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This paper introduces a new sampling design in a finite population setting, where
potential sampling units have a wealth of auxiliary information that can be used to rank
them into partially ordered sets. The proposed sampling design selects a set of sampling
units. These units are judgment ranked without measurement by using available auxil-
iary information. The ranking process allows ties among ranks whenever units cannot
be ranked accurately with high confidence. The ranking information from all sources
is combined in a meaningful way to construct strength-of-agreement weights. These
weights are then used to select a single sampling unit for full measurement in each
set. Three different levels of sampling design, level-0, level-1, and level-2, are investi-
gated. They differ in their replacement policies. Level-0 sampling designs construct the
sample by sampling with replacement, level-1 sampling designs constructs the sample
without replacement of the fully measured unit in each set, and level-2 sampling designs
construct the sample without replacement on the entire set. For these three designs, we
estimate the first and second order inclusion probabilities and construct estimators for
the population total and mean. We develop a bootstrap resampling procedure to esti-
mate the variances of the estimators and to construct percentile confidence intervals
for the population mean and total. We show that the new sampling designs provide a
substantial amount of efficiency gain over their competitor designs in the literature.

Key Words: Coefficient of variation; Finite population; Horvitz–Thompson estimator;
Partial ranking; Ranked set sampling.

1. INTRODUCTION

In many survey sampling studies, in addition to variable of interest, researchers often
have additional auxiliary information to improve statistical inference. In many instances,
this information may not be accurate, cannot be turned into a numerical covariate or may
be even subjective. Nevertheless, it contains valuable information that can be used at the
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design stage of the survey. Ratio and regression estimators, which require strong mod-
eling assumptions, are constructed based on this type of information. In the absence of
such strong modeling assumptions, it is not clear how this auxiliary information should be
incorporated into a survey sampling design. Hence, it is usually ignored. In an infinite pop-
ulation setting, use of this type of subjective information has generated extensive research
interests on ranked set sampling (RSS) which was originally developed to keep the over-
all cost of data collection minimal in estimating mean pasture yield in agricultural fields
(McIntyre 1952 and 2005). Ranked set sampling needs a relative ranking of a few units in
the construction of a data set to divide it into homogeneous groups of judgment strata. This
ranking process is subjective and does not require strong modeling assumptions. It only
needs a consistent ranking scheme to create ranks for the units in a set without requiring an
established standard of measurement. Finite population settings provide a natural platform
for ranked set sampling where the consistency in ranking scheme can be achieved through
either the use of a judgment ranking process via visual inspection of the units or auxiliary
information, such as previous survey outcomes, census track etc. The auxiliary variables
are very common in survey sampling studies and can be very useful for creating judgment
strata in RSS data.

One natural setting for the auxiliary information in survey sampling is given in Husby,
Stasny, and Wolfe (2005), The United States Department of Agriculture’s (USDA) Na-
tional Agricultural Statistics (NASS) county crop estimation program. This program sam-
ples farms across the United States from the sampling frames that include obvious auxil-
iary variables, such as acreage in the farm, size of the farm, etc. The detailed description
of the USDA/NASS county estimation program can be found in Iwig (1993). Within the
USDA/NASS county estimation program, the Ohio Agricultural Statistics Department used
the 1992 Ohio corn yield data in its county estimation program. This data set includes re-
sponses from farms in the USDA’s National Quarterly Agricultural Survey and from farms
responding to the Ohio supplemental survey, Husby, Stasny, and Wolfe (2005). (Also, see
Ohio Department of Agriculture, 1993, for published estimates based on these data.)

One of the counties in the Ohio corn yield data has 202 farms. The farms in this county
will serve as our finite population in this paper. The population has five variables, corn
yields (bushels, X), farm size (acreage, Y1), group size (Y2), acre planted (Y3), and acre
harvested (Y4). Our interest lies in estimation of the mean corn yields in the county. We
treat the variables Y1, Y2, Y3 and Y4 as auxiliary variables. The auxiliary variable group
size (Y2) is an integer valued random variable which only takes values 1,2,3. There is high
correlation between X and the other auxiliary variables, ρk = cor(X,Yk), r = 1, . . . ,4. The
population characteristics of these farms are given in Table 1.

Construction of a ranked set sample in an infinite population setting requires to specify a
sample size n, set size H and sampling design D, D = {r1, . . . , rn}, where rj (1 ≤ rj ≤ H )
is the judgment rank of the fully measured unit in set j , nh = ∑n

j=1 I (rj = h) and I (·) is
an indicator function. Ranked set sample then selects nH farms at random from the pop-
ulation. These farms are randomly divided into n sets, each of size H . Farms in each set
are ranked from smallest to largest without actual measurement of the variable of interest.
Ranking may be performed based on visual inspection, available auxiliary information or
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Table 1. Population characteristics of one of the farm populations in 1992 Ohio corn data, ρk = corr(X,Yk).

Parameters X Y1 Y2 Y3 Y4

Mean 16688.089 330.583 1.762 121.960 108.634
St. dev 18622.160 333.265 0.755 130.740 119.216
ρk 0.903 0.746 0.940 0.988

any other means that do not require an actual measurement of the units. Ranking process
does not have to be perfectly accurate as long as it assigns ranks for all units in the sets
and does not change from set to set. In Ohio corn yield data, the ranking process can use
any one of the auxiliary variables, Y1, . . . , Y4, to rank the farms in each set. The rj th small-
est ranked farm is then selected for full measurement in set j . The fully measured farms
X[rj ]j , j = 1, . . . , n, are called a ranked set sample. The design D yields nh fully measured
farms in judgment strata h so that

∑H
h=1 nh = n. If nh ≡ n/H , ranked set sample is called

balanced. In a balanced RSS, each judgment strata has an equal number of observations.
The square brackets indicate that ranking process may be in error. If the ranking process
is error-free, RSS contains independent order statistics from different sets and creates the
biggest separation among the strata of ranking classes. Hence, it yields highest efficiency
improvement.

In recent years, research in ranked set sampling drew considerable attention in a fi-
nite population setting, e.g., Patil, Sinha, and Taillie (1995), Deshpande, Frey, and Ozturk
(2006), Al-Saleh and Samawi (2007), Ozdemir and Gokpinar (2007 and 2008), Jafari-
Jozani and Johnson (2011, 2012), Gokpinar and Ozdemir (2010). Deshpande, Frey, and
Ozturk (2006) considered three different designs, level-0, level-1 and level-2 sampling de-
signs that differ in their application policies. The level-0 sampling design requires that
units in a given set are selected without replacement, but all units in the set, including the
measured unit, are replaced back into the population prior to selection of the next set. The
level-1 design has the same replacement policy as the level-0 design except that the unit se-
lected for full measurement is not returned into the population. In general, level-1 sampling
design is not unique. It depends on the sequence of judgment ranks in design D. Among
all possible level-1 balanced designs with C cycles (C = n/H), two special cases can be
considered: level-1 ascending (A1) order and level-1 descending (D1) order. A level-1
ascending order design is given by D = {(1,2, . . . ,H), (1,2, . . . ,H), . . . , (1,2, . . . ,H)},
where the integers in each round bracket represents a cycle. In this design, judgment order
statistics X[rj ]j in each cycle are collected in ascending order, i.e. X[1]1 is measured in
the first set, X[2]2 is measured in the second set and so on. In a descending order level-1
design, D = {(H,H − 1, . . . ,1), (H,H − 1, . . . ,1), . . . , (H,H − 1, . . . ,1)}, the judgment
ranked order statistics are selected in descending order in each cycle from largest judgment
order statistics to smallest judgment order statistics, i.e., X[H ]1 is measured in the first set,
X[H−1]2 is measured in the second set and so on. The level-2 design requires that none of
the units in a set, regardless of whether they were measured or not, are replaced back into
the population. These designs have similar properties for large population sizes, but they
have different behaviors when the population size is small. The level-2 design induces a
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stronger negative correlation among the sample membership indicators of population units
than the other two designs and is usually more efficient. The efficiency improvement is
the largest when the ranking process is perfect and diminishes as the ranking information
becomes poor.

In the context of survey sampling methodology, the use of level-0, level-1 or level-2 de-
signs induces a probability sampling design in which the first order inclusion probability,
πi = P (unit i appears in the sample), depends on replacement level. Inclusion probabil-
ities for level-1 sampling design have been considered by Al-Saleh and Samawi (2007),
Ozdemir and Gokpinar (2008). These papers use complete enumeration of all possible se-
quences of draws which is practical only for small sample sizes. Recently, Frey (2011)
provided a recursive algorithm that can be used for relatively large sample sizes. Ozturk
and Jafari Jozani (2014) extended the results in Frey (2011) to partially rank-ordered set
sample designs.

In finite population settings, there are often more than one auxiliary variables available
for the study. For example, Ohio corn yield data uses sampling frames that include four
auxiliary variables. All of these auxiliary variables can be used to create judgment strata in
an RSS design. On the other hand, a standard ranked set sampling design uses the ranking
information of a single auxiliary variable (or a single ranker) and ranking information of
all auxiliary variables cannot be combined.

In order to reduce the impact of ranking error, Ozturk (2011) introduced partially rank-
ordered set (PROS) sampling designs. The PROS design controls the ranking error by
increasing the set size H and reducing the number of ranked units in each set. For a given
set size H , a PROS design does not require a full ranking of all the units in each set.
Instead, it assigns units into subsets of pre-specified sizes. The units within each subset are
not ranked, but each unit in subset h is considered to have smaller rank than the rank of each
unit in subset h′ for all h < h′. The PROS design has been used successfully in an infinite
population setting to draw inference. Ozturk (2012a, 2012b) and Gao and Ozturk (2012)
used this design to develop nonparametric inference for one- and two-sample problems,
respectively. Arslan and Ozturk (2013) developed maximum likelihood estimators for the
location and scale parameters in a location-scale family of distributions. Recently, Ozturk
(2012b) and Frey (2012) relaxed the assumption that the number of subsets needs to be
pre-specified. This provides a flexibility in that the ranker is allowed to declare as many
subsets as desired depending on his/her ranking ability. They showed that this flexibility
further improves the efficiency of PROS design.

In this paper, we use PROS sampling designs in a finite population setting to achieve
two objectives. The first objective is to allow ties in within-set ranking process whenever
the units cannot be ranked with high confidence. The second objective is to combine rank-
ing information from all available auxiliary variables (or rankers). Section 2 introduces
PROS sampling design within the context of K-auxiliary variables. Section 3 estimates
the inclusion probabilities of level-0, level-1 and level-2 sampling designs. Section 4 uses
the results in Section 3 to construct estimators for population total and mean. Section 5
provides empirical results to evaluate the efficiency of the proposed estimators. Section 6
develops bootstrap resampling procedures to estimate the variance of the estimators and
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to construct percentile confidence intervals for the population mean and total. Section 7
applies the proposed estimator to USDA 1992 Ohio corn data. Finally, Section 8 provides
a concluding remark.

2. COMBINING AUXILIARY INFORMATION

Suppose we have a finite population of N units labeled as U = {u1, . . . , uN }. Let xi

be the numerical value of the variable of interest X on the population unit ui . Without
loss of generality, we assume that the population units ui , i = 1, . . . ,N , are ordered with
respect to the variable of interest X, i.e., x(1) < x(2) < · · · < x(N) are the ordered values
of the variable X on population units. We also assume that either K different auxiliary
random variables (Yk, k = 1, . . . ,K) or K different rankers are available for the study. The
auxiliary variables could be either discrete or continuous, but they are easy to measure and
have relatively high correlation with the variable of interest X. For example, the auxiliary
variables could be the census outcomes, previous survey variables, etc.

In order to construct a partially rank-ordered set sample, X[rj ]j ;1 ≤ rj ≤ H ; j =
1, . . . , n, in a finite population setting, one must first determine the design parameter of the
ranked set sample, D = {r1, . . . , rn} with 1 ≤ rj ≤ H,j = 1, . . . , n and nh = ∑n

j=1 I (rj =
h), where nh is the number of fully measured judgment order statistics in judgment class
h. The fully measured observation X[rj ]j is measured on a single experimental unit in a set
of size H . In order to determine which unit should be selected in a set, its judgment rank,
1 ≤ rj ≤ H , must be determined prior to selection of the set. Once we identify rj , we se-
lect a set of H experimental units, Sj = {ut1,j , . . . , utH ,j }, at random without replacement
from the population U , where uth,j is the unit uth (1 ≤ th ≤ N) selected from U for the set
j . On this set, depending on the availability of the auxiliary variables or the rankers, we
obtain either the K auxiliary measurements Y k,j = (Yt1,k,j , . . . , YtH ,k,j ), k = 1, . . . ,K , or
K rank vectors, one for each ranker. Assume that we have K-auxiliary variables available.
We apply the ranking operator to each one of these vectors of auxiliary measurements to
construct the rank vectors

Ok,j = O(Yt1,k,j , . . . , YtH ,k,j ) = {O1,k,j , . . . ,OH,k,j }, k = 1, . . . ,K,

where Oh,k,j is the rank assigned to the unit uth,j in rank vector Ok,j obtained by applying
the ranking operator to random vector Y k,j . If the auxiliary variable Yk is discrete, ranking
operator may produce tied ranks. In this case, all tied units are assigned the same rank.
If the auxiliary variable Yk and the response variable X have a negative correlation, the
ranks of Y k.j are recorded as Or,k,j = H + 1 − OH+1−r,k,j , r = 1, . . . ,H , to determine
the judgment ranks of the X-observations. The rank vector Ok,j becomes the judgment
rank vector for the set of X-measurements of units in the set Sj from which we wish to
obtain rj th judgment ranked order statistic X[rj ]j . If the researcher, instead of K-auxiliary
variable, has K-rankers available, the ranking operator is applied to each ranker to produce
judgment ranks

Ok,j = O(Ranker k) = {O1,k,j , . . . ,OH,k,j }, k = 1, . . . ,K.
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Table 2. Auxiliary measurements of randomly selected five farms (the numbers have been changed to make the
farms not identifiable).

th Y1 Y2 Y3 Y4 X O1 O2 O3 O4

76 55 1 16 16 x76 1–2 1–4 2 2
147 1280 3 389 389 x147 5 5 5 5
87 55 1 9 9 x87 1–2 1–4 1 1

119 135 1 77 77 x119 3 1–4 4 4
48 855 1 55 55 x48 4 1–4 3 3

In this process, the ranking operator allows rankers to declare ties whenever the ranks
cannot be assigned with high confidence. From this point on, the construction of the sample
is the same regardless the type of auxiliary information.

In order to determine which unit should be selected to measure X[rj ]j , we combine
ranking information in K rank vectors Ok,j , k = 1, . . . ,K . We first create an H by H

weight matrix W k,j for each judgment rank vector Ok,j . The rows and columns of this
matrix identify the units and assigned judgment ranks, respectively. The entries contain the
strength-of-weights of the ranking process. If the ranking vector Ok,j has no ties, the hth
row and the Oh,k,j th column of the matrix W k,j will be one, and all the other entries on
this row (row h) will be zero, h = 1, . . . ,H . On the other hand, if the ranking vector Ok,j

has m tied ranks for the hth unit, then all entries in the hth row that corresponds to the
tied ranks will have weight 1/m, all the other entries in this row will be zero. We combine
the ranking information obtained from all auxiliary variables (or rankers) by getting the
weighted mean of the strength-of-weight matrices

W̄ j =
K∑

k=1

αkW k,j , (2.1)

where
∑K

k=1 αk = 1. The weights αk may be chosen to reflect upon the quality of ranking of
auxiliary variables or rankers. For example, if the correlation coefficients ρk , k = 1, . . . ,K ,
between X and auxiliary variable Yk are available, we select

αk = |ρk|
∑K

k=1 |ρk|
.

In multi-ranker design, αk can be chosen based on the experience of the ranker k. If ρk = 0
for all k, we select αk = 1/H for all k = 1, . . . ,H .

To illustrate the construction of the strength-of-weight matrices, we use Ohio corn
yield data. The purpose of survey in Ohio corn yield data is to estimate the mean
(or total) corn yields (X) in the county. The correlation coefficients between X and
the auxiliary variables Yk , ρk = cor(X,Yk), k = 1, . . . ,4, are available from the survey
data in Table 1. Assume that we wish to measure X[r1]1 with r1 = 1 in a set (S1) of
size H = 5. We select five farms from the population at random without replacement,
S1 = {u76,1, u147,1, u87,1, u119,1, u48,1}. The measurements of auxiliary variables on this
set along with their ranks are given in Table 2. In this table, the numbers are altered to
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make the farms anonymous. In rank vector Ok , the dashed integers a − b (a < b) indi-
cate that all ranks between a and b are tied for the corresponding units. For example, in
rank vector O2, the units (farms) 76, 87, 119, and 48 are tied for ranks 1,2,3, and 4. We
note that X variables are not measured yet at this stage. We only use available auxiliary
information (variables) for ranking purposes. The strength-of-weight matrices for the rank
vectors O1, O2, O3 and O4 are then given by

W 1,1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1/2 1/2 0 0 0
0 0 0 0 1

1/2 1/2 0 0 0
0 0 1 0 0
0 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, W 2,1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1/4 1/4 1/4 1/4 0
0 0 0 0 1

1/4 1/4 1/4 1/4 0
1/4 1/4 1/4 1/4 0
1/4 1/4 1/4 1/4 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

W 3,1 = W 4,1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0
0 0 0 0 1
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Information of ranking operators needs to be combined in Equation (2.1). From the cor-
relation coefficients between X and auxiliary variables, the weight vector α is given by
α = (0.252,0.208,0.263,0.276). Hence, the combined ranking information for this set
yields

W̄ 1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0.178 0.717 0.052 0.052 0.000
0.000 0.000 0.000 0.000 0.999
0.717 0.178 0.052 0.052 0.000
0.052 0.052 0.304 0.591 0.000
0.052 0.052 0.591 0.304 0.000

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

The combined ranking information matrix W̄ 1 constructed for set S1 is a doubly stochastic
matrix. The hth row of this matrix, w̄h,1 = (w̄th,1,1, . . . , w̄th,H,1)

�, indicates how strongly
the ranking operators O1, . . . ,OK agree to assign ranks 1, . . . ,H to units uth . One may
also interpret w̄h,1 as a probability vector that the ranking operators collectively assign
ranks 1, . . . ,H to the unit uth,1. In our example, 17.7 %,71.7 %,5.2 %,5.2 % and 0 % of
ranking operators declare that the unit u76 has ranks 1, 2, 3, 4, and 5, respectively.

In order to determine the unit on which the judgment order statistics X[rj ]j , 1 ≤ rj ≤ H ,
will be measured, we use the combined ranking information matrix W̄ j . In this matrix, we
determine the unit that has the largest agreement probability (weight) in the column rj .
Note that the judgment rank rj is determined prior to ranking process to avoid any possible
bias. If the largest strength-of-agreement weight in column rj is unique then the unit that
corresponds to the largest entry is selected for measurement. If the largest entry is not
unique, we then select the unit having the largest concentration of the strength probabilities
around the judgment rank rj . Even if the units having largest concentration is not unique
we break the tie at random to select one of the units having equal concentration value. The
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amount of concentration of agreement weights on the unit h around judgment rank rj can
be measured by

τrj ,h =
H∑

s=1

(s − rj )
2w̄h,s ,

where w̄h,s , s = 1, . . . ,H , is the hth row of the matrix W̄ j . The expression τrj ,h provides
information about how strongly the strength-of-agreement weight vector is concentrated
around the judgment ranks rj for unit h.

In Ohio corn yield survey example, we fixed r1 = 1 prior to the ranking process. We then
need to identify the maximum entry, 0.717, in column r1 = 1 of matrix W̄ 1. The location
of this maximum entry (h = 3) indicates that the judgment ranked observation X[r1]1 must
be obtained from unit u87 in set S1. The observed data for this set then becomes

{
X[1]1, w̄∗

r1

} = {
X[1]1, (0.717,0.178,0.052,0.052,0.000)

}
,

where w̄∗
r1

is the row that contains the largest entry in column r1 of matrix W̄ 1. This
construction does not only measure X[1]1 but also provides a weight vector to relate X[1]1 to
judgment ranks through the combined ranking information of all auxiliary variables. Using
the same principle, one can construct the PROS ranked set sample for a given design D

{
X[rj ]j , w̄∗

rj

}
, j = 1, . . . , n.

It is important to realize that X[rj ]j and w̄∗
rj

are dependent random variable and vectors,
respectively. We note that the selection of sets in the construction of a ranked set sample
depends on without replacement level-0, level-1 and level-2 designs.

3. ESTIMATION OF INCLUSION PROBABILITIES

Inclusion probabilities of a PROS sample will depend on the replacement policy and
ranking information provided by auxiliary ranking variables. In this section, we construct
estimators for the inclusion probabilities of level-0, level-1 and level-2 designs.

Level-0 PROS Design: Note that in level-0 design all units in a set are returned back to
the population prior to the selection of the next set. If the ranking process uses only one
auxiliary variable with no tie structure, the first order inclusion probabilities are given in
Frey (2011). Let β(i, h,H,N) be the probability that the ith smallest item in the population
is the hth smallest measured unit (X(h)j ) in set Sj . This probability is given by

β(i, h,H,N) =
(

i−1
h−1

)(
N−i
H−h

)

(
N
H

) .

Since our ranking mechanism is not perfect, the strength-of-agreement weights induces
a probability distribution on judgment ranks. By conditioning on these strength-of-
agreement weights w̄∗

rj
, the estimate of the probability that the ith smallest unit in the
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population is the rj th judgment order statistic in set Sj is given by

β∗(i, rj ,H,N) =
H∑

h=1

w̄∗
rj ,hβ(i, h,H,N).

The estimate of the first and second order inclusion probabilities then follows from Frey
(2011) by using β∗(i, rj ,H,N).

Lemma 1. For level-0 PROS sampling design, the estimate of the first order inclusion

probability of the i-th unit in the population is given by

π
(0)
i (K) = 1 −

n∏

j=1

{
1 − β∗(i, rj ,H,N)

}
, (3.1)

where K indicates that estimate depends on the number of the auxiliary variables through

the weight vectors w̄∗
rj

, j = 1, . . . , n. Also, the estimate of the second order inclusion prob-

ability of the ith and i′th units (i < i′) is given by

π
(0)

i,i′ (K) = 1 −
n∏

j=1

{
1 − β∗(i, rj ,H,N)

} −
n∏

j=1

{
1 − β∗(i′, rj ,H,N

)}

+
n∏

j=1

{
1 − β∗(i, rj ,H,N) − β∗(i′, rj ,H,N

)}
. (3.2)

Level-1 PROS Design: The construction of level-1 design and estimation of the inclu-
sion probabilities strongly depend on the sequence in which the measured units enter the
sample. Frey (2011) gives an iterative algorithm to compute the inclusion probabilities of
a level-1 design under perfect ranking (or under a ranking mechanism based on a single
auxiliary variable). We use the same iterative procedure conditionally for a given strength-
of-agreement weight vector w̄∗

rj
, j = 1, . . . , n. Let Zi(t, j) be the estimate of the probabil-

ity that the first j sampled units include t units smaller than the ith unit of the population,
but not the ith unit. It is clear that

Zi(t,0) =
{

1, t = 0,

0, otherwise.
(3.3)

If we know {Zi(t, j),0 ≤ t ≤ i − 1} for a fixed value of j ≥ 0, we can compute the values
{Zi(t, j + 1),0 ≤ t ≤ i − 1} via a simple recursion. First consider the construction of
Zi(t, j + 1) from {Zi(t, j),0 ≤ t ≤ i − 1}. The quantity Zi(t, j + 1) indicates that among
the first j + 1 selected units from the population, we must have t fully measured units
smaller than the ith unit. This can happen in two ways: (1) In the first j selected units, we
fully measure t units smaller than the ith unit in the population and select a unit larger than
the ith unit at the next selection. (2) In the first j selected units, we fully measure t − 1
units smaller than the ith unit in the population and then select a unit smaller than the ith
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unit on the next draw. By using these two cases, we write

Zi(t, j +1) = Zi(t, j)

N−j∑

λ=i+1−t

β∗(λ, rj ,H,N −j)+Zi(t −1, j)

i−t∑

λ=1

β∗(λ, rj ,H,N −j).

(3.4)
When t = 0 we set Zi(−1, j) = 0 for all j = 0, . . . , n. Through this recursive equation,
after we compute the {Zi(t, n),0 ≤ t ≤ i − 1}, we find that the estimate of the probability
that a sample of fully measured units does not include the ith smallest unit in the population
is

∑i−1
t=0 Zi(t, n). Then the estimate of the first order inclusion probability of level-1 PROS

design is given by

π
(1)
i (K) = 1 −

i−1∑

t=0

Zi(t, n).

To compute the estimate of the first order inclusion probabilities, we use the following
algorithm.

Algorithm 1: (Adopted from Frey 2011).
Step 1. Compute {Zi(j,0),0 ≤ j ≤ i − 1} using Equation (3.3).
Step 2. For k = 0, . . . , n − 1, compute {Zi(j, k + 1),0 ≤ j ≤ i − 1} from {Zi(j, k),0 ≤
j ≤ i − 1} using Equation (3.4).
Step 3. Compute π

(1)
i (K) as π

(1)
i (K) = 1 − ∑i−1

j=0 Zi(j, n).

The estimate of the second order inclusion probabilities based on the strength-of-
agreement weights can be computed from the recursive equation in Frey (2012) with a
slight modification in the notation.

Level-2 PROS Designs: The estimation of the inclusion probability of level-2 designs,
with a slight modification, follows from Patil, Sinha, and Taillie (1995) or from Frey
(2011). Frey (2011) provides a general version of the results presented in Patil, Sinha,
and Taillie (1995). These derivations assume perfect ranking or a single auxiliary variable
with no tie-structure. Under our ranking scheme, estimation of the inclusion probabilities
conditionally on the strength-of-agreement weights follow from their derivation with mild
changes in the notation:

π
(2)
i (K) =

n∑

j=1

β∗(i; rj ,H,N). (3.5)

For i < i′, the second order inclusion probability can be estimated from

π
(2)

i,i′ (K) =
n∑

j=1

n∑

j ′=1

H∑

h=1

H∑

h′=1

w̄∗
rj ,hw̄

∗
r ′
j ,h′

×
i′−i−1∑

λ=0

(
i−1
h−1

)(
i′−i−1

λ

)(
N−i′

H−λ−h

)(
i′−1−h−λ

h′−1

)(
N−i′−H+λ+h

H−h′
)

(
N
H

)(
N−H

H

) .
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Marginal distribution of these inclusion probabilities requires marginal distribution of
the weight vector w̄∗

rj
. Since the weight vectors are constructed based on the ranking qual-

ity of the auxiliary information, their marginal distributions are not trivial and require
strong modeling assumptions on ranking process. To avoid strong modeling assumptions,
we first establish the empirical properties of the estimators and then provide bootstrap in-
ference for a given finite population.

4. ESTIMATION OF THE POPULATION MEAN

In a finite population setting, if the sample is selected without replacement, Horvitz–
Thompson (1952) estimator provides an unbiased estimator for the population mean (or
for the population total). If π1, . . . , πN are the inclusion probabilities for the N population
units and X1, . . . ,Xn are the simple random sample, the Horvitz–Thompson estimator of
the population mean is given by

μ̂ = 1

N

N∑

i=1

Iixi

πi

,

where Ii is an indicator function taking values 1 or zero depending on whether the unit ui

is included in the sample or not. Estimation of the population total is obtained by multi-
plying the mean estimate with the population size. Thus, in this paper we only consider
the estimation of the population mean. These results can be extended to estimation of the
population total with minor modification.

In a ranked set sampling setting, Horvitz–Thompson estimator depends on the sampling
designs. Let μ̂L(K) be the Horvitz–Thompson estimator based on K auxiliary variables
and level-L design, where L = 0,A1,D1, and 2 indicate level-0, level-1 ascending order,
level-1 descending order and level-2 sampling designs, respectively. For example, Horvitz–
Thompson estimator based on level-0 design can be written as

μ̂0(K) = 1

N

N∑

i=1

Iixi

π
(0)
i (K)

.

The other estimators can be written in a similar fashion by using appropriate inclusion
probabilities. We note that the Horvitz–Thompson estimator in PROS sampling, unlike
simple random sampling, are conditional estimator for given values of weight vector w̄∗

rj
,

j = 1, . . . , n.
The Horvitz–Thompson estimator does not directly use the strength-of-agreement

weights provided by auxiliary information in ranking process. We now introduce a new
estimator for the population mean (or the population total) based on level-L design,
L = 0,A1,D1,2. The new estimator uses the strength-of-agreement weights to incorpo-
rate ranking information of all auxiliary variables. Let Vj,h = w̄∗

rj ,hX[rj ]j , j = 1, . . . , n.
One can interpret that Vj,h pro-rates each measured observation into the hth judgment
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class distribution proportional to the strength-of-agreement weight w̄∗
rj ,h. For level-1 as-

cending order (A1) sampling design, the new estimator is given by

μ∗
A1(K) = 1

H

H∑

h=1

1
∑n

j=1

w̄∗
rj ,h

π
(A1)
j (K)

n∑

j=1

Vj,h

π
(A1)
j (K)

. (4.1)

The estimators for other sampling designs, μ∗
0(K), μ∗

D1(K), μ∗
2(K), can be defined in

a similar fashion by using the corresponding estimated inclusion probabilities, π
(0)
j (K),

π
(D1)
j (K) and π

(2)
j (K) in Equation (4.1).

5. EMPIRICAL RESULTS

In this section, we provide evidence to evaluate the empirical efficiency of the proposed
estimators. The quality of ranking information of ranking operators is modeled by using
the Dell and Clutter (1972) model. To rank the variable of interest X, the Dell and Clutter
model uses its concomitant variable Y (or auxiliary variable Yk , k = 1, . . . ,K). The model
assumes that the variable X and its concomitant Y have a correlation coefficient ρ. In a
given set of size H , units in the set is first ranked with respect to concomitant variable Yk

and the ranks of Yk-observations are taken as the judgment rank of the X-observations,
for k = 1, . . . ,K . The quality of ranking information is controlled by the magnitude of the
correlation coefficient between the X and Yk variables. Dell and Clutter model does not
introduce tie structure in the ranking process. Fligner and MacEachern (2006) introduced
a class of ranking procedures under stochastic order restriction. In certain cases, this class
introduces a tie structure in the ranking mechanism. Most recently, Frey (2012) used dis-
cretized tie-structure model to assign ties. In this model, after the set is ranked based on the
concomitant variable Yk , (Y(1),k < Y(2),k · · · < Y(H),k), each value Y(h),k/τ + 0.5 is applied
to flooring function �Y(h),k/τ + 0.5	 if Y(h),k > 0 and each value Y(h),k/τ − 0.5 is applied
to ceiling function 
Y(h),k/τ − 0.5� if Y(h) < 0, where τ is a positive constant that controls
the amount of ties in a set. Large values of τ produce larger number of ties in a set.

The first part of the simulation study investigates the properties of the estimated first
order inclusion probabilities of level-1 and level-2 designs. Data sets are generated from
a discrete normal population of size N = 50 with sample size n = 15 and set size H = 3.
Discrete normal population is generated by xi = Q((i − 0.5)/50), where Q is the quantile
function of standard normal distribution. The other simulation parameters are taken to be
K = 2,5 and ρ = 1,0.75. Figure 1 presents the simulated (Sim) and estimated (Est) first
order inclusion probabilities of level-1 and level-2 designs. Simulated inclusion probabil-
ities are obtained based on one million replications while the estimated inclusion prob-
abilities are computed from Algorithm 1 and Equation (3.5) based on 10,000 simulation
replications. Figure 1 indicates that inclusion probabilities in level-1 design show differ-
ent behaviors depending on whether the sample has ascending or descending order. Under
perfect ranking (ρ = 1), both simulated and estimated inclusion probabilities are smooth
and almost identical. On the other hand, under ranking error (ρ = 0.75), simulated inclu-
sion probabilities have a lot of spikes. The estimated inclusion probabilities smooth these
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Figure 1. Simulated (Sim) and estimated (Est) inclusion probabilities for level-1 and level-2 designs, sample
size n = 15. Solid line is for ρ = 0.75 and Sim, dashed line is for ρ = 0.75 and Est, dotted line is for ρ = 1 and
Sim, and dashed-dotted line is for ρ = 1 and Est. The same ρ is used for all K rankers.

spikes. The simulated inclusion probabilities produce sharper spikes for K = 5 than for
K = 2. Similar results also appear in level-2 design.

We next performed a series of simulation studies to investigate the properties of sam-
pling designs and the estimators. In this part of the simulation, the data sets are gener-
ated from a discrete normal population of size N = 180 with sample size n = 30, set size
H = 3 and the number of auxiliary variables K = 3. Discrete normal population is gen-
erated by xi = Q((i − 0.5)/180), where Q is the quantile function of standard normal
distribution. The first simulation compares the sampling designs. The simulation parame-
ters include the set size H (H = 3), cycle size C (C = n/H = 10), correlation coefficient ρ

(ρ = 0.25,0.50,0.75,1.00), and discretization parameter τ (τ = 0,1,1.5). For notational
convenience, τ = 0 is used for no tie structure. Since the computing time for the inclusion
probabilities in level-1 design is intensive, for each combination of the simulation parame-
ters, 500 data sets are generated for each sampling design L (L = 0,A1,D1, and 2). The
relative efficiencies in mean squared errors (MSE) for Horvitz–Thompson (RL(K)) and
the proposed new estimators (R∗

L(K)) with respect to simple random sample estimator are
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Table 3. Relative efficiencies of the estimators μ̂L and μ∗
L

with respect to simple random sample mean esti-
mator μ̂, RL(K) = MSE(μ̂)/MSE(μ̂L(K)), R∗

L
(K) = MSE(μ̂)/MSE(μ∗

L
(K)), for level-L sampling

designs, L = 0,A1,D1,2, and K = 3.

τ μ ρ R0(3) RA1(3) RD1(3) R2(3) R∗
0 (3) R∗

A1(3) R∗
D1(3) R∗

2 (3)

0.0 0 0.25 1.023 0.982 1.011 1.028 0.952 0.971 0.988 1.012
0.0 0 0.50 1.205 1.433 1.313 1.410 1.184 1.418 1.302 1.402
0.0 0 0.75 1.448 1.850 1.689 1.966 1.413 1.856 1.643 1.968
0.0 0 1.00 1.755 1.997 1.972 2.277 1.662 1.985 1.958 2.277
0.0 100 0.25 0.001 0.034 0.037 0.028 0.854 0.959 1.138 0.996
0.0 100 0.50 0.001 0.045 0.044 0.047 1.371 1.248 1.392 1.751
0.0 100 0.75 0.001 0.061 0.059 0.056 1.349 1.751 1.677 1.728
0.0 100 1.00 0.001 3.825 0.949 2.645 1.573 1.916 1.746 2.645
0.0 1000 0.25 0.000 0.000 0.000 0.000 0.892 1.046 1.209 0.995
0.0 1000 0.50 0.000 0.001 0.001 0.000 1.167 1.441 1.359 1.650
0.0 1000 0.75 0.000 0.001 0.001 0.001 1.545 1.936 1.828 2.397
0.0 1000 1.00 0.000 0.144 0.067 2.288 1.623 2.011 1.863 2.288
1.0 0 0.25 0.994 1.148 1.014 1.234 0.962 1.138 0.994 1.222
1.0 0 0.50 1.169 1.474 1.415 1.549 1.087 1.509 1.420 1.537
1.0 0 0.75 1.458 1.871 1.767 2.278 1.433 1.883 1.831 2.305
1.0 0 1.00 1.605 2.058 2.056 2.756 1.691 2.042 1.998 2.710
1.0 100 0.25 0.001 0.048 0.046 0.037 0.945 1.097 1.039 1.072
1.0 100 0.50 0.001 0.062 0.045 0.042 1.096 1.283 1.312 1.275
1.0 100 0.75 0.001 0.074 0.072 0.071 1.492 1.778 1.791 2.337
1.0 100 1.00 0.001 0.054 0.053 0.049 1.723 2.031 2.190 2.430
1.0 1000 0.25 0.000 0.001 0.001 0.000 0.852 1.040 1.131 1.012
1.0 1000 0.50 0.000 0.001 0.001 0.001 1.374 1.474 1.354 1.656
1.0 1000 0.75 0.000 0.001 0.001 0.001 1.643 1.803 1.624 1.961
1.0 1000 1.00 0.000 0.000 0.001 0.001 1.688 2.034 1.770 2.455
1.5 0 0.25 0.922 1.037 1.095 1.155 0.859 1.016 1.093 1.127
1.5 0 0.50 1.063 1.291 1.393 1.431 1.031 1.292 1.387 1.436
1.5 0 0.75 1.514 1.953 2.082 2.250 1.596 2.034 2.087 2.285
1.5 0 1.00 1.718 2.198 1.988 2.534 1.727 2.224 1.970 2.572
1.5 100 0.25 0.001 0.040 0.039 0.030 0.898 0.974 1.013 1.075
1.5 100 0.50 0.001 0.063 0.061 0.045 1.112 1.487 1.282 1.413
1.5 100 0.75 0.001 0.089 0.081 0.077 1.699 1.952 1.838 2.213
1.5 100 1.00 0.001 0.045 0.040 0.038 1.668 2.017 1.907 2.197
1.5 1000 0.25 0.000 0.000 0.000 0.000 0.853 0.984 1.061 1.043
1.5 1000 0.50 0.000 0.001 0.001 0.001 1.112 1.366 1.325 1.383
1.5 1000 0.75 0.000 0.001 0.001 0.001 1.611 1.845 1.735 2.392
1.5 1000 1.00 0.000 0.000 0.000 0.000 1.801 1.870 1.964 2.531

given by

RL(K) = MSE(μ̂)

MSE(μ̂L(K))
, R∗

L(K) = MSE(μ̂)

MSE(μ∗
L(K))

, for L = 0,A1,D1,2.

The relative efficiencies RL(K) and R∗
L(K) greater than one indicate that the Horvitz–

Thompson (HT) and proposed estimators based on level-L design have higher efficiencies
than simple random sample mean estimator, respectively.

Table 3 presents these relative efficiency results. There are several important features
in Table 3 that needs to be emphasized. The Horvitz–Thompson estimator based on all
sampling designs is very sensitive to the coefficient of variation (σ/μ) when there is ran-
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domness in ranking process through either the tie structure (τ = 1 and 1.5) or judgment
ranking error (ρ < 1). Since the data sets are generated from discretized normal distribution
with σ = 1, Table 3 contains the values of μ instead of coefficient of variation. It is clear
from Table 3 that the efficiency of the Horvitz–Thompson estimator with respect to simple
random sample mean estimator could be zero for small coefficient of variation. For exam-
ple, when the coefficient of variation is close to zero (or μ = 100 or μ = 1000) in Table 3,
relative efficiencies of the HT-estimator based on all replacement designs (columns 4, 5, 6
and 7) are less than 1. Only exceptions to this are the cases when τ = 0 and ρ = 1 where
efficiencies RA1 and R2 are 3.825 and 2.645, respectively, when μ = 100 and the efficiency
R2 is 2.288 when μ = 1000. For large values of the coefficient of variation, for example
when the coefficient of variation is infinite (μ = 0), the efficiency of HT-estimator for all
designs appear to be an increasing function of the correlation coefficient. Also, when the
coefficient of variation is infinite (μ = 0), the efficiency of the HT estimator based on level-
2 design is larger than the efficiency of the same estimator based on all other replacement
designs for τ = 0,1,1.5.

On the other hand, the proposed estimator μ∗
L(K), unlike HT estimator, appears to

be invariant with respect to the coefficient of variation for all level-L sampling designs,
L = 0,A1,D1,2. The efficiencies are increasing function of the correlation coefficient. It
appears that a moderate tie structure improves the efficiency of the new estimators for all
sampling designs. Among the four sampling designs, level-2 design provides the highest
efficiency. For example the last column in Table 3 is in general as large as or larger than
the entries in other columns, indicating that the proposed estimator based on level-2 design
outperforms the other estimators in Table 3. In the remaining part of the paper, we thus
only focus on the level-2 design.

To evaluate the performance of the estimator μ∗
2(K) on different populations, we per-

formed another simulation study. In this part of the simulation, data sets are generated from
discrete normal, exponential and Cauchy distributions. Since the coefficient of variation is
an important factor that affects the efficiency of the HT estimator, we shifted the popula-
tions by adding μ = 0,100,1000 to each one of the discretized population of size 220 from
standard normal, standard exponential and standard Cauchy distributions. Discretized pop-
ulations are generated by using the quantile function xi = Q((i−0.5)/220), i = 1, . . . ,220
for normal, exponential and Cauchy distributions. For the simulation parameters we use set
size H = 3, cycle size C = 10, the number of auxiliary variables K = 1,4, discretization
parameter τ = 0,1,1.5 and correlation coefficient ρ = ±0.5,±0.75,±1.00. Since simula-
tion results for negative and positive correlations are almost identical up to the simulation
variation, we only report the results for positive correlations. The simulation size is selected
to be 2000. In this part of the simulation we are primarily interested in the biases and the
efficiencies of the Horvitz–Thompson (μ̂2(K)) and the proposed (μ∗

2(K)) estimators under
the ranking of a single auxiliary variable (K = 1) and multiple auxiliary variables (K = 4).
Relative efficiencies of Horvitz–Thompson and the new estimator for level-2 design are
given by

R2(K) = MSE(μ̂)

MSE(μ̂2(K))
, R∗

2(K) = MSE(μ̂)

MSE(μ∗
2(K))

.
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Table 4. Biases and relative efficiencies of the level-2 design Horvitz–Thompson (μ̂2(K)) and the proposed
estimator (μ∗

2(K)) based on K auxiliary variables. The efficiencies are given in terms of the ratio
of the MSEs of SRS and level-2 design estimators, i.e. R(K) = MSE(μ̂)/MSE(μ̂2(K)), R∗(K) =
MSE(μ̂)/MSE(μ∗

2(K)). Data sets are generated from discretized normal distributions, N(0,1) + μ.

Biases Efficiencies

τ μ ρ μ̂2(1) μ̂2(4) μ̂∗
2(1) μ̂∗

2(4) R(1) R(4) R∗(1) R∗(4)

0.00 0 0.50 0.001 −0.000 0.001 −0.001 1.116 1.471 1.169 1.471
0.00 0 0.75 −0.003 −0.001 −0.003 −0.001 1.357 2.269 1.479 2.348
0.00 0 1.00 −0.002 0.000 −0.002 0.000 2.250 2.153 2.250 2.153
0.00 100 0.50 0.293 −0.025 0.001 0.005 0.029 0.047 1.098 1.486
0.00 100 0.75 0.307 −0.081 0.001 0.003 0.032 0.063 1.363 2.206
0.00 100 1.00 −0.004 −0.002 −0.004 −0.002 2.372 2.255 2.372 2.255
0.00 1000 0.50 2.788 −0.533 −0.000 −0.000 0.000 0.000 1.081 1.388
0.00 1000 0.75 3.062 −0.616 −0.002 0.004 0.000 0.001 1.402 2.110
0.00 1000 1.00 −0.001 0.002 −0.001 0.002 2.241 2.232 2.241 2.232

1.00 0 0.50 −0.002 0.000 −0.002 −0.000 1.079 1.405 1.122 1.415
1.00 0 0.75 0.003 −0.004 0.002 −0.004 1.339 2.173 1.520 2.228
1.00 0 1.00 −0.000 0.003 0.000 0.002 1.605 2.395 2.329 2.349
1.00 100 0.50 0.215 −0.055 −0.004 0.004 0.035 0.056 1.121 1.625
1.00 100 0.75 0.219 −0.118 0.002 0.001 0.044 0.078 1.527 2.437
1.00 100 1.00 0.379 −0.137 −0.001 0.002 0.029 0.047 2.201 2.416
1.00 1000 0.50 2.286 −0.480 0.000 −0.001 0.000 0.001 1.130 1.489
1.00 1000 0.75 2.298 −0.999 −0.003 −0.005 0.000 0.001 1.410 2.241
1.00 1000 1.00 3.427 −1.193 0.001 −0.003 0.000 0.001 2.281 2.446

1.50 0 0.50 0.007 −0.002 0.007 −0.002 1.089 1.632 1.163 1.640
1.50 0 0.75 −0.001 −0.004 −0.001 −0.004 1.254 2.132 1.495 2.214
1.50 0 1.00 0.001 0.000 0.001 0.001 1.303 2.350 2.001 2.364
1.50 100 0.50 0.237 −0.039 0.003 −0.005 0.039 0.055 1.130 1.597
1.50 100 0.75 0.226 −0.131 0.001 −0.004 0.045 0.087 1.523 2.418
1.50 100 1.00 0.470 −0.150 −0.000 −0.002 0.019 0.042 1.985 2.359
1.50 1000 0.50 2.336 −0.155 0.001 −0.000 0.000 0.001 1.091 1.537
1.50 1000 0.75 2.316 −1.208 0.003 0.002 0.000 0.001 1.408 2.391
1.50 1000 1.00 4.670 −1.682 0.007 −0.003 0.000 0.000 2.038 2.333

The empirical estimate of the biases and efficiencies are presented in Tables 4, 5 and 6

for discrete normal, exponential, and Cauchy distributions, respectively. It is clear from

these tables that both HT (μ̂2(K)) and proposed (μ∗
2(K)) estimators appear to be unbiased

for large coefficient of variation regardless of the value of τ and ρ. On the other hand, when

the coefficient of variation is small, the HT estimator is moderately biased if the quality

of ranking information is poor due to either smaller correlation between the auxiliary vari-

ables and response (ρ) or the large number of ties in the ranking process (larger τ ). The

proposed estimator (μ∗
2(K)) is essentially unbiased regardless the values of coefficient of

variation, τ and ρ for both single and multi auxiliary variables.

Similar results also hold for the efficiencies. For large coefficient of variation, the HT

estimator always outperforms simple random sample estimator μ̂. On the other hand, when

the coefficient of variation is small, the efficiency of HT estimator with respect to μ̂ could

essentially be zero for both single and multi-auxiliary variables. The proposed estimator
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Table 5. Biases and relative efficiencies of the level-2 design Horvitz–Thompson (μ̂2(K)) and the proposed
estimator (μ∗

2(K)) based on K auxiliary variables. The efficiencies are given in terms of the ratio
of the MSEs of SRS and level-2 design estimators, i.e., R(K) = MSE(μ̂)/MSE(μ̂2(K)), R∗(K) =
MSE(μ̂)/MSE(μ∗

2(K)). Data sets are generated from discretized exponential distributions, Exp(1)+μ.

Biases Efficiencies

τ μ ρ μ̂2(1) μ̂2(4) μ̂∗
2(1) μ̂∗

2(4) R(1) R(4) R∗(1) R∗(4)

0.00 1 0.50 −0.003 0.005 −0.006 0.003 1.057 1.469 1.096 1.497
0.00 1 0.75 0.009 −0.004 0.005 −0.003 1.194 1.870 1.282 1.945
0.00 1 1.00 −0.001 −0.004 −0.001 −0.004 1.852 1.772 1.852 1.772
0.00 101 0.50 0.260 0.021 0.001 0.001 0.030 0.042 1.122 1.470
0.00 101 0.75 0.297 −0.084 −0.000 0.002 0.029 0.048 1.290 1.814
0.00 101 1.00 −0.002 −0.005 −0.002 −0.005 1.800 1.752 1.800 1.752
0.00 1001 0.50 2.754 −0.464 −0.003 0.007 0.000 0.000 1.130 1.512
0.00 1001 0.75 2.985 −0.408 −0.004 0.000 0.000 0.001 1.399 2.016
0.00 1001 1.00 −0.000 −0.001 −0.000 −0.001 1.911 1.924 1.911 1.924

1.00 1 0.50 −0.001 −0.006 −0.005 −0.006 1.004 1.414 1.074 1.453
1.00 1 0.75 0.004 −0.006 −0.000 −0.006 1.275 1.999 1.448 2.126
1.00 1 1.00 0.004 −0.001 −0.004 −0.002 1.358 1.926 1.892 1.952
1.00 101 0.50 0.279 −0.038 0.004 0.004 0.030 0.049 1.040 1.456
1.00 101 0.75 0.230 −0.086 0.001 −0.001 0.040 0.070 1.367 2.137
1.00 101 1.00 0.445 −0.121 −0.003 −0.002 0.022 0.042 1.870 2.001
1.00 1001 0.50 2.363 −0.318 −0.002 −0.003 0.000 0.001 1.145 1.508
1.00 1001 0.75 2.620 −1.040 0.000 −0.003 0.000 0.001 1.328 1.994
1.00 1001 1.00 3.851 −1.248 −0.007 −0.007 0.000 0.000 1.984 2.073

1.50 1 0.50 −0.001 0.001 −0.004 0.001 1.092 1.459 1.163 1.497
1.50 1 0.75 0.004 0.000 0.001 0.001 1.099 1.713 1.269 1.806
1.50 1 1.00 0.005 0.002 −0.005 0.001 1.206 1.915 1.813 1.942
1.50 101 0.50 0.198 −0.066 −0.006 0.004 0.036 0.054 1.170 1.485
1.50 101 0.75 0.206 −0.100 −0.005 0.003 0.044 0.075 1.428 2.111
1.50 101 1.00 0.450 −0.104 −0.005 −0.008 0.017 0.037 1.736 1.983
1.50 1001 0.50 2.495 −0.112 0.001 0.004 0.000 0.001 1.048 1.469
1.50 1001 0.75 2.338 −0.787 0.007 0.004 0.000 0.001 1.377 2.224
1.50 1001 1.00 4.362 −1.141 −0.004 −0.008 0.000 0.000 1.658 2.140

always outperforms the simple random sample estimator μ̂ and HT estimator μ̂2(K) for
all coefficient of variation, τ and ρ in Tables 4, 5 and 6.

In general, the efficiency of μ∗
2(K) increases with the number of auxiliary variables K

with possible exceptions when ρ = 1 and τ = 0. For larger K , the information content
of the strength-of-weight matrix W̄ j increases. Hence, ranking process becomes more ac-
curate. This creates big separation among strata and increase the efficiency. When ρ = 1
and τ = 0 ranking is accurate regardless of value of K . In this case, we do not observe an
increase in the efficiency. In an infinite population setting, this relationship is also reported
in Frey (2012) and Ozturk (2013).

6. STATISTICAL INFERENCE

In the previous section, we established that the level-2 design performs better than all the
other three designs. Thus, in this section, we develop statistical inference for the population
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Table 6. Biases and relative efficiencies of the level-2 design Horvitz–Thompson (μ̂2(K)) and the proposed
estimator (μ∗

2(K)) based on K auxiliary variables. The efficiencies are given in terms of the ratio
of the MSEs of SRS and level-2 design estimators, i.e., R(K) = MSE(μ̂)/MSE(μ̂2(K)), R∗(K) =
MSE(μ̂)/MSE(μ∗

2(K)). Data sets are generated from discretized Cauchy distributions, Cauchy(0,1)+
μ.

Biases Efficiencies

τ μ ρ μ̂2(1) μ̂2(4) μ̂∗
2(1) μ̂∗

2(4) R(1) R(4) R∗(1) R∗(4)

0.00 0 0.50 −0.062 −0.082 −0.064 −0.079 1.045 1.149 1.084 1.141
0.00 0 0.75 −0.024 −0.056 −0.027 −0.058 1.014 1.099 1.034 1.071
0.00 0 1.00 −0.028 0.100 −0.028 0.100 1.090 1.031 1.090 1.031
0.00 100 0.50 0.235 −0.115 −0.058 −0.027 0.894 1.029 1.036 1.119
0.00 100 0.75 0.212 −0.088 −0.006 −0.001 0.985 1.069 1.088 1.084
0.00 100 1.00 −0.019 −0.021 −0.019 −0.021 1.068 1.079 1.068 1.079
0.00 1000 0.50 2.968 −1.111 −0.002 0.008 0.071 0.118 1.027 1.133
0.00 1000 0.75 2.174 −0.690 0.014 0.038 0.108 0.174 0.980 1.116
0.00 1000 1.00 −0.001 −0.046 −0.001 −0.046 1.121 1.125 1.121 1.125

1.00 0 0.50 −0.006 −0.046 −0.010 −0.043 0.995 1.143 1.017 1.145
1.00 0 0.75 −0.006 0.037 0.004 0.035 1.015 1.122 1.056 1.111
1.00 0 1.00 −0.009 0.003 −0.014 0.004 1.143 1.067 1.173 1.042
1.00 100 0.50 0.113 −0.114 −0.111 0.008 0.940 1.081 1.074 1.142
1.00 100 0.75 0.204 −0.124 0.016 −0.009 0.945 1.059 1.053 1.134
1.00 100 1.00 0.152 −0.025 −0.122 0.012 0.894 1.053 0.993 1.093
1.00 1000 0.50 2.543 −1.276 −0.027 0.034 0.080 0.131 1.067 1.111
1.00 1000 0.75 2.236 −1.200 −0.003 0.027 0.104 0.161 1.046 1.143
1.00 1000 1.00 2.583 −0.680 0.127 −0.009 0.108 0.154 1.070 1.130

1.50 0 0.50 −0.046 −0.013 −0.036 −0.018 1.080 1.177 1.108 1.184
1.50 0 0.75 −0.031 −0.013 −0.023 −0.017 1.149 1.145 1.180 1.132
1.50 0 1.00 0.065 0.045 0.060 0.050 1.080 1.141 1.097 1.106
1.50 100 0.50 0.171 −0.142 −0.071 −0.027 0.963 1.076 1.084 1.194
1.50 100 0.75 0.277 −0.104 0.064 0.003 0.924 1.059 1.031 1.126
1.50 100 1.00 0.350 −0.099 0.029 −0.023 0.934 1.081 1.128 1.139
1.50 1000 0.50 2.675 −1.101 0.026 −0.020 0.081 0.129 1.016 1.159
1.50 1000 0.75 2.167 −1.219 −0.063 0.052 0.104 0.162 1.041 1.151
1.50 1000 1.00 3.277 −0.633 0.052 0.029 0.077 0.115 1.097 0.995

mean and total based on the level-2 design. The estimated inclusion probabilities under

multi-ranker model in the level-2 design, unlike perfect ranking RSS and simple random

sampling designs, where inclusion probabilities are constant, are random variables. Thus,

the distribution of the estimated inclusion probabilities depends on the underlying ranking

structure. The construction of their distributions requires strong modeling assumptions on

the ranking mechanism. In order to avoid strong ranking assumptions, we use bootstrap

distribution of the estimator μ∗
2(K) to develop inference for the population mean (and

total).

In an infinite population setting, the bootstrap distribution of a statistic can be con-

structed from a plug-in method. Let the parameter of interest θ be a functional of an un-

known distribution F , θ = T (F ). The estimate of θ is then obtained from θ̂ = T (F̂ ), where

F̂ is the empirical cdf based on a random sample from F . In a finite population setting, the
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distribution F is replaced with the population P = {x1, . . . , xN } of size N , where xi is the
numerical value of the unit ui in the population.

Assume that our interest is on the parameter θ = T (P ). We use the natural extension of
infinite population bootstrap plug-in rule to estimate the parameter θ , θ̂ = T (P̂ ), where P̂

is the empirical population constructed based on multi-ranker PROS sample design. Since
a ranked set sample consists of H judgment strata, the construction of empirical population
P̂ depends on the structure of these judgment strata in the sample. Let ph = nh/n, h =
1, . . . ,H , be the fraction of the observations in judgment class h. The empirical population
P̂ then must have P̂[1], . . . , P̂[H ] stratified population with population sizes N1, . . . ,NH ,
where Nh = phN . Let

V �[h]j = (
π

(2)
j (K),X[h]j ,w∗�

h,j

)
, j = 1, . . . , nh,

be the multi-ranker PROS sample observation in judgment class h based on level-2 design.
It is clear that V[h]j is a random vector that depends on the underlying ranking mechanism
of the multi-ranker model. Let V [h] be an nh by H + 2 matrix containing V [h]j in its j th
row, j = 1, . . . , nh. With this notation, our PROS sample combined with the estimated in-
clusion probabilities of the measured units can be written as V = {V [1], . . . ,V [H ]}. In order
to construct the empirical population P̂[h] based on sample V [h] (or V [h]j , j = 1, . . . , nh),
we first determine Mh, integer part of Nh/nh, and mh = Nh − Mh. The empirical popula-
tion P̂[h] can be constructed by repeating matrix V [h] Mh times and selecting mh rows at
random from V [h] to create an Nh by H + 2 matrix

P̂[h] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V [h]
...

V [h]
V[h]t1

...

V[h]tmh

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, h = 1, . . . ,H.

The empirical bootstrap population then becomes P̂ = {P̂[1], . . . , P̂[H ]}. The empirical
bootstrap populations for other sampling designs can be constructed in a similar fashion.

We now discuss the selection of bootstrap sample from the empirical population P̂ .
Let V∗[h] be a sample of size nh, selected at random without replacement from the hth

empirical judgment stratum population P̂[h]. In other words, we select nh rows from
the population matrix P̂[h]. We then call V∗ = {V∗[1], . . . ,V∗[H ]} a resample from P̂ . Let

P̂(1), . . . , P̂(B) be B empirical populations constructed independently from PROS sample
V = {V [1], . . . ,V [H ]} as explained above. For each b = 1, . . . ,B , let V∗

(b,1), . . . ,V
∗
(b,G),

be a collection of G independently selected resamples from P̂(b). We apply our estimator
to each one of these bootstrap resamples to obtain

T(b−1)G+g(2) = μ∗
2

(
K,V∗

(b,g)

)
, b = 1, . . . ,B,g = 1, . . . ,G,
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where μ∗
2(K,V∗

(b,g)) is the estimator in Equation (4.1) applied to resampled data V∗
(b,g).

The bootstrap variance estimates of μ∗
2(K) is then obtained by

BV
(
μ∗

2

) = 1

BG

B∑

b=1

G∑

g=1

(
T(b−1)G+g(2) − T̄ (2)

)2
, (6.1)

where T̄ (2) is the average of T(b−1)G+g(2), b = 1, . . . ,B,g = 1, . . . ,G.
A (1 − γ )100 % bootstrap percentile (BP) confidence interval is constructed by

(T γ/2, T 1−γ /2), where T a is the ath quantile of T satisfying a = P(T ≤ T a|V) for
0 < a < 1. The quantiles T γ/2 and T 1−γ /2 are obtained from bootstrap distribution of T .

In order to evaluate properties of the bootstrap variance estimate of the estimator μ∗
2(K)

and the bootstrap percentile confidence interval of the population mean, we performed
another simulation study. We used the same simulation parameters as the ones that are
used in Section 6, i.e., H = 3; C = 10; K = 4; τ = 0,1,1.5; ρ = 0.5,0.75,1.00 and μ =
0,100,1000. Table 7 presents the variance estimates of the estimator μ∗

2(K) and coverage
probabilities of the bootstrap percentile confidence intervals. The heading SV represents
the simulated variance estimate of μ∗

2(K)

SV =
∑2000

j=1 (μ∗
2,j (K) − μ̄∗

2(K))2

1999
, μ̄∗

2(K) =
∑2000

j=1 μ∗
2,j (K)

2000
,

where μ∗
2,j (K) is the estimator in Equation (4.1) in the j th iteration of the simulation based

on level-2 design. The heading BV represents the bootstrap variance estimate computed
from Equation (6.1) with G = 50, and B = 50. The heading CV represents the coverage
probabilities of the bootstrap percentile confidence interval of the population mean.

It is clear from Table 7 that the variance estimates SV and BV are reasonably close
to each other for the selected simulation parameters and distributions. The simulation re-
sults indicate that bootstrap distribution of the proposed estimator provides a mechanism
to estimate the standard error of the estimator. Similar results also hold for the coverage
probabilities of the percentile confidence interval. The estimated coverage probabilities are
reasonably close to nominal level 95 % for discrete normal and exponential populations.
The coverage probabilities for discretized Cauchy distribution appears to be slightly lower
than the nominal level. This could be explained from the fact that the super population
Cauchy does not have a finite moments and hence violates the regularity conditions of the
finite sample bootstrap distribution for finite sample stratified population in Booth, Butler,
and Hall (1994).

7. APPLICATION

In this section, we apply the proposed estimator to USDA 1992 Ohio corn data. The
ranking information (strength-of-weight matrices in PROS design in Section 2) from these
auxiliary variables can be combined by using weights α1 = 0.252, α2 = 0.209, α3 = 0.263
and α4 = 0.276. By treating these 202 farms as a finite population, we performed an-
other simulation study to investigate the biases and efficiencies of μ̂2(1), μ̂2(4) and μ∗

2(1),
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Table 7. Variance estimate of the estimator μ∗
2(4) based on simulation (SV) and bootstrap distribution (BV), and

coverage probabilities (CP) of the 95-percent bootstrap percentile confidence intervals of population
mean for normal, exponential and Cauchy distributions.

N(0,1) + μ Exp(1) + μ Cauchy(0,1) + μ

τ μ ρ SV BV CP SV BV CP SV BV CP

0.00 0 0.500 0.020 0.020 0.935 0.019 0.019 0.925 5.544 4.869 0.930
0.00 0 0.750 0.012 0.014 0.957 0.015 0.016 0.927 5.912 5.279 0.921
0.00 0 1.000 0.013 0.014 0.943 0.016 0.016 0.919 6.132 5.548 0.910
0.00 100 0.500 0.019 0.021 0.951 0.019 0.020 0.932 5.658 5.060 0.917
0.00 100 0.750 0.013 0.015 0.949 0.016 0.016 0.934 5.845 5.096 0.907
0.00 100 1.000 0.013 0.014 0.947 0.016 0.016 0.906 5.869 5.451 0.900
0.00 1000 0.500 0.021 0.021 0.937 0.019 0.019 0.930 5.591 5.086 0.921
0.00 1000 0.750 0.014 0.015 0.951 0.014 0.016 0.939 5.671 5.367 0.924
0.00 1000 1.000 0.013 0.014 0.948 0.015 0.016 0.930 5.626 5.170 0.907

1.00 0 0.500 0.020 0.020 0.939 0.019 0.019 0.921 5.529 4.849 0.920
1.00 0 0.750 0.013 0.014 0.952 0.013 0.015 0.936 5.701 5.243 0.919
1.00 0 1.000 0.012 0.013 0.946 0.015 0.014 0.914 6.079 5.298 0.912
1.00 100 0.500 0.018 0.019 0.949 0.019 0.020 0.933 0.019 0.020 0.933
1.00 100 0.750 0.012 0.014 0.959 0.013 0.015 0.942 5.586 4.999 0.923
1.00 100 1.000 0.012 0.013 0.953 0.014 0.015 0.929 5.796 5.224 0.909
1.00 1000 0.500 0.019 0.019 0.941 0.019 0.019 0.924 5.697 5.055 0.925
1.00 1000 0.750 0.013 0.015 0.957 0.014 0.016 0.939 5.542 4.997 0.920
1.00 1000 1.000 0.012 0.013 0.945 0.014 0.015 0.928 5.606 5.280 0.908

1.50 0 0.500 0.018 0.019 0.954 0.019 0.019 0.932 5.349 4.898 0.937
1.50 0 0.750 0.013 0.015 0.947 0.016 0.016 0.931 5.593 4.952 0.919
1.50 0 1.000 0.012 0.014 0.958 0.015 0.015 0.926 5.723 5.250 0.918
1.50 100 0.500 0.018 0.019 0.942 0.019 0.020 0.926 5.302 4.522 0.915
1.50 100 0.750 0.012 0.015 0.964 0.013 0.015 0.942 5.626 4.858 0.917
1.50 100 1.000 0.012 0.014 0.956 0.014 0.016 0.931 5.560 5.201 0.917
1.50 1000 0.500 0.019 0.019 0.936 0.019 0.020 0.926 5.463 4.860 0.937
1.50 1000 0.750 0.012 0.014 0.954 0.013 0.016 0.949 5.499 4.982 0.935
1.50 1000 1.000 0.012 0.014 0.951 0.013 0.015 0.939 6.364 5.589 0.916

μ∗
2(4). In the simulation, we used cycle size C = 10,14,20,30, and set size H = 2,3,4.

Table 8 presents the biases and relative efficiencies of the HT and the proposed estimators.

We note that high correlation between the response and auxiliary variables indicate that

ranking process is highly accurate. Thus, as expected, both HT and proposed estimators

have very little bias. On the other hand, the new estimator has higher efficiency than the

HT estimator.

For the same simulation parameters, Table 9 presents the standard error estimates of the

estimators μ̂2(1) and μ∗
2(4), and the coverage probability of a 95 % bootstrap percentile

confidence intervals of population mean based on the proposed estimator μ∗
2(4). It is clear

from Table 9 that simulated (S.se) and bootstrap (B.se) estimated standard errors of μ∗
2(4)

are almost identical. The coverage probabilities are also relatively close to the nominal

level 95 %.
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Table 8. Biases and relative efficiencies of μ̂2(K) and μ∗
2(K) based on 1992 USDA Ohio Survey. Relative

efficiencies are computed in terms of MSE of SRS and level-2 sampling design estimators, i.e., R(K) =
MSE(μ̂)/MSE(μ̂2(K)) and R∗(K) = MSE(μ̂)/MSE(μ∗

2(K)) for K = 1,4.

C H B(μ̂2(1)) B(μ̂2(4)) B(μ∗
2(1)) B(μ∗

2(4)) R(1) R(4) R∗(1) R∗(4)

10.00 2 34.349 44.831 16.905 4.858 1.277 1.332 1.291 1.389
14.00 2 −18.944 −14.505 −34.663 −33.607 1.373 1.359 1.382 1.412
20.00 2 −19.742 −40.123 −29.073 −56.726 1.380 1.350 1.384 1.414
30.00 2 −15.042 −8.777 −17.148 −16.149 1.464 1.491 1.467 1.582
10.00 3 13.560 40.813 −1.973 −3.324 1.700 1.719 1.710 1.851
14.00 3 −21.535 −22.636 −36.299 −53.166 1.973 1.799 1.990 1.914
20.00 3 43.980 16.423 34.606 13.300 2.028 2.033 2.037 2.244
10.00 4 76.962 22.470 52.440 4.362 2.164 2.202 2.191 2.392

Table 9. Simulated standard error (S.se) and bootstrap standard error (B.se) estimate of μ∗
2(4), and coverage

probabilities (CP) of the 95 % bootstrap percentile confidence interval of the population mean of USDA
1992 Ohio survey data.

C H S.se B.se CP

10.00 2 3354.040 3267.418 0.898
14.00 2 2748.577 2733.363 0.911
20.00 2 2216.628 2226.492 0.925
30.00 2 1602.549 1745.553 0.948
10.00 3 2306.067 2360.690 0.911
14.00 3 1847.537 1948.186 0.934
20.00 3 1345.393 1578.769 0.963
10.00 4 1705.066 1837.451 0.945

8. CONCLUSION

We have developed three sampling designs that combines the ranking information from
different sources to construct a ranked set sample from a finite population. The samples are
constructed with three levels of without-replacement policies, level-0, level-1, and level-2.
A level-0 design is constructed with replacement on all the units in a set. A level-1 design
is constructed with without-replacement policy on the measured unit in the set. A level-
2 design is constructed by using without-replacement policy on all units regardless the
measurement status. These sampling designs provide a mechanism to combine the rank-
ing information from different sources to obtain a strength-of-agreement weights. These
weights provides a model to construct recursive algorithms to compute the estimate of the
first and second order inclusion probabilities. The inclusion probabilities along with the
strength of agreement weights are used to construct estimators for the population mean
and total. We showed that the new estimator based on level-2 design outperforms Horvitz–
Thompson and simple random sample estimators. We construct finite sample bootstrap
inference for the population mean. The new sampling design and estimator are applied to
1992 Ohio corn data to show that it provides a viable sampling design and estimator in
survey sampling studies.
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