the zgt

component) and the amount of damage (the bgt component) for the year t� = 11. To make
predictions, we obtain draws of y1t� , . . . , yGt� from the joint posterior predictive distribution
using the identity,

π(zgt� , bgt� , θ z, θb | {ygt }gt ) = πZgt� (zgt� | θ z, θb, {ygt }gt )πBgt� (bgt� | θ z, θb, {ygt }gt )

× πθ (θ z, θb | {ygt }gt ), (2.7)

where we use π to denote a posterior distribution. From (2.7), we can obtain draws from
the posterior predictive distribution of {(zgt� , bgt� )} by drawing zgt� ∼ Bern(δgt� ) and
bgt� ∼ B(μgt� , κgt� ) for each draw of (θ z, θb) obtained from the posterior distribution.
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Draws from the posterior predictive distribution also give a measurement of the uncertainty
associated with the prediction.

3. RESULTS

We consider P = 5 covariates to include as the vector xgt . For each grid cell g, we
calculate the (i) August mean maximum temperature in degrees Celsius, (ii) January mean
minimum temperature in degrees Celsius, (iii) mean annual precipitation in inches, (iv)
terrain slope in percent rise, and (v) elevation in feet. Each of these components has been
shown to have an impact on mountain pine beetle outbreaks in the western United States
(see, for example,Waring and Pitman 1985; Mitchell and Preisler 1991; Negron and Popp
2004). Weather variables were taken from the PRISM dataset which is publicly available at.
http://www.prism.oregonstate.edu/ The PRISM data estimate monthly weather data over a
contiguous grid at a resolution of 0.0416 decimal degrees latitude and longitude (∼4 km)
cells (Daly et al. 2002) and align with the resolution of our gridded MPB data. The weather
variables were adjusted to account for a one-year lag between infestation and the time
MPB damage is detected in the ADS. That is, for August mean maximum and mean annual
precipitation we used data from 1999 to 2008 and for January mean minimum temperatures
we used data from 2000 to 2009. Slope and elevation data for each site were generated
from a Digital Elevation Map (DEM) of the state of Colorado in ArcGIS, where slope is
calculated based upon the maximum rate of change in elevation over the distance from one
site and its neighboring sites.

3.1. MODEL SELECTION

Intuitively, for a grid cell g, the φ parameters are associated with the covariate
∑

g′∈Ng

dφ

g′(t−1)
and represent an added effect due to the cumulative damage to neighbors of g

at the previous time period. Similarly, the θ parameters are associated with the covariate
dθ

g(t−1) and represent an added effect due to damage at grid cell g but at the previous time
period. The model postulated in (2.2), (2.3), and (2.4) requires a choice for the covariates
dφ

gt ∈ {ygt , ỹgt } and dθ
gt ∈ {ygt , ỹgt }. The question, then, is which measure of damage (y or

ỹ) is a better predictor of MPB damage? To answer this question, we fit the proposed model
for each combination of dφδ

gt , dθδ
gt , d

φμ

gt , d
θμ

gt , dφκ
gt , and dθκ

gt (totaling 26 = 64 models).
In this particular application, predictive performance was the most important because

the ultimate goal is to predict the likelihood that MPB’s will appear in a particular grid cell
allowing subsequent intervention strategies to be made. To assess prediction accuracy, we left
out the year t = 2010 and compared model predictions of the occurrence of damage (zgt�)
and amount of damage (bgt�) to the observed ỹgt . We compared each model’s prediction
of the hold-out sample based on the misclassification rate, root mean square prediction
error (RMSPE), and continuous ranked probability score (CRPS; Gneiting and Raftery
2007). The misclassification rate was defined as (2310−1)

∑2310
g=1 1{z̈gt� �=zgt� } where z̈gt� = 1

if Pr(zgt� = 1 | {ygt }gt ) ≥ 0.5 and z̈gt� = 0 otherwise. The RMSPE is calculated as

http://www.prism.oregonstate.edu/
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Table 1. Top 5 models, ranked according to percent misclassification low to high and DIC for various choices of
d in (2.2), (2.3), and (2.4).

dφδ
gt dθδ

gt d
φμ
gt d

θμ
gt dφκ

gt dθκ
gt DIC Misclass RMSPE CRPS

ygt ygt ỹgt ygt ỹgt ygt 0.00 0.234 0.085 51.591
ygt ygt ygt ỹgt ygt ygt 479.741 0.234 0.088 52.626
ygt ygt ygt ỹgt ỹgt ygt 457.148 0.237 0.083 50.652
ygt ygt ygt ỹgt ygt ỹgt 432.706 0.240 0.085 52.053
ygt ygt ygt ỹgt ỹgt ỹgt 448.334 0.242 0.083 51.028

√

(2310−1)
∑2310

g=1 (ŷgt� − ygt )2 where ŷgt is the posterior predictive mean of ygt . Because
the CRPS is only defined for continuous variables, we calculate CRPS only for those bgt�

for which zgt� = 0. That is, we calculate the CRPS of the random variable bgt� | zgt� = 0.
As the RMSPE and CRPS differences were relatively small we chose the model based
upon percent misclassification. As an additional measure, although secondary to predictive
performance, we compared each model’s fit based on the deviance information criterion
(DIC) of Spiegelhalter et al. (2002).

Table 1 displays the top 5 models ranked in terms of misclassification rate. From Table 1,
we note that the model which had the lowest misclassification rate also has the lowest DIC
(we adjusted the DIC values so that the minimum observed DIC value was 0 ). For example,
a DIC value of 479.741 means that the DIC value was 479.741 greater than the first model
in Table 1. If we rank models according to DIC, the results in Table 1 change. Other than
the first model in Table 1, the next best models according to DIC had misclassification rates
greater than 27 %.

Considering the best model in Table 1, the ỹgt are preferred for the φμ and φκ coefficients
but not the φδ coefficient. This result seems to suggest that the cumulative amount of damage
(̃ygt ) to neighbors of grid cell g is predictive of the amount of damage but not of the
occurrence of damage. Rather, the occurrence of damage is better explained and predicted
by the amount of damage (ygt ) incurred at neighboring grid cells in the previous time
period.

We note that, in model (2.2), d
φμ

gt and d
θμ

gt were found to be different covariates. As it
is not fully known how MPBs migrate between spatial locations we allowed the covariates
to differ for the d

θμ

gt and d
φμ

gt components in the model. Doing so allowed us to explore the
differences between within-cell and between-cell temporal correlations in the data. That
is, cumulative damage done to neighboring grid cells seems to be more explanatory of the
amount of damage in a grid cell than cumulative damage done within a grid cell at the
previous time period.

Prior to concluding this section, we note that comparing the different models based on
RMSPE and CRPS was more challenging because the observed spread of RMSPE and CRPS
between models was small. For example, the best model according to RMSPE had RMSPE
= 0.081 compared to a maximum RMSPE of 0.095. This suggests that our model is able
to predict the zgt component better than the bgt component.
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3.2. MODEL FIT RESULTS

For the best model (row 1 in Table 1), Table 2 displays posterior summaries (medians
and 95 % credible intervals) of the main effect coefficients β, φ, and θ in each of (2.2), (2.3),
and (2.4). Values represent the percent change in the odds ratio (for δ and μ) or the percent
change in κ . For rows 1 through 4, values indicate percent change due to a unit increase
in the covariate. For row 5, values indicate percent change given a 1000 foot increase in
elevation. For rows 6 and 7, values indicate percent change given 10 % increase in damage.

As expected, several of the parameters in (2.2) and (2.3) have opposite signs for the same
covariate. For example, when the amount of precipitation increases (i) the mean amount
of MPB damage, given damage occurred, decreases and (ii) the probability of no damage
increases. This result is also true for August mean maximum temperatures. That is, the data
indicate that when August maximum temperatures increase (i) the mean amount of MPB
damage decreases and (ii) the probability of no damage increases. The data also show the
higher the August temperature the more variable the amount of damage is.

The result that the mean amount of MPB damage decreases with increases in August
temperature is opposite from previous studies. That is, previous studies by Negron and
Popp (2004); Zhu et al. (2008) show increases in temperature lead to greater damage. As
multicollinearity may be a matter of concern, we tested for multicollinearity by assessing
the correlation among the variables magnitude less than 0.65. We also removed each of the
covariates out of the model one at a time. However, the signs for the covariates stayed the
same across models suggesting this result is not due to multicollinearity. We hypothesize that
this contradiction of previous results occurred because we used monthly rather than daily
average temperatures. We hypothesize that this contradiction of previous results occurred
because we used monthly rather than daily average temperatures. That is, because MPB
populations are diminished with multiple days of extreme cold temperatures (e.g., less than
−30 ◦C), using monthly temperatures it causes the extreme cold or heat events days to be
masked. However, further exploration into this result is needed.

In terms of the landscape effects, elevation has a positive relationship with the mean
amount of MPB damage and a negative relationship with the probability of no damage as
expected. However, the effect of slope on δ and μ has the same sign. That is, slope has a
positive relation to mean MPB damage (μ) and the probability of no damage (δ). This result
also seems opposite of what intuition might imply. For example, we a priori might expect
that as the slope increases, δ increases whereas μ decreases. Upon closer inspection, this
opposing relation can be explained by the diversity of the tree stands. Because only certain
types of trees are able to grow on steep slopes, the probability of no damage increases with
slope because MPBs might not infest these type of trees. However, the amount of damage
at these high slopes can be more substantial because, conditional on damage occurring, the
type of tree within the grid cell is not resilient against MPB damage.

For φ, note that as the cumulative damage to the neighbors of a grid cell in the previous
year decreases the probability of MPB damage within the grid cell increases (δ decreases).
Additionally, as the neighbors of a grid cell become less damaged, the damage within the
grid cell can be more substantial. This result seems to suggest that MPBs tend to consume
the resources in neighboring cells before consuming the resources within that grid cell.
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Table 2. Posterior medians and credible intervals for main effect coefficients β, φ, and θ in each of (2.2), (2.3),
and (2.4).

δ μ κ

Covariate Median 95 % CI Median 95 % CI Median 95 % CI

Jan. Temp 0.05 (−0.06, 1.44) −0.83 (−1.56, −0.06) −1.50 (−2.54, −0.51)
Aug. Temp 15.34 (13.41, 16.54) −8.74 (−9.64, −7.79) 9.40 (8.36, 10.46)
Precip 1.46 (0.87, 1.88) −0.17 (−0.46, 0.07) 1.01 (0.70, 1.36)
Slope 2.70 (1.30, 4.03) 8.35 (7.55, 9.14) −13.37 (−14.45, −12.47)
Elev −13.24 (−17.62, −11.97) 5.19 (0.63, 9.25) 3.64 (−0.77, 8.08)
φ −7.35 (−7.78, −6.87) −0.18 (−0.21, −0.13) 0.15 (0.11, 0.18)
θ −14.04 (−14.61, −13.51) 3.02 (2.83, 3.25) −0.81 (−0.87, −0.76)

Values represent the percent change in the odds ratio (for δ and μ) or the percent change in κ . For rows 1 through
4, values indicate percent change due to a unit increase in the covariate. For row 5, values indicate percent change
given a 1000 foot increase in elevation. For rows 6 and 7, values indicate percent change given 10 % increase in
damage.

Hence, if a grid cell’s neighbors have been nearly entirely damaged, MPBs will finish off
the resources within a grid cell before migrating to regions with more undamaged trees.

Finally, for θ , the temporal effect of the MPB damage in the previous year, as the percent
of MPB damage from the previous year increases the probability of no MPB damage (δ)
decreases and the mean amount of damage (μ) increases. This result is expected and supports
the idea that MPBs consume the resources within the grid cell before migrating to other
regions with undamaged trees. In the ADS survey data, if an area is designated as highly
damaged subsequent years of data collection focus on regions near areas that have been
previously impacted, capturing the nature of how MPBs migrate.

3.3. PREDICTIVE RESULTS

Figure 3a displays a map of the estimated probability (1 − δgt� ) for t� = 11 (the year
2011). That is, Fig. 3a displays the posterior predictive probability of MPB damage across
the study region. Historically, from the trend seen in Fig. 2, the MPB damage is moving
predominantly in an easterly direction. While our model continues to predict more damage
to the east, noticeably, our model is predicting damage in 2011 to be more in a south-eastern
direction. That is, from Fig. 3 we see a high probability of MPB damage in the south-eastern
region of the study area.

Figure 3b displays the posterior median of the posterior predictive distribution of ygt�

given zgt� = 0 (the amount of damage conditional on MPB damage occurring in the area).
That is, Fig. 3b displays the median amount of MPB damage predicted given that MPB
damage occurred. Figure 3b shows that we predict the highest amount of damage to be in
the south-eastern region. Combining Fig. 3a, b, we are able to highlight regions wherein
intervention strategies are, perhaps, most effective.

Figure 4 displays the full posterior predictive distribution of ygt� for three randomly
selected grid cells. Based upon inspection of a larger sample, we found that the majority
of predictive distributions follow this pattern—namely, a peak near zero with a heavy tail
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Figure 3. a Predicted probability of MPB damage (1 − δgt� ) for t� = 11 and b posterior median of the predicted
damage ygt� given zgt� = 0.

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

(a)

Ygt

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

(b)

Ygt

0.0 0.2 0.4 0.6 0.8 1.0
0

2
4

6

(c)

Ygt

Figure 4. Posterior predictive distributions of ygt� for three randomly selected grid cells. Vertical dashed lines
denote the posterior predictive mean and the dotted lines denote a 95 % highest posterior density interval.

(although the heaviness of the tail changes from grid cell to grid cell). This pattern suggests
that large pine beetle damage is possible but not likely.

4. DISCUSSION AND CONCLUSIONS

This article focused on modeling and predicting aerial detection survey data of MPB dam-
age in Colorado. Specifically, we used a stick-breaking representation to enforce monotonic-
ity constraints of the cumulative damage to grid cells in a region in Colorado. We model
the resulting stick-breaking weights using a zero-inflated beta regression model wherein the
probability of zero damage as well as the mean and dispersion of a beta distribution vary
over space and time.

The ultimate goal of this work was to build a predictive model for MPB damage using
ADS data. We demonstrated this predictive methodology in Sect. 3.3 by the ability to predict
regions where the highest amount of damage will occur. We note that the predictive distrib-
utions in Fig. 4 show a very heavy tail. This heavy-tailed nature of MPB damage challenges
our assumption of a beta distribution for positive damage. An alternative modeling strategy
could include the use of extreme value distributions to more appropriately model the upper
tail of MPB damage.
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For the ADS data, there are portions of the region wherein no trees are present; hence,
there can be no MPB damage to these grid cells. However, the ADS data do not directly
distinguish between zero damage resulting from no trees in a grid cell and a “true” MPB
damage of zero. Due to the large amount of MPB damage in the spatial region of interest,
it may be safe to assume that if a grid cell is never damaged then no trees are present.
However, this judgement may be uncertain so we do not wish to simply throw out grid cells
for which there is never any damage. Future work on this project should include development
of methodology to appropriately partition the spatial region into regions for which MPB
damage is possible.

As a final note, one area that requires more attention is the temporal lag structure used in
the model. That is, in this work we accounted for the one-year lag structure between impact
and detection of the infestation. However, the use of other lag structures, such as distributed
lag models, may give more understanding to the temporal dynamics of MPB damage.
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