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Fatty acid (FA) composition of pork is an important issue for the pig industry and
consumers. Fatty acid composition is commonly described as the percentages of a set
of FA relative to total FA and therefore should be statistically treated as compositional
data. To our knowledge there is no reference in the literature where specific methods
for compositional data analysis have been applied to analyze FA composition in meat
quality research. The purposes of this study were (1) to present an overview of composi-
tional data analysis techniques, (2) to apply them to the analysis of the FA composition
of muscles and subcutaneous fat from 941 pigs as a case study, and (3) to discuss and
interpret the results with respect to those obtained using standard techniques. Results
from both approaches indicate that FA composition differed across tissues and muscles
but also, for a given muscle, with the intramuscular fat content. It is concluded that FA
composition in pork did not display enough variability to become critical for standard
statistics, particularly if the individual FA parts remain the same across experiments.
However, even in such case, compositional analysis may be useful to correctly interpret
the correlation structure among FA.
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1. INTRODUCTION

The quality of fat is a feature becoming increasingly important for both the industry
and consumers. Currently, there is enough evidence indicating that fat quantity and quality
affect the nutritional, sensory, and technological properties of animal products, particu-
larly pork (Wood et al. 2003; Schmid 2010). Fat quality is chemically defined in terms
of fatty acid (FA) composition, which is commonly presented as a set of percentages cor-
responding to the relative content of each individual FA (or the sum of some of them)
with respect to the total content of the FA that had been determined, i.e., as a vector of
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positive values whose sum is a constant. Technically, this sort of data is what in statistics
is known as compositional data, i.e., multivariate data where the variables represent parts
of a whole (Pawlowsky-Glahn and Egozcue 2006). Compositional data are intrinsically
multivariate because each component cannot be interpreted without relating it to any of
the other components. They only represent relative information and therefore standard sta-
tistical techniques, which were conceived to deal with variables measured on an absolute
scale, are inappropriate. Consequently, specific methods for compositional data analysis
have been developed since the 1980s (Aitchison 1982, 1986; Aitchison and Egozcue 2005;
Bacon-Shone 2011). To our knowledge there is no reference in the literature where com-
positional data analysis had been applied to meat quality research.

Much research has been undertaken in recent years to assess the effect of influen-
tial factors (such as diet, genotype, gender, body weight, age, or fat content, among
others) on the FA profile of pork fat and meat, mostly sampled from backfat and loin
chops. However, it is also known that the pattern of FA deposition differs not only be-
tween the adipose and muscle tissues (Franco et al. 2006; Duran-Montgé et al. 2008;
Yang et al. 2010) but also among muscles (Sharma, Gandemer, and Goutefongea 1987;
Leseigneur-Meynier and Gandemer 1991). The University of Lleida has assembled a
biorepository of pig fat and muscle specimens for conducting research studies on meat
quality, including samples from a Duroc genetic line used for producing premium quality
pork cuts. Currently, the associated dataset to this line, with around 1700 FA profiles from
different muscles and backfat locations (Section 2), provides a valuable resource for revis-
iting the pattern of FA deposition in pork under a compositional data analysis setting. The
purpose of this study was (1) to review the fundamentals of the compositional data analysis
techniques (Sections 3–4), and then (2) use this approach to examine the variations in the
FA profile of pork meat and fat as a case study (Section 5). The utility of adopting the com-
positional data approach in the statistical analysis of FA compositions in meat products is
discussed in light of the results of the case study.

2. DESCRIBING THE CASE STUDY

The case study comprises data from 971 purebred Duroc barrows used and referenced
elsewhere (Bosch et al. 2012; Ros-Freixedes et al. 2012). The pigs were raised at a car-
cass market weight of around 95–100 kg (Table 1) in 12 commercial batches from 2001
to 2008. All pigs had ad libitum access to a commercial feed and were slaughtered at the
same abattoir. There, a sample of the muscle gluteus medius (GM) was collected from the
left ham of all pigs. Moreover, in randomly chosen subgroups of them, additional sam-
ples of the muscles longissimus dorsi (at the level of the third and fourth last ribs; LD),
semimembranosus (SM), and latissimus dorsi (LT) were also taken, as representative mus-
cles of the loin, ham, and shoulder, respectively. Finally, two samples of the subcutaneous
backfat (SF) were obtained at the positions where GM (SFGM) and LD (SFLD) muscle
samples were taken. The samples of SM, SFGM, and SFLD were collected immediately
after slaughter and frozen in liquid nitrogen until required for analysis. The samples of
GM, LD, and LT were collected after chilling for about 24 h at 2 °C, vacuum packaged
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Table 1. Number of animals (n), age at slaughter (Age), carcass weight (CW), and number of samples per
muscle and backfat location by batch.

Samplea

Batch n Age, d (SD) CW, kg (SD) GM LD SM LT SFGM SFLD

1 109 215.8 (5.3) 90.9 (11.3) 109 52 51 42 15 –
2 105 214.0 (3.4) 95.9 (10.6) 104 54 54 43 15 –
3 68 203.1 (6.4) 94.7 (7.8) 66 – 27 – – 27
4 72 200.9 (8.2) 91.0 (10.2) 72 – 20 – – 48
5 112 223.2 (3.8) 104.3 (12.0) 112 24 – – – 24
6 74 220.6 (4.0) 100.1 (7.7) 73 33 – – – 32
7 32 220.7 (0.8) 100.0 (8.8) 31 31 – – – 31
8 58 195.8 (1.9) 92.0 (9.2) 58 – – – 28 –
9 51 206.5 (1.7) 97.5 (10.0) 51 – – – 30 –
10 94 230.9 (2.1) 104.0 (10.7) 93 – – – 15 –
11 110 217.5 (1.7) 107.4 (8.9) 110 – – – 15 –
12 86 204.1 (2.9) 94.2 (10.1) 85 – – – 15 –
Total 971 213.8 (10.7) 98.4 (11.7) 964 194 152 85 133 162

a GM: gluteus medius muscle; LD: longissimus dorsi muscle; SM: semimembranosus muscle; LT: latissimus
dorsi muscle; SFGM (SFLD): subcutaneous backfat at the level where GM (LD) was taken.

and stored in deep freeze until analysis. The number of samples per muscle and backfat

location by batch is detailed in Table 1.

Once defrosted, a representative aliquot from pulverized freeze-dried samples was used

for fat analysis. The intramuscular fat (IMF) content and FA composition were determined

in duplicate by quantitative determination of the individual FA by gas chromatography

(Bosch et al. 2009). Fatty acid methyl esters were directly obtained by transesterification

using a solution of 20 % boron trifluoride in methanol (Rule 1997). Methyl esters were de-

termined by gas chromatography using a capillary column SP2330 (30 m × 0.25 mm;

Supelco, Bellefonte, PA) and a flame ionization detector with helium as carrier gas at

1 ml/min. The oven temperature program increased from 150 to 225 °C at 7 °C/min

and injector and detector temperatures were both 250 °C. The quantification was car-

ried out through area normalization with an external mixture of FA methyl esters (Sigma,

Tres Cantos, Madrid). The internal standard was 1,2,3-tripentadecanoylglycerol. The FA

composition was expressed as the percentage of each individual FA relative to total FA.

The complete profile for each sample included saturated (SFA; C14:0, C16:0, C18:0, and

C20:0), monounsaturated (MUFA; C16:1n-7, C18:1n-9, and C20:1n-9), and polyunsatu-

rated (PUFA; 18:2n-6, C18:3n-3, C20:2n-6, and C20:4n-6) FA (Figure 1). The IMF content

in the four muscles was calculated as the sum of the individual FA expressed as triglyc-

eride equivalents (AOAC 1997) on a dry tissue basis. Because C20:0 is present at very low

levels, it was not detectable in a few samples. The zero values represent a mathematical

challenge for compositional data, which only represent relative magnitudes. To solve this

problem several replacement strategies have been proposed (Martín-Fernández and Thió-

Henestrosa 2006; Palarea-Albaladejo, Martín-Fernández, and Gómez-García 2007). For its

simplicity, and because the proportion of zero values is low in this dataset, we followed the



ON THE COMPOSITIONAL ANALYSIS OF FATTY ACIDS IN PORK 139

Figure 1. Main metabolic pathways for the fatty acids considered in the case study (adapted from Cook and
McMaster 2002). Discontinuous arrows indicate less important pathways.

strategy in Sanford, Pierson, and Crovelli (1993) and replaced the zeros by 0.55 times the
lowest measured value in each tissue before calculating the FA percentages.

3. SETTING THE PROBLEM

One of the drawbacks of analyzing compositional data with conventional methods
is that the results can be subcompositionally incoherent (Aitchison 1986, Chapter 3;
Pawlowsky-Glahn and Egozcue 2006). This becomes particularly evident in correlation
analyses, where the correlation coefficient between two given components can differ de-
pending on whether they are expressed relative to a set of components or another. In or-
der to highlight this problem we calculated the correlation between pairs of FA under
two different compositional settings. In the first one, the correlation matrix among the
complete 11-part FA profile of GM was calculated (Table 2, rows a), while, in the sec-
ond, the correlation was calculated between each SFA, MUFA, and PUFA expressed rel-
ative to the total SFA, MUFA, or PUFA, respectively, in such a way that, for instance,
C14:0, C16:0, C18:0, and C20:0 summed up to 100 % (i.e., the SFA subcomposition was
closed). Then, the correlations among the FA in each subcomposition (SFA, MUFA, and
PUFA) were recalculated (Table 2, rows b, c, and d, respectively). As can be seen in Ta-
ble 2, the two correlations were not consistent, with the discrepancy being particularly
relevant for those between C16:0 and C18:0, C16:1 and C18:1, and C18:2 and C20:4,
which changed, respectively, from 0.80 to −0.91, 0.11 to −0.98, and 0.59 to −0.89. These
changes, both in magnitude and sign, are due to the fact that components in composi-
tional data do not vary independently. It can be proven that for a D-part composition



140 R. ROS-FREIXEDES AND J. ESTANY

Table 2. Correlations among raw fatty acid percentages in gluteus medius when expressed relative to either the
full fatty acid composition (rows a) or the corresponding saturated (SFA, rows b), monounsaturated
(MUFA, rows c), and polyunsaturated (PUFA, rows d) subcompositions.

Fatty acid C16:0 C18:0 C20:0 C16:1 C18:1 C20:1 C18:2 C18:3 C20:2 C20:4

C14:0 a −0.10 −0.34 −0.02 0.14 0.10 0.14 0.00 0.31 0.05 0.12
b 0.40 −0.75 −0.07 – – – – – – –

C16:0 a 0.80 0.39 −0.08 −0.73 −0.38 −0.44 −0.44 −0.35 −0.50
b −0.91 −0.26 – – – – – – –

C18:0 a 0.46 −0.20 −0.71 −0.21 −0.39 −0.44 −0.24 −0.48
b 0.18 – – – – – – –

C20:0 a −0.18 −0.20 0.01 −0.39 −0.13 −0.09 −0.34
C16:1 a 0.11 0.02 −0.24 −0.15 0.29 −0.15

c −0.98 −0.12 – – – –
C18:1 a 0.43 −0.19 0.01 0.03 0.07

c −0.07 – – – –
C20:1 a −0.16 0.07 0.16 −0.04
C18:2 a 0.70 0.27 0.59

d 0.21 −0.15 −0.89
C18:3 a 0.32 0.26

d 0.22 −0.50
C20:2 a 0.13

d −0.24

x = [x1, x2, . . . , xD], if x1 + x2 + · · · + xD = κ (where κ is a constant, often 1 or 100 %),
then cov(x1, x2) + cov(x1, x3) + · · · + cov(x1, xD) = −var(x1). Therefore, at least one of
the covariances of x1 with the other components must be negative (Pearson 1987; Aitchi-
son 1986, Chapter 3; Filzmoser and Hron 2009). This negative bias causes that an increase
in one of the components results in the decrease in, at least, another one. Hence, the cor-
relations are not free to range over the interval [−1,1]. The distribution of the bias over
the covariance terms, along with the subsequent changes in the correlation matrix among
components, depends upon which parts are included in the composition. As a consequence,
the above correlations do not have any neat interpretation. This simple example highlights
that the analysis of compositional data using standard techniques may lead to spurious and
inconsistent results across subcompositions.

4. OVERVIEW OF COMPOSITIONAL ANALYSIS

Compositional data need to be statistically treated considering that they only carry rela-
tive information. Two general approaches have been developed to deal with them. The first
is known as staying-in-the-simplex approach. It operates in the so-called simplex space
(SD , for D-part compositions) and uses the Aitchison geometry (Aitchison 1986, Chap-
ter 2). The second approach resorts to log-ratio transformations (Aitchison 1986, Chapter 7;
Egozcue et al. 2003) to map the simplex to the real space, where the more familiar Eu-
clidean geometry is used and standard statistics methods can be applied. Both approaches
can be used complementarily depending on which geometrical framework is preferred.
A brief description of both approaches is given below. Some software has been developed
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to easily process and analyze compositional data, such as the freeware CoDaPack (Thió-
Henestrosa and Martín-Fernández 2005; Comas-Cufí and Thió-Henestrosa 2011a, 2011b)
and the R packages ‘compositions’ (van den Boogaart, Tolosana, and Bren 2011) and ‘rob-
Compositions’ (Templ, Hron, and Filzmoser 2011).

4.1. STAYING-IN-THE-SIMPLEX

The simplex vector space is defined by the internal simplicial operation of perturbation,
the external operation of powering, and the simplicial metric. The operations of perturba-
tion,

x ⊕ y = [x1, x2, . . . , xD] ⊕ [y1, y2, . . . , yD] = C[x1y1, x2y2, . . . , xDyD], (4.1)

and powering,

a � x = a � [x1, x2, . . . , xD] = C
[
xa

1 , xa
2 , . . . , xa

D

] = C
(
xa

)
, (4.2)

where x (y) is a D-part composition, xi (yi) are the percentages for each part (i =
1,2, . . . ,D), a is a scalar, and C is the closure operator to constant κ (rescaling through
division of each part by their total sum), are the equivalent to translation and scalar mul-
tiplication in the real space, respectively. The staying-in-the-simplex approach requires an
algebra that differs from the one used in standard statistics.

An example of this algebra is found in the calculation of descriptive statistics. The
mean and the variance are not suitable statistics for compositional exploratory analyses
(Daunis-i-Estadella, Barceló-Vidal, and Buccianti 2006) and therefore they are replaced in
the Aitchison geometry by the center (g) and the variation matrix (T), respectively. The
center or geometric mean is defined as:

g = C

[(
n∏

j=1

x1j

)1/n

,

(
n∏

j=1

x2j

)1/n

, . . . ,

(
n∏

j=1

xDj

)1/n]

, (4.3)

where xij are the percentages for each part (i = 1,2, . . . ,D) in sample j , and n is the num-
ber of samples. Moreover, the compositions can be centered, i.e., moved to the barycenter
of the simplex, using x ⊕ (−1 � g) = x ⊕ g−1 (Pawlowsky-Glahn and Egozcue 2006).
Centering is equivalent to subtracting the arithmetical mean in the Euclidean space. The
variation matrix is defined as T = [τij ], with τij = var[ln(Xi/Xj )], where Xi and Xj are
the data vectors for the parts i and j across samples. Low variance of a log ratio indicates
proportionality between the parts involved. The total variability of the dataset is the sum of
the variances of all log ratios divided by 2D:

total variance = 1

2D

D∑

i=1

D∑

j=1

var

[
ln

Xi

Xj

]
. (4.4)

4.2. LOG-RATIO TRANSFORMATIONS

The two first log-ratio transformations were introduced by Aitchison (1986, Chapters 4
and 6) and the third by Egozcue et al. (2003). These log-ratio transformations make it
possible to work on compositional data in the real space using Euclidean geometry.
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4.2.1. Additive Log Ratio

The additive log-ratio (alr) transformation is written in terms of log ratios of D − 1
components relative to an arbitrary D component:

alr(x) =
[

ln
x1

xD

, ln
x2

xD

, . . . , ln
xD−1

xD

]
. (4.5)

This transformation has the obvious disadvantage that the results are dependent on the
chosen divisor component, which in turn does not have an equivalent for further analy-
ses. But, most importantly, the alr-transformation is not isometric, i.e., distances are not
preserved in the new metric space (Filzmoser and Hron 2009).

4.2.2. Centered Log Ratio

The centered log-ratio (clr) transformation is written in terms of the log ratio of each
component relative to the geometric mean of all the components of an individual:

z = clr(x) =
[

ln
x1

(
∏D

i=1 xi)1/D
, ln

x2

(
∏D

i=1 xi)1/D
, . . . , ln

xD

(
∏D

i=1 xi)1/D

]
. (4.6)

In the z = clr(x) transformation all parts of the composition have a direct equivalent,
so that transformed variables can be easily traced back to the originals. Although the clr
transformation is isometric, it is subcompositionally incoherent. Moreover, the covariance
matrix of the clr-transformed variables is singular, which makes difficult the use of the clr
transformation in multivariate statistical analysis requiring the inversion of this matrix. The
clr transformation is mostly used in exploratory analysis. The so-called clr-biplots allow
for a graphical representation of the distribution of the samples based on their composition.
Moreover, the depiction of links (i.e., the vectors connecting the apexes of two variable
rays) provides an easy-to-interpret representation of the log ratios between the two involved
components, where their length represents the standard deviation of the corresponding
log ratios and the cosine of the angle between two links the correlation between the two
involved log ratios. A complete description of clr-biplots and their interpretation is given
in Aitchison and Greenacre (2002) and Daunis-i-Estadella, Barceló-Vidal, and Buccianti
(2006). Conclusions only should be drawn from biplots that explain a large percentage of
the total variance. An example is presented in Section 5.1.

4.2.3. Isometric Log Ratio

The isometric log ratio (ilr) transforms the raw composition to its coordinates in an
orthogonal system based upon an orthonormal basis (�) (Egozcue et al. 2003). If � is
chosen following a sequential binary partition (Egozcue and Pawlowsky-Glahn 2005), the
ilr-transformed components are called balances (bk , where k = 1,2, . . . ,D − 1). In a se-
quential binary partition, � is constructed by successive divisions of the set of parts into
two mutually exclusive groups (parts in one group are marked with the symbol +, and parts
in the complementary group with the symbol −) until only one part per group is left (see
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Table 3. Sequential binary partition of the 11-fatty acid composition for ilr-transformation.

Balance C14:0 C16:0 C18:0 C20:0 C16:1 C18:1 C20:1 C18:2 C18:3 C20:2 C20:4

1 − − − − − − − + + + +
2 − + + + + + +
3 − + + − + +
4 − + − −
5 − +
6 − + +
7 − +
8 + − + +
9 − − +
10 − +

Table 3 for an example). To be interpretable, partitions should be based on previous knowl-

edge and experience. Then, � is derived replacing the symbols + and − by 1
r

√
rs

r+s
and

− 1
s

√
rs

r+s
, respectively, where r (s) is the number of parts marked with + (−) in each bal-

ance, with blanks being zero. Then, the balances w = ilr(x) are calculated as w = z�T, or
directly, in terms of normalized log ratios between the geometric means of the two groups,
as

bk =
√

rksk

rk + sk
ln

(
∏rk

i=1 x+
ki)

1
rk

(
∏sk

j=1 x−
kj )

1
sk

, (4.7)

where x+
k and x−

k represent the subsets of rk and sk parts in group + and − of the kth
balance, respectively.

Note that, as happens with the alr transformation, there are only D − 1 balances for
a D-part composition, and that the balances may be different for each � . The balances
are isometric and subcompositionally coherent and, as a result, they can be analyzed us-
ing standard statistical techniques. However, because they do not have a one-to-one re-
lation to the original components, their interpretation is not straightforward. This can be
overcome by choosing, if it exists, a sequential binary partition leading to interpretable
balances or, alternatively, back-transforming them into interpretable D-part compositions
lying in the simplex. Because compositions are intrinsically multivariate, estimates on the
full set of D − 1 balances (for instance, either least squares means or regression coeffi-
cients) must be jointly back-transformed as x = C(ew�) (Tolosana-Delgado and van den
Boogaart 2011). In Sections 5.2 and 5.4 examples on the application of ilr-transforming and
back-transforming are presented. However, it is not possible to back-transform the standard
errors associated with least square estimates, but they can be substituted by the correspond-
ing back-transformed confidence intervals. The use of balances is the best choice for cor-
relations (Filzmoser and Hron 2009), but they cannot be back-transformed either. If the
sequential bipartition used does not lead to the desired balances, additional log ratios can
be calculated as linear combinations of the initial D − 1 set derived from � . For example,
apart from the balances derived from the sequential bipartition in Table 3 (b1 to b10) we
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could be interested in the log ratios of C18:1 and C18:0:

1√
2

ln
C18:1
C18:0 =

√
3

2
b6 − 1

2
b7 =

√
3

2

(√
2

3
ln

√
C18:1 · C20:1

C18:0
)

− 1

2

(
1√
2

ln
C20:1
C18:1

)
,

(4.8)
or, similarly, MUFA and SFA:

√
12

7
ln

3
√

C16:1 · C18:1 · C20:1
4
√

C14:0 · C16:0 · C18:0 · C20:0 = 1

2
√

2
b2 −

√
7

6
b4 +

√
7

2
√

6
b5 +

√
7

3
√

2
b6. (4.9)

The inclusion of more log ratios can enrich the interpretation of the results but then it
should be noted that the covariance matrix including the new log ratios will be singular.
An example of correlation analysis using balances is given in Section 5.5.

5. ANALYZING THE CASE STUDY

The basics of compositional analysis are illustrated in five examples using the pork FA
composition as a case study. The first is an exploratory analysis conducted to examine the
differences between IMF and backfat for FA composition (Section 5.1). The second and
third introduce the procedures to compare the distinct tissues and muscles in terms of cen-
ters (Section 5.2) and variation matrices (Section 5.3). In Section 5.4 a linear regression is
used to assess the effect of IMF content on FA composition. Finally, Section 5.5 illustrates
how to interpret correlations among biologically meaningful balances. In Sections 5.2 and
5.4 the compositional and the standard approaches are compared.

5.1. EXPLORATORY ANALYSIS

The distribution of FA composition across muscles and backfat locations was first ex-
plored depicting the whole set of observations on a joint biplot (Figure 2). To this purpose
the dataset X was clr-transformed to Z, and then singular value decomposed using standard
procedures (Daunis-i-Estadella, Thió-Henestrosa, and Mateu-Figueras 2011). The two first
components accounted for 76 % of the total variation. The projection of the samples (Fig-
ure 2a) in the biplot showed that IMF can be clearly discriminated from SF based on FA
composition. More specifically, the first component, which explained 56 % of the total
variation, was enough to separate IMF from SF samples. The most important FA affecting
this component was C20:4, whose ray was opposite to those of the other PUFA and formed
with them a long link along the first component (as an example, the link of ln(C20:4/18:2)

is represented with a discontinuous line in Figure 2b). The length of these links, which
relate to the standard deviation of the log ratio of the two FA involved, indicates that the
log ratio between C20:4 and other PUFA (C18:2 and C18:3) displayed a great variation
along the gradient separating IMF and SF. The SF samples were allocated in a cluster at
the left side of the biplot and the IMF samples were clustered at the right side, indicating
that the ratios C20:4/C18:2 and C20:4/C18:3 were greater in IMF than in SF. Despite some
overlapping, the samples from each muscle can also be singled out (Figure 2a), especially
within batch (Figure 2b). In doing so, SM samples were mostly found in the upper region
of the IMF cluster whereas those from GM (left), LT (middle), and LD (right) were in the
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Figure 2. Score plot (a) and loading plot (b) of components 1 and 2 for fatty acid composition of intramuscular
fat (IMF) across muscles (GM: gluteus medius; LD: longissimus dorsi; SM: semimembranosus; and LT: latissimus
dorsi) and backfat locations (SFGM: at the level of the GM; and SFLD: at the level of LD). The loading plot (b)
includes one link (discontinuous) and the projection of the center of each of the 12 batches. Horizontal and vertical
axes represent components 1 (56 % of total variance) and 2 (20 % of total variance), respectively.
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lower. This could not be done for SF, where only one backfat location was analyzed per
batch. The distribution pattern of the batch centers suggested that the effect of the batch
on the FA composition of IMF could be, at least partially, explained by differences in the
age at slaughter (Table 1). Because IMF increases with age and saturation with IMF, pigs
slaughtered at later ages are expected to have more saturated fat (Bosch et al. 2012). Ac-
cordingly, within muscle, the samples from pigs slaughtered at later ages (Table 1; batches
5–7 and 10–11) should tend to show greater SFA/PUFA ratios and therefore appear pref-
erentially lower-left in the biplot relative to those from pigs slaughtered at earlier ages
(Table 1; batches 1–4, 8–9, and 12).

A biplot for each muscle was also set up. The effect of the batch was removed center-
ing the data by batch (which is the equivalent in the simplex to subtract the mean of the
batch) before they were clr-transformed and singular value decomposed. The IMF con-
tent was included in the biplots as a supplementary variable (Daunis-i-Estadella, Thió-
Henestrosa, and Mateu-Figueras 2011) to assess the relationship between IMF content
and composition. The loading plots of the two first components by muscle are given in
Figure 3. The two first components explained from 67 % (GM) to 74 % (SM) of the to-
tal variance. The loading plots showed a similar pattern among muscles, with SM being
the most different. In all muscles, SFA and MUFA were in the opposite side to PUFA
for the first component. The cosine of the angle between two links refers to the corre-
lation between their log ratios. In general, the angles between links involving two SFA
(C16:0, C18:0), two MUFA (C16:1, C18:1), or a SFA with a MUFA, were small, indi-
cating high correlations among them. Because C18:0 can be synthesized from precursor
C16:0 by an elongase, and both C16:1 and C18:1 are synthesized by the same �9 de-
saturase from C16:0 and C18:0, respectively (Cook and McMaster 2002; Figure 1), the
product/substrate ratio C18:0/C16:0 is frequently used as an indicator of the elongase
activity, and ratios C16:1/C16:0 and C18:1/C18:0 of the �9 desaturase activity. Thus,
the high correlations among ratios of these four FA are biologically consistent and in
line with the correlations found by other authors (Ntawubizi et al. 2010). The links in-
volving C14:0, in all the muscles, and C20:0, in SM, had much greater angles, and thus
lower correlations, with the other links. This might be because C14:0, unlike other SFA,
is mainly of dietary origin (Wood et al. 2008; Figure 1) and because C20:0 is subjected
to relatively larger instrumental error and greater number of zeros. Small angles, and thus
high correlations, were also found between links corresponding to log ratios of PUFA.
However, in all the muscles, the links involving two SFA, two MUFA, or a SFA with
a MUFA, on one side, and the links involving PUFA, on the other side, were almost
perpendicular to each other. This indicates low correlations between these two groups
of log ratios, in accordance with the low association of PUFA with SFA and MUFA re-
ported in literature (Cameron and Enser 1991; Zhang et al. 2007; Ntawubizi et al. 2010;
Yang et al. 2010). Overall, the results indicate that SFA and MUFA behave similarly to each
other but differently from PUFA, in line with their different deposition patterns. Fat depots,
IMF and SF, can be divided into two fractions: phospholipids and neutral lipids. Phospho-
lipids have structural functions and have abundant PUFA, particularly C20:4, which is the
major PUFA in cell membranes (Larsson et al. 2004), whereas neutral lipids, mainly com-
posed of SFA and MUFA, have storage functions. It means that IMF increases with neutral
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Figure 3. Loading plot of components 1 and 2 for the intramuscular fat (IMF) content and fatty acid composition
in gluteus medius (GM, a), longissimus dorsi (LD, b), semimembranosus (SM, c), and latissimus dorsi (LT, d)
muscles. Horizontal axis represents component 1 (46 %, 51 %, 47 %, and 52 % of the total variance in GM, LD,
SM, and LT, respectively) and vertical axis component 2 (21 %, 18 %, 28 %, and 18 % of total variance in GM,
LD, SM, and LT, respectively).

lipids while phospholipids remain relatively constant (Cameron and Enser 1991; De Smet,
Raes, and Demeyer 2004), which is the reason for the positive relationship of IMF with
SFA and MUFA, but negative with PUFA (Cameron and Enser 1991; Zhang et al. 2007;
Yang et al. 2010). The IMF content displayed a negative collinearity with C20:4 in all the
muscles, supporting that increased IMF is associated with decreased C20:4, namely phos-
pholipids, and PUFA, as well as to increased SFA and MUFA (Cameron and Enser 1991;
De Smet, Raes, and Demeyer 2004; Bosch et al. 2012).

5.2. DIFFERENCES AMONG TISSUES AND MUSCLES

The centers of the FA composition of IMF and SF (Equation (4.3)) established that the
most abundant FA were C18:1 (44.0–46.1 %), C16:0 (21.2–24.3 %), C18:2 (9.2–16.2 %),
and C18:0 (10.6–12.1 %) in all the studied muscles and backfat locations, in agreement
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Table 4. Centers1 for fatty acid composition by muscle and backfat location adjusted for batch and carcass
weight, and least squares means for intramuscular fat (IMF) content by muscle.

Muscles 2 Backfat locations 2

Fatty acids, % GM LD SM LT SFGM SFLD

C14:0 1.65A
a 1.60B

ab 1.45C
c 1.55B

ab 1.39D
c 1.60B

b

C16:0 23.23D
c 24.37B

b 23.56C
c 26.04A

a 21.72D
d 20.89D

e

C18:0 11.27D
d 11.89B

bc 12.08B
b 14.10A

a 11.42C
cd 10.29D

e

C20:0 0.14B
c 0.16A

b 0.09D
e 0.16A

bc 0.19A
a 0.11C

d

C16:1 3.81B
b 4.04A

a 2.94D
c 3.03C

c 2.11E
d 2.11E

d

C18:1 44.63B
bc 45.48A

a 41.78D
e 42.83C

d 43.90C
cd 45.25A

ab

C20:1 0.82B
b 0.77B

c 0.72C
d 0.74B

cd 1.12A
a 1.14A

a

C18:2 11.94C
c 9.58D

d 13.82B
b 9.62D

d 15.78A
a 16.17A

a

C18:3 0.73C
b 0.48E

d 0.58D
c 0.55D

c 1.19B
a 1.31A

a

C20:2 0.59C
c 0.42E

e 0.53D
d 0.50D

d 0.95A
a 0.87B

b

C20:4 1.19C
b 1.21B

b 2.44A
a 0.88D

c 0.23F
d 0.28E

d

IMF, % dry matter 16.2 ± 0.2b 12.7 ± 0.3c 9.1 ± 0.4d 21.1 ± 0.5a – –

1 Adjusted centers were calculated following the compositional approach (i.e., using balances followed by back-
transformation). The least squares means for each fatty acid based on the raw percentages are not shown because
on average they only differed from the compositionally adjusted centers by 0.1% (SD 0.1).
2 See footnote in Table 1 for abbreviations.
A–F Differences tested on ilr-transformed variables. Within a row centers without a common superscript letter
differ (P < 0.05).
a–e Differences tested on raw percentages. Within a row means without common subscripts differ (P < 0.05).
Subscripts are given only for comparison purposes with superscripts.

with the general knowledge on meat FA composition (Valsta, Tapanainen, and Männistö
2005). The centers revealed differences of FA composition among the muscles and backfat
locations. These differences were estimated and tested using the balances described in
Table 3. The balances were analyzed using a linear mixed model, in which fixed effects
included the batch (1 to 12), tissue (the four muscles and the two backfat locations), and
carcass weight as a covariate. The pig and the residual were the random effects. Variances
were estimated by restricted maximum likelihood and fixed effects were tested following a
Kenward-Roger approach. The differences between tissues were contrasted with the Tukey
HSD test at a significance level of 0.05. The analyses were performed using JMP 8 software
(SAS Institute Inc., Cary, NC). The least squares means and confidence intervals for the
balances were back-transformed as indicated in Section 4.2.3. Results were compared with
those obtained using the same model for raw FA percentages instead of balances.

The centers adjusted for batch and carcass weight are given in Table 4. The ordinary
least squares means differed from the compositionally adjusted centers on average only
by 0.1 % (SD 0.1), with a maximum of 0.8 % (C18:1). Significant differences among
muscles and backfat locations were found, with compositional and standard approaches
leading to similar conclusions. The two backfat locations showed greater contents of
the PUFA C18:2, C18:3, and C20:2 than IMF in all muscles, but lower of C20:4. By
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contrast, IMF was more saturated and monounsaturated, although for some FA the dif-
ferences between IMF and SF were not significant. These findings were in line with
the well-known result that essential PUFA, C18:2 and C18:3, which are from dietary
origin (Figure 1), are preferentially deposited in SF (Kloareg, Noblet, and van Milgen
2007; Duran-Montgé et al. 2008). That the C20:4 displays an opposite trend to other
PUFA (see Figure 2b) could be explained by the much greater fraction of phospho-
lipids in IMF as compared to SF. Among muscles, SM had higher concentrations of
C18:2 and C20:4 than GM, LD, and LT, and lower of the main SFA and MUFA. The
observed differences in muscle composition can be partly attributed to IMF content (Ta-
ble 4).

5.3. VARIATION WITHIN TISSUE AND MUSCLE

The variation arrays and the total variances (Equation (4.4)) were calculated for each
muscle and backfat location. The total variance of the composition of IMF in GM was
0.57. After adjusting for batch (i.e., centering by batch), the total variance decreased to
0.32. This indicates that around one half of the variability of the muscle FA composition
is due to common environmental effects in a batch. The adjusted total variance was higher
for IMF in SM (0.97) than in GM, LD, and LT, which were very similar to each other
(0.27–0.32) and to SFLD (0.37). The total variance for SFGM was much lower (0.10).
In general, the log ratios involving C18:1 were the ones displaying the lowest variances
(0.01–0.33) in all cases. Interestingly, the log ratios involving C20:4 showed the high-
est relative variability in all cases (0.02–0.73), except for IMF in SM and SFLD, where
C20:0 was the most variable FA. Nonetheless, the high variability of C20:0 could be
due, because of its low content, to the relatively large analytical errors and replaced ze-
ros. The variability of C20:4 is partly due to the variance of the phospholipids fraction
in the IMF content, which, as it will be shown in Section 5.4, is not neutral with respect
to IMF content. Overall, the variation of FA composition in pork is low. The largest el-
ement of the variation matrix of IMF in GM was 0.48 and the maximum across tissues
was 1.13 for SM. These values are, for example, 10-fold and 4-fold lower than those re-
ported by Daunis-i-Estadella, Barceló-Vidal, and Buccianti (2006) for geological compo-
sitional data, the area of expertise where compositional data techniques have been mostly
applied.

5.4. REGRESSION ON INTRAMUSCULAR FAT CONTENT

Results in Section 5.2 support that fat content influences fat composition (Wood et al.
2008; Bosch et al. 2012). This relationship can be assessed by performing a composi-
tional regression analysis of FA composition on IMF content (Aitchison 1986, Chapter 7;
Egozcue and Pawlowsky-Glahn 2011; Egozcue et al. 2012). The 109 samples of GM in
batch 1 were used for this purpose. The 10 balances described in Table 3 were compo-
sitionally regressed on IMF content (JMP 8 software, SAS Institute Inc., Cary, NC) and
then the results were compared with the simple regression of the raw FA percentages on
IMF content. The vectors of estimated intercepts (i) and slopes (s) in the ilr-setting were
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Figure 4. Regression of the percentage of C18:1, C18:2, and C20:4 on intramuscular fat (IMF) content in the
muscle gluteus medius using the compositional (ilr) or ordinary (raw) regression analysis. Vertical lines delimit
the range of observed values.

back-transformed to the simplex as i′ = C(ei�) and s′ = C(es�). Then, the FA compo-
sition at a given IMF content (x) can be predicted operating either in the simplex, with
x = i′ ⊕ (IMF � s′), or in the real space, with w = ilr(i′)+ IMF × ilr(s′) = i + IMF × s and
then back-transforming w to x = C(ew�).

The balances more influenced by IMF content were balances 1 and 8 (R2 = 0.23 and
0.20, respectively). The R2 associated to the other balances was lower than 0.08. The
balance 1 was built to represent the ratio PUFA vs. SFA + MUFA, while balance 8 was
associated to the ratio n-6 vs. n-3 PUFA (i.e., C18:2 + C20:2 + C20:4 vs. 18:3). This
is consistent with results discussed in Section 5.1, where PUFA and, particularly, C20:4,
more abundant in phospholipids, decrease as IMF content increases. Similar results were
found for raw percentages, with C18:2 and C20:4 showing the highest R2 (0.34 and 0.14).
The relationship between FA and IMF content is displayed in Figure 4. For simplicity,
only three FA are displayed, although the analyses were done using the whole 11-FA com-
position. A relevant difference between compositional and standard regression is that in
the latter case, at extreme values of the covariate, the predicted values can be non-sense.
Thus, at high IMF contents negative percentages are predicted for C18:2 (IMF > 65 %)
and C20:4 (IMF > 35 %). This does not happen in the compositional analysis. The back-
transformed regressions of the 10 balances on IMF content were non-linear and asymp-
totically bounded, with predicted values always lying within the [0,100] range. However,
within the expected range of values for IMF, from 5 % to 30 % on dry matter basis (equiv-
alent to approximately 1 % to 10 % of fresh meat), the compositional regression is almost
linear, overlapping with the standard regression. Predicted values, even using validation
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Table 5. Correlations among balances in gluteus medius.

Balance 2 3 4 5 6 7 8 9 10

1 −0.35 −0.16 −0.42 0.12 0.40 −0.16 0.42 0.67 −0.22
2 0.24 0.24 −0.18 −0.40 0.12 0.08 −0.30 0.06ns

3 0.64 −0.56 −0.02ns 0.39 −0.12 −0.10 0.26
4 −0.29 −0.28 0.00ns −0.26 −0.19 0.17
5 0.61 0.02ns 0.08 0.07 0.25
6 0.27 0.11 0.28 0.29
7 −0.08 −0.21 0.46
8 0.75 −0.11
9 −0.34

ns: not significant (P > 0.05).

samples from other batches, were almost identical under the two approaches. In the ex-
pected range of values for IMF the standard regression led to similar results to the compo-
sitional analysis. A similar conclusion is reached in models other than the regression used
here, which is deliberately simple for illustrative purposes.

5.5. CORRELATIONS AMONG ENZYMATIC INDICES

The correlations between balances for GM are given in Table 5. The balances described
in Table 3 were established in accordance with known metabolic pathways for FA synthe-
sis in pigs (Figure 1). Because they are regulated by specific enzymes the balances can be
thought in terms of enzymatic activity. The first balance can be interpreted as a polyun-
saturation index (PUFA vs. SFA + MUFA), which separates the PUFA and the SFA and
MUFA pathways. Balances 2 to 7 are associated to SFA and MUFA metabolism, where
balances 2, 3, 4, and 7 can be interpreted as indexes of elongase activity, and balances 5
and 6 of �9 desaturase activity. Note that although they are aimed at representing differ-
ent elongation or desaturation steps, in general they are not ratios between single products
and substrates. For instance, balance 3 accounts not only for the elongation of C16:0 to
C18:0, but also for the amount of C16:0 that has alternatively been desaturated to C16:1
and the amount of C18:0 further transformed into C20:0, C18:1, and C20:1. The balances
can be an interesting alternative to elementary indexes between only two FA because they
also include further or alternative products derived from the same substrate (Figure 1).
However, because they are designed based upon a sequential bipartition, some balances
cannot include all the desired FA (e.g., balance 6 does not include C20:0, which can be
elongated from C18:0). As expected, all the elongase balances were positively correlated
among them, as well as the two desaturation indexes. However, interestingly, the correla-
tion among the desaturation and the elongase indexes was negative. The polyunsaturation
index was negatively correlated to the elongase activity but positively to the �9 desat-
urase activity. Balances 8, 9, and 10 are associated with PUFA metabolism. Balance 8 is
the ratio between n-6 and n-3 FA, which is known to play a crucial role in the nutritional
quality of fat (Schmid 2010). The positive correlation between balance 1 and balance 8
indicates that the n-6/n-3 ratio increased with polyunsaturation. Balance 9 reflects the total
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efficiency of biosynthesizing C20:4 from any of the two pathways using C18:2 as a pre-
cursor, while balance 10 only accounts for the intermediate elongation step from C18:2
to C20:2 carried out in one of the two pathways (Figure 1). The positive correlation be-
tween balances 9 with balances 1 and 8 confirmed that the percentage of C20:4 increases
with PUFA and with the n-6/n-3 ratio. A correct interpretation of the balances may help to
gain new insight into FA metabolism. Note that in this example we used only the D − 1
balances described in Table 3, which derived from a unique sequential bipartition. More
log ratios could be calculated and added as discussed in Section 4.2.3. For example, the
correlation between the log ratios of C18:1/C18:0 and MUFA/SFA (Equations (4.8) and
(4.9)) was 0.70.

6. CONCLUSIONS

Fatty acid compositions, which by nature are compositional data, should be statistically
treated as such. There are two complementary approaches to analyze compositional data:
either operate in the simplex space or make use of log ratios to operate in the real space.
The ilr transformation allows for a straightforward handling of geometric elements in the
simplex using standard statistical procedures. Nonetheless, for the case study considered
here we found that the inferences drawn from compositional analysis did not substantively
differ from those obtained using standard statistics techniques on raw data. The low vari-
ability of FA composition across fat pork depots may explain why the standard approach,
although methodologically inconsistent, is robust enough for practical purposes. This is
likely to happen to other unprocessed raw food products, where natural variability is sub-
jected to homeostatic biological constraints. Results evidenced that IMF and SF behave
differently in terms of FA composition, with IMF showing more SFA, MUFA, and C20:4,
and that FA composition differs among muscles, with SFA and MUFA increasing with IMF.
Compositional analysis proved to be useful in correctly interpreting the correlation struc-
ture among FA components. Choosing an appropriate set of balances may help not only to
avoid spurious results but also to better address the biological mechanisms involved in FA
deposition. Careful attention is recommended in cases of higher expected variability, such
as when comparing differentiated processed products, where a compositional analysis may
lead to more dramatic changes.
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