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Ranked set sampling is a sampling approach that could lead to improved statistical
inference when the actual measurement of the variable of interest is difficult or expen-
sive to obtain but sampling units can be easily ordered by some means without actual
quantification. In this paper, we consider the problem of bootstrapping an unbalanced
ranked set sample (URSS) where the number of observations from each artificially cre-
ated stratum can be unequal. We discuss resampling a URSS through transforming it
into a balanced RSS and extending the existing algorithms. We propose two methods
that are designed to obtain resamples from the given URSS. Algorithms are provided
and several properties, including asymptotic normality of estimates, are discussed. The
proposed methods are compared with the parametric bootstrap using Monte Carlo sim-
ulations for the problem of testing a hypothesis about the population mean.
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1. INTRODUCTION

Ranked set sampling is a sampling approach that could lead to improved statistical in-
ference for many situations where the actual measurement of the variable of interest is
difficult or expensive to obtain but sampling units can be easily ordered by some means
without actual quantification. Ranked set sampling is a two-stage sampling plan where a
number of sampling units are first ordered with respect to a variable without taking actual
measurements of the characteristics of interest at a small cost and, in the second stage, mea-
surements are taken from a fraction of the ranked units. Introduced by McIntyre (1952),
the study of ranked set sampling has resulted in a substantial literature. The existing re-
sults include, but not limited to, works on hypothesis testing, point estimation and interval

Saeid Amiri (�) is Post Doctoral Associate, Devision of Biostatistics, Department of Epidemiology and Public
Health, University of Miami, Miami, USA (E-mail: saeid.amiri1@gmail.com). Mohammad Jafari Jozani is Assis-
tant Professor of Statistics, Department of Statistics, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2.
Reza Modarres is Professor of Statistics, Department of Statistics, The George Washington University, Washing-
ton, DC, USA.

© 2013 International Biometric Society
Journal of Agricultural, Biological, and Environmental Statistics, Volume 19, Number 1, Pages 1–17
DOI: 10.1007/s13253-013-0153-y

1

mailto:saeid.amiri1@gmail.com
http://dx.doi.org/10.1007/s13253-013-0153-y


2 S. AMIRI, M. JAFARI JOZANI, AND R. MODARRES

estimation under both parametric and nonparametric settings. See, for example, Bohn and
Wolfe (1992), Wolfe (2004), Fligner and MacEachern (2006), Frey (2007) and references
therein. Chen, Bai, and Sinha (2004), henceforth referred to as CBS, provide invaluable
information on ranked set sampling, its many variants and applications. There are many
applications for ranked set sampling designs in ecological and environmental studies (e.g.,
Dell and Clutter 1972; Al-Saleh and Zheng 2002), reliability theory (Kvam and Samaniego
1994) and medical studies (Samawi and Al-Sagheer 2001), among others.

In this paper, we consider the problem of resampling an unbalanced ranked set sample
(URSS) using the bootstrap method. The bootstrap has become a standard tool in statis-
tical analysis. There have been several good books on the bootstrap, including Efron and
Tibshirani (1993), Davison and Hinkley (1997), Shao and Tu (1996) and Hall (1992), each
with a different perspective. Since the empirical distribution function (EDF) serves as a
good approximation to the population distribution function, the bootstrap can be used to
obtain the sampling distribution of a statistic of interest. Bootstrap allows for estimation of
the standard error of any well-defined statistic and enables one to draw inferences when the
exact or the asymptotic distribution of the statistic of interest is unavailable. Chen (2001)
and CBS (2004) describe an algorithm for drawing inferences for trimmed means and
Modarres, Hui, and Zhang (2006) explore resampling techniques for balanced RSS. How-
ever, as we will show, the EDF of URSS does not converge to the underlying distribution
and the algorithms developed for bootstrapping balanced RSS cannot be applied for URSS
situation. One possible approach to side-step this difficulty is to transform the URSS to
a balanced RSS using a transformation (BTR) that involves an initial step of resampling
within strata to create a balanced RSS. This BTR is included in each bootstrap run as part
of new bootstrap algorithms that are designed to allow for URSS. Our impetus in devel-
opment of BTR is to obtain a bootstrap test of the hypothesis H0 : μ = μ0 for the mean
of the underlying population (μ) and the associated confidence interval based on a URSS.
We pursue this goal through Monte Carlo simulation.

In Section 2, we discuss URSS, define BTR, and investigate its asymptotic properties
while the proofs are presented in the Appendix. Section 3 examines two methods of re-
sampling and presents algorithms to bootstrap a URSS. Section 4 describes a simulation
study to observe the finite sampling properties of the proposed methods, which are used for
testing a hypothesis concerning the population mean. Several test statistics are proposed
and their performances are compared to each other and a test based on parametric boot-
strap. The comparisons are made based on the observed significance level and power of
the tests under location shift and three distributions. In Section 5, we give an application
of our results using a real data set. Section 6 provides some concluding comments. Finally,
the Appendix is devoted to the proofs and some of the necessary theoretical results.

2. UNBALANCED RSS AND THE BOOTSTRAP
TRANSFORMATION

Applications that lead to URSS data include reliability, environmental or medical stud-
ies and missing data (CBS 2004). While they have many differences, the structure of a
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ranked set sample is similar to the classical stratified sampling. In the first stage of the
ranked set sampling, a small number of sampling units are identified and ranked, and in the
second stage, measurements are taken from a fraction of the ranked units. In this section,
we first give a general description of the unbalanced ranked set sampling design and then
show how the bootstrap method can be used to introduce a bootstrap transformation for
converting a URSS to a balanced RSS.

Suppose a total number of n units are to be measured from the underlying population
on the variable of interest. Let n sets of units, each of size k, be randomly chosen from
the population using a simple random sampling (SRS) technique. Then the units of each
set are ranked by any means other than actual quantification of the variable of interest.
Finally, one and only one unit in each ordered set with a pre-specified rank is measured
on the variable of interest. Let mr be the number of measurements on units with rank
r , r = 1, . . . , k, such that n = ∑k

r=1 mr . Let X(r)j denote the measurement on the j th
measured unit with rank r . This results in a URSS of size n from the underlying population
as {X(r)j ; r = 1, . . . , k, j = 1, . . . ,mr}. Note that when mr = m, r = 1, . . . , k, then URSS
reduces to the balanced RSS. It is worth mentioning that, in ranked set sampling designs,
X(1)j , . . . ,X(k)j are independent order statistics (as they are obtained from independent
sets) and each X(r)j provides information about a different stratum of the population. One
can represent the structure of a URSS as follows:

X1 = {X(1)1,X(1)2, . . . ,X(1)m1} i.i.d.∼ F(1),

X2 = {X(2)1,X(2)2, . . . ,X(2)m2} i.i.d.∼ F(2),

...

Xk = {X(k)1,X(k)2, . . . ,X(k)mk
} i.i.d.∼ F(k),

(2.1)

where F(r) is the distribution function (DF) of the r th-order statistic. Also, the EDF of a
URSS is defined as (Chen 2001):

F̂qn(t) = 1

n

k∑

r=1

mr∑

j=1

I (X(r)j ≤ t) =
k∑

r=1

qmr F̂(r)(t), (2.2)

where n = ∑
mr and qmr = mr/n. Similarly, the EDF of a balanced RSS is

F̂n(t) = 1

km

k∑

r=1

m∑

j=1

I (X(r)j ≤ t) = 1

k

k∑

r=1

F̂(r)(t). (2.3)

We will show that if n −→ ∞, and qmr −→ qr , r = 1, . . . , k, then F̂qn(t) −→ Fq(t), where

Fq(t) =
k∑

r=1

qrF(r)(t). (2.4)

It is easy to see that Fq(t) = F(t), for all t ∈ R, whenever qr = 1/k, r = 1, . . . , k. Let �p

be the set of all distribution functions F with
∫ |x|p dF(x) < ∞ and define the metric dp

on �p as the infimum of
√

E(|X − Y |p) over all pairs of random variables X and Y with
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marginal distributions F and G, respectively. We pursue with the following results, whose
proofs are presented in the Appendix.

Proposition 1. If Fq has a continuous density function and qmr −→ qr , then F̂(r)(t)

converges to F(r)(t) for all t almost surely (a.s.), r = 1, . . . , k. Furthermore, F̂qn(t)−Fq(t)

converges to zero a.s. for all t as min(mr) approaches ∞ where F̂qn(t) is the EDF of URSS

given in (2.3) and Fq is the mixture distribution given in (2.4).

Proposition 2. If Fq ∈ �2 and F̂qn defined as in (2.2) then d2(F̂qn,Fq) −→ 0 a.s.

In many cases, the statistical procedures for SRS can be directly extended to the bal-
anced ranked set sampling design (e.g., Chen 2001 and CBS 2004). A fundamental equa-
tion for this to happen is the equality F(t) = 1

k

∑k
r=1 F(r)(t). In unbalanced ranked set

sampling the process is more complicated and since the balanced structure of the design is
destroyed, the statistical procedures for SRS cannot directly be extended to this case. As
previously mentioned, one possible approach to side-step this difficulty is to transform the
URSS to a balanced RSS before applying algorithms that are designed for RSS.

2.1. BOOTSTRAP TRANSFORMATION

We now introduce the bootstrap transformation RSS = BTR(URSS,N), which is used
to convert a URSS to a balanced RSS. Let X = {X1, . . . ,Xk} be the URSS as in (2.1) and
X�

i denote a sample of size N from Xi . The bootstrap is used to obtain a resample of size
N within each stratum in order to create a balanced RSS as follows:

X�
1 = {

X�
(1)1,X

�
(1)2, . . .X

�
(1)N

} ∼ F̂(1),

X�
2 = {

X�
(2)1,X

�
(2)2, . . .X

�
(2)N

} ∼ F̂(2),

. . .

X�
k = {

X�
(k)1,X

�
(k)2, . . .X

�
(k)N

} ∼ F̂(k).

(2.5)

Let X� = {X�
1, . . . ,X�

k } and denote its EDF by

F̂ �
N(t) = 1

Nk

k∑

r=1

N∑

j=1

I
(
X�

(r)j ≤ t
) = 1

k

k∑

r=1

F̂ �
(r)(t), (2.6)

where F̂ �
(r)(t) is the EDF of X�

r , r = 1, . . . , k. There are many possible choices for N .
We consider three of them, including N = mean{mr, r = 1, . . . , k}, in Section 4. If N is
not an integer then the closest integer less than N is used. As we show in the Appendix
(see Lemma A.2), when N approaches ∞, supt∈R |F̂ �

(r)(t) − F̂(r)(t)| converges to zero for
all t ∈ R and all r = 1, . . . , k. This, along with the results in Proposition A.1 and Corol-
laries A.1 and A.2 (see the Appendix), validates the use of the bootstrap transformation
RSS = BTR(URSS,N) to transform a URSS to a balanced RSS.
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3. BOOTSTRAPPING UNBALANCED RANKED SET SAMPLES

Once the bootstrap transformation is performed and the URSS is transformed to a bal-
anced RSS via RSS = BTR(URSS,N), one can use the bootstrapping techniques available
for balanced RSS to resample from the transformed data. Two algorithms, both of which
are modifications of Modarres, Hui, and Zhang (2006) algorithms for balanced RSS, are
presented below. Note that the bootstrap transformation is included in each bootstrap run of
the following algorithms. The first algorithm resamples within each row separately while
the second algorithm resamples from the pooled data.

3.1. ALGORITHM BTR1

1. Apply RSS = BTR(URSS,N) to obtain X�
r = {X�

(r)j , r = 1, . . . , k, j = 1, . . . ,N}.
2. Assign probability 1/N to each element of X�

r .

3. Select N elements with replacement and denote by X∗�
(r)1, . . . ,X

∗�
(r)N

.

4. Perform Step 3 for r = 1, . . . , k to generate a bootstrap RSS {X∗�
(r)j

}.
5. Repeat the above steps B times.

We will refer to this algorithm as BTR1. This algorithm, without the transformation, is
referred to as B-RSS-R by Modarres, Hui, and Zhang (2006). We need the following result
which is proved in Modarres, Hui, and Zhang (2006).

Proposition 3. Suppose Fθ ∈ �2 where θ is a location parameter and F̂(r) is the
EDF of the r th row where the resampling plan is BTR1. If υ∗

i = √
mi(θ(F̂ ∗

(i)) − θ(F̂(i))),
then (υ∗

1 , . . . , υ∗
k ) converges in distribution to a multivariate normal distribution with

mean vector zero and covariance matrix diag(σ (F(1)), . . . , σ (F(k))) where σ(F(i)) =
∫
(X − μ(i))

2 dF(i) and μ(i) = ∫
x dF(i)(x).

To test H0 : μ = μ0, using URSS, Proposition 3 suggests the statistic 1√
k

∑k
r=1

√
mr(X̄(r)

− μ(r)) where μ(r) is the expected value of the r th-order statistic under H0. Us-

ing Corollary 1, we propose the test statistic T2(X) = 1
k

∑k
r=1(

X̄(r)−μ0
S1

), where S2
1 =

1
k2

∑k
r=1

S2(X(r))

mr
. The corollary shows how the BTR1 algorithm can be used to carry out

the a test based on T2 using URSS data.

Corollary 1. Suppose Fθ ∈ �2 where θ is a location parameter and F̂ �
(r) is the EDF

of the r th row where the resampling plan is BTR1. If υ∗
i = √

N(θ(F̂ ∗
(i)) − θ(F̂ �

(i))), then

(
υ∗

1
σ(F̂(1))

, . . . ,
υ∗

k

σ (F̂(k))
) converges in distribution to a multivariate normal distribution with

mean vector zero and identity covariance matrix, where σ(F̂(i)) = ∫
(X − X̄(i))

2 dF̂(i).

Using Corollary 1, 1
k

∑k
r=1

√
N(X̄∗�

(r)−X̄�
(r)) ∼ AN(0, 1

k

∑k
r=1 σ 2(X̄∗�

(r))). One can con-
sider the test statistic

T ∗
BTR1-T1

(
X∗�

b ,X�) = 1

k

k∑

r=1

√
N

(
X̄∗�

(r) − X̄�
(r)

)
, (3.1)
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where X̄∗�
(r) = 1

N

∑N
j=1 X∗�

(r)j and X̄�
(r) = 1

N

∑N
j=1 X�

(r)j . However, T ∗
BTR1-T1 is not a pivotal

quantity and the appropriate test statistic for testing H0 : μ = μ0 is

T ∗
BTR1-T2

(
X∗�

b ,X�) = 1

k

k∑

r=1

√
N

(
X̄∗�

(r) − X̄�
(r)

S∗�
1

)

, (3.2)

where S2∗�
1 = 1

k2

∑k
r=1 S2(X̄∗�

(r)). Later in Section 4 these test statistics are compared using
simulation studies.

3.2. ALGORITHM BTR2

A second algorithm that works well under RSS combines and resamples all the ob-
servations as explained in Modarres, Hui, and Zhang (2006). Here again the bootstrap
transformation is included in each bootstrap run of the algorithm. To this end,

1. Apply RSS = BTR(URSS,N) to obtain {X�
(r)j

, r = 1, . . . , k, j = 1, . . . ,N}.
2. Combine all the observations to form X� and assign the probability of 1/kN to each

element of X∗.

3. Randomly draw Y1, . . . , Yk from X�, order them as Y(1) ≤ · · · ≤ Y(k) and retain
X∗�

(r)1 = Y(r).

4. Perform Step 3 for r = 1, . . . , k.

5. Repeat Steps 1–4, N times to obtain {X∗�
(r)j , j = 1, . . . ,N}.

6. Repeat all steps B times to obtain the bootstrap samples.

Consider X1, . . . ,Xn ∼ F1 and Y1, . . . , Ym ∼ F2 with EDFs F̂n and F̂m, respectively. Re-
sampling n + m observations from the combined two samples, {X1, . . . ,Xn,Y1, . . . , Ym},
is equivalent to resampling from the mixture distribution F̂ (x) = n

n+m
F̂n(x)+ m

n+m
F̂m(x).

The following proposition due to Boos, Janssen, and Veraverbeke (1989) will aid us in ob-
taining a suitable bootstrap test statistic for testing the null hypothesis H0 : μ = μ0 based
on the algorithm BTR2.

Proposition 4. Let X1, . . . ,Xn and Y1, . . . , Ym be independent random samples from
distributions F1 and F2 with means μ1 and μ2, respectively. Consider V-statistics of the
form V1 = √

n(θ(F̂1) − θ(F1)) and V2 = √
m(θ(F̂2) − θ(F2)), where θ(·) is a von Mises

function of the form θ(K) = ∫ ∫
h(x, y) dK(x)dK(y), h(·, ·) is a symmetric kernel and K

is a DF with ψ(x,K) = 2[∫ h(x, y) dK(y) − θ(K)]. If n/(n + m) −→ λ as n,m −→ ∞,
then (V ∗

1 ,V ∗
2 ) converges in distribution to a bivariate normal N(0,diag(σ 2(H),σ 2(H)))

where σ 2(H) = ∫
ψ2(x,H)dH(x) and H(x) = λF1(x) + (1 − λ)F2(x).

The following proposition is obtained by setting h(x, y) = x+y
2 in Proposition 4 so that

θ(K) = μ, and ψ(X,K) = X.

Proposition 5. Suppose F ∈ �2 and F̂(r) is the EDF of the r th row where the re-
sampling plan is BTR2. Let υ∗

i = √
mi(θ(F̂ ∗

(i)) − θ(F̂(i))). Then (υ∗
1 , . . . , υ∗

k ) converges
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in distribution to a multivariate normal distribution N(0,diag(σ 2(F̂(1)q), . . . , σ 2(F̂(k)q))),

where σ 2(F̂(r)q) = ∫
(X − μq)2 dF̂(r)q(X) and F̂q(x) = ∑k

r=1 qr F̂(r)(x).

The above result, when mi = m, reduces to the case of balanced RSS. For testing the

null hypothesis H0 : μ = μ0, the test statistic based on the balanced RSS of size mk is
1√
k

∑k
r=1

√
m(X̄(r) − μ(r)) = √

mk(X̄ − μ). However, the test statistic cannot directly be

used for URSS to test H0 because μ(r) must be determined under the null hypothesis. To

sidestep this difficulty one propose to use either the test statistic T2(X) as defined earlier o

the test statistic T3(X) = 1
k

∑k
r=1(

X̄(r)−μ0
S2

), where S2
2 is the variance of the pooled sample.

Using Corollary 2, one can easily apply the BTR2 algorithm to carry out a test based on T3

for testing H0 against H1.

Corollary 2. Suppose F ∈ �2 and F̂(r) is the EDF of the r th row where the sam-

pling plan is BTR2. Let υ∗
i = √

N(θ(F̂ ∗�
(i) ) − θ(F̂ �

(i))). Then (υ∗
1 , . . . , υ∗

k ) converges in

distribution to a multivariate normal distribution N(0,diag(σ 2(F̂q), . . . , σ 2(F̂q))), where

σ 2(F̂ ) = ∫
(X − X̄q)2 dF̂ (X), F̂q(x) = 1

k

∑k
r=1 F̂(r)(x), X̄q = 1

k

∑k
r=1 X̄(r) = X̄ and X̄(r)

is the sample mean of r th ordered sample.

According to Corollary 2, the test statistic

T ∗
BTR2-T3

(
X∗�

b ,X�) = 1

k

k∑

r=1

√
N

(
X̄∗�

(r) − X̄�
(r)

S∗�
2

)

, (3.3)

where S2∗�
2 is the variance of the pooled samples, is the appropriate test statistic for testing

H0 : μ = μ0. Another possible test statistic is T ∗
BTR2-T3 without the standard deviation in

the denominator as T ∗
BTR2-T1 = 1

k

∑k
r=1

√
N(X̄∗�

(r) − X̄�
(r)).

4. SIMULATION STUDY

We compare the finite sample performance of BTR1 and BTR2, both of which are

nonparametric resampling methods, with a parametric bootstrap (PB) procedure to test the

hypothesis H0 : μ = μ0, where μ is the unknown parameter of interest and μ0 is a known

constant. In order to carry out the bootstrap test, we follow the guidelines provided by

Hall and Wilson (1991). The first guideline recommends to perform resampling in a way

that reflects the null hypothesis, while the second recommends using T ∗ = (θ∗ − θ̂ )/S(θ∗)
as a suitable test statistic. These guidelines are considered to carry out the tests for the
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hypothesis H0 : μ = μ0. We use the following test statistics:

T1(X) = 1

k

k∑

r=1

(X̄(r) − μ0), (4.1)

T2(X) = 1

k

k∑

r=1

(
X̄(r) − μ0

S1

)

, (4.2)

T3(X) = 1

k

k∑

r=1

(
X̄(r) − μ0

S2

)

, (4.3)

where S2
1 = 1

k2

∑k
r=1

S2(X(r))

mr
and S2

2 = 1
mk−1

∑k
r=1

∑m
j=1(X(r)j − X̄)2, as in Corollaries 1

and 2, respectively. Also, the existing tests developed by Modarres, Hui, and Zhang (2006),
which are denoted by B-RSS-R and B-RSS, are studied simultaneously in comparison with
the proposed tests. To perform these methods on URSS data, we obtain Ti(X) using X̄(r) of
the original URSS/RSS data. Next, we perform B-RSS-R (B-RSS) to obtain resamples and
calculate T ∗

i (X∗,X). This process is performed B times to obtain approximate p-values.
As simulations show, the straightforward application of B-RSS-R and B-RSS does not
produce reliable results and the bootstrap transformation to balance the sample is needed.
The nonparametric bootstrap tests using BTR1 and BTR2 for testing H0 : μ = μ0 versus
H1 : μ > μ0 are conducted based on the following steps:

1. Let X be a URSS sample of F .

2. Calculate Ti = Ti(X), i = 1,2,3.

3. Apply RSS = BTR(URSS,N) and denote the resulting RSS sample by X� =
{X�

(r)j }.
4. Carry out Steps 2–5 of BTR1 or BTR2 on X� to obtain X∗�

b = {X∗�
(r)j }b.

5. Repeat Steps 3–4 for b = 1, . . . ,B and calculate T ∗
i,b = T (X∗�

b ,X�), b = 1, . . . ,B ,
as in (3.1), (3.2) and (3.3).

6. Obtain the proportion of rejections via
#{T ∗

i,b>Ti }
B

, that approximates the p-value.

We obtained samples from distributions (a) Normal(0, 1), (b) Logistic(1, 1) and (c) Ex-
ponential(1) to use in the simulation study which compares our developed methods in terms
of the observed significance level and power of the test against location shift, μ0 + δ. We
also performed the desired testing hypothesis using PB by generating URSS samples from
Normal(0, 1), Logistic(1, 1) and Exponential(1) distributions. To perform PB test we use
the following steps (for more details on PB method see Efron and Tibshirani (1993)):

1. Let X be a URSS sample from a distribution Fθ where θ is the unknown parameter
and let μ = Eθ(X).

2. Calculate Ti = Ti(X), i = 1,2,3.

3. Estimate θ from X and take a URSS of Fθ̂ , X∗
b = {X∗

(r)j }b .
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4. Calculate T ∗
i,b = T ∗

i,b(X
∗
b,X), i = 1,2,3, as in (3.1), (3.2) and (3.3).

5. Obtain the proportion of rejections via
#{T ∗

i,b>Ti }
B

, that approximates the p-value.

Parametric bootstrap requires estimation of all unknown parameters. We estimated the pop-

ulation mean using x̄, the mean of the URSS, and used σ = 1. In particular, we generated

samples from N(x̄,1), Logistic(x̄,1) and Exponential(x̄). We used B = 500 resamples

from a given sample or simulated B = 500 parametric bootstrap replications with α = 0.05.

The simulation experiment is then replicated 2000 times. We used several RSS and URSS

designs with different sample sizes in our simulation study when k = 5. Each design can

be shown by a D = (m1,m2, . . . ,m5) with nD = ∑5
r=1 mr . For example, the first design

is balanced with k = 5 and mr = 5 observations per stratum, which is denoted by

D1 = (5,5,5,5,5) with nD1 = 25.

Similarly, we define the following designs:

D2 = (3,8,5,3,8) with nD2 = 27,

D3 = (8,3,5,8,3) with nD3 = 27,

D4 = (5,3,6,3,2) with nD4 = 19,

D5 = (3,8,6,3,4) with nD5 = 24.

We also examined several ways of selecting N for use in algorithms BTR1 and BTR2.

When the design is balanced, e.g. D1, we use N = m. For unbalanced designs, since mi ’s

are unequal, we considered N1 = min{mi, i = 1, . . . , k}, N2 = mean{mi, i = 1, . . . , k}
and N3 = max{mi, i = 1, . . . , k}. If N2 is not an integer then the closest integer to N2 is

used. The reported results are for N3. In general, using larger N results is better perfor-

mance in the simulation study.

Table 1 displays the observed α levels. The parametric bootstrap (PB) method is ac-

curate and the estimated α levels are close to the nominal level 0.05. However, BTR1-T1,

BTR1-T3, BTR2-T1 and BTR2-T3 cannot maintain their significance levels very well. The

observed that α levels for BTR2-T2 follow the PB method closely. Hence, it is appropriate

to compare the power of this procedure with that of PB. The simulation results support

the use of the average variances, S2
1 , under BTR1 as indicated Corollary 1 and the use of

the total variance, S2
2 , under BTR2 as indicated in Corollary 2. The simulation results also

show that the existing B-RSS-R and B-RSS methods are not suitable for URSS and the

methods can lead to quite conservative or liberal behavior.

Remark 1. As suggested by a referee, we also conducted the test procedure intro-

duced in CBS (2004), which is based on the asymptotic normal distribution. Let F̂n(x) =
∑n

i=1 piI {Zn:i≤x} where Zn:is are the URSS order statistics and pis are defined such that
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Table 1. Observed α-levels for the Z-procedure, Ti , i = 1,2,3, and parametric bootstrap (PB) for testing
H0 : μ = 0 in the Normal distribution and H0 : μ = 1 for the Exponential and Logistic distributions.

CBS B-RSS-R B-RSS BTR1 BTR2 PB

D AT Z T1 T1 T1 T2 T3 T1 T2 T3 T1 T2 T3

Normal distribution

D1 0.056 0.001 0.075 0.050 0.102 0.044 0.094 0.052 0.048 0.045 0.051 0.050 0.038
D2 0.068 0.004 0.190 0.029 0.158 0.061 0.149 0.117 0.066 0.109 0.049 0.053 0.047
D3 0.062 0.002 0.026 0.238 0.168 0.057 0.160 0.106 0.059 0.104 0.046 0.049 0.050
D4 0.080 0.002 0.028 0.300 0.192 0.062 0.195 0.111 0.072 0.122 0.050 0.056 0.048
D5 0.061 0.004 0.062 0.185 0.188 0.054 0.198 0.131 0.059 0.141 0.046 0.046 0.046

Exponential distribution

D1 0.033 0.007 0.047 0.019 0.068 0.019 0.092 0.020 0.032 0.041 0.019 0.046 0.051
D2 0.034 0.000 0.118 0.010 0.098 0.029 0.103 0.060 0.037 0.063 0.020 0.043 0.051
D3 0.051 0.000 0.028 0.215 0.159 0.046 0.201 0.085 0.052 0.145 0.015 0.053 0.041
D4 0.064 0.000 0.028 0.315 0.209 0.057 0.255 0.102 0.064 0.178 0.009 0.049 0.056
D5 0.045 0.000 0.036 0.164 0.150 0.038 0.188 0.087 0.046 0.133 0.016 0.054 0.054

Logistic distribution

D1 0.062 0.004 0.079 0.058 0.104 0.044 0.104 0.056 0.054 0.054 0.051 0.051 0.54
D2 0.077 0.005 0.191 0.032 0.159 0.069 0.157 0.120 0.074 0.117 0.048 0.051 0.58
D3 0.056 0.003 0.025 0.237 0.153 0.048 0.152 0.099 0.049 0.103 0.041 0.048 0.55
D4 0.066 0.002 0.026 0.293 0.189 0.055 0.191 0.108 0.058 0.129 0.046 0.047 0.45
D5 0.065 0.004 0.063 0.183 0.180 0.055 0.191 0.127 0.061 0.144 0.046 0.045 0.43

F̂n(x)
a.s−→ F(x) (see, CBS 2004, Chapter 4, for more details). Then, under suitable regu-

larity conditions, the following test statistic,

Z =
√

n(μ(F̂n) − μ0)

σ (F̂n)
−→ N(0,1),

can be used to test H0 : μ = μ0, where μ(F̂n) = ∑n
i=1 piZn:i and σ 2(F̂n) = ∑n

i=1 pi(Zn:i
− μ(F̂n))

2. The results of our simulation study, presented in Table 1, show that this pro-
cedure underestimates the p-values and is very conservative. We also observe that μ(F̂n)

provides an accurate estimate of μ under RSS while σ 2(F̂n) does not provide an accurate
estimate of the variance of the numerator. This may explain the poor performance of the
Z test. In the remainder of the article, we did not consider this test. Another competitor
for the bootstrap tests developed in this paper is to simply evaluate T2(X) as defined in
Equation (4.2) and compare it to t-distribution cut-off values. We refer to this method as
AT and compare it with the other methods developed in this section. For this method,
one could also compare the values of T2(X) in (4.2) to the standard normal cut-off values.
However, this leads to slightly elevated type I error rates. Our simulation studies show that
AT (especially for small sample sizes) is a conservative for the normal and liberal for the
exponential distributions.

It is important to study the proposed resampling under imperfect ranking. Following
Dell and Clutter (1972), to produce imperfect URSS/RSS samples, let X[i]j and X(i)j
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Table 2. Observed α-levels for Ti , i = 1,2,3, for testing H0 : μ = 0, under imperfect ranking in the Normal
distribution.

BTR1 BTR2

D AT T1 T2 T3 T1 T2 T3

σε = 0.5 D1 0.053 0.095 0.043 0.087 0.082 0.046 0.072
D2 0.067 0.169 0.059 0.153 0.160 0.061 0.149
D3 0.063 0.156 0.059 0.147 0.139 0.057 0.126
D4 0.069 0.183 0.053 0.177 0.148 0.060 0.148
D5 0.061 0.172 0.054 0.179 0.162 0.058 0.167

σε = 1 D1 0.063 0.104 0.046 0.093 0.123 0.053 0.112
D2 0.067 0.153 0.063 0.139 0.185 0.063 0.170
D3 0.062 0.152 0.053 0.142 0.180 0.056 0.167
D4 0.073 0.181 0.059 0.173 0.190 0.063 0.180
D5 0.060 0.169 0.053 0.165 0.195 0.053 0.194

σε = 2 D1 0.056 0.103 0.038 0.082 0.160 0.043 0.141
D2 0.060 0.155 0.053 0.141 0.215 0.054 0.208
D3 0.058 0.153 0.051 0.138 0.211 0.053 0.198
D4 0.072 0.181 0.057 0.167 0.218 0.061 0.206
D5 0.060 0.166 0.052 0.152 0.221 0.054 0.213

denote the judgment and true order statistics, respectively. Suppose

X[i]j = X(i)j + εij , εij ∼ N(0, σε),

where X(i)j and εij are independent. Using imperfect URSS with σε = 0.5, 1 and 2, we re-
port the observed significance levels in Tables 2, 3, 4. For a normal distribution, the choices
of σε result in the correlation coefficients of 0.81, 0.71 and 0.45 between the ranking vari-
able and the variable of interest, respectively. As compared with Table 1, the proposed
method seems to be robust with respect to imperfect ranking.

Tables 5, 6, 7 display the estimated power values under location shift H1 : μ = μ0 + δ

with δ 
= 0. We used 95% percentile bootstrap confidence intervals for μ, using Ti , i =
1,2,3, under BTR1 and BTR2 to obtain the power of the test statistics at α = 0.05. The
entries of these tables are the proportion of times, while the bootstrap confidence intervals
do not cover zero. We observe that the tests result in high powers, and considering the
observed α levels for these tests, BTR2-T2 can be nominated to conduct appropriate tests.
The results of other simulation studies (not presented here) show similar behavior for other
values of k such as k ∈ {2,3,10} as well as different sample sizes.

5. APPLICATION

To examine the proposed methods on real data, we consider the yield data (dray content
g/m2) from Swedish Spring barley. The data set includes 1278 observations from trials
performed during the years 1998–2006, with a total of 59 varieties. Descriptive statistics
on yields are presented in Table 8. The trials are performed in southern and central parts
of Sweden and presented every year in summary tables on the Internet (www.ffe.slu.se).

http://www.ffe.slu.se
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Table 3. Observed α-levels for Ti , i = 1,2,3, for testing H0 : μ = 1, under imperfect ranking for the Exponen-
tial distribution.

BTR1 BTR2

D AT T1 T2 T3 T1 T2 T3

σε = 0.5 D1 0.042 0.089 0.028 0.101 0.057 0.042 0.085
D2 0.053 0.123 0.052 0.121 0.110 0.058 0.114
D3 0.056 0.165 0.051 0.194 0.142 0.055 0.185
D4 0.065 0.206 0.052 0.234 0.147 0.065 0.193
D5 0.050 0.170 0.044 0.194 0.145 0.050 0.177

σε = 1 D1 0.051 0.094 0.037 0.092 0.108 0.047 0.116
D2 0.059 0.138 0.056 0.134 0.168 0.063 0.169
D3 0.057 0.160 0.050 0.174 0.182 0.052 0.195
D4 0.073 0.195 0.059 0.199 0.191 0.069 0.207
D5 0.059 0.174 0.052 0.174 0.199 0.062 0.212

σε = 2 D1 0.059 0.104 0.044 0.093 0.154 0.051 0.146
D2 0.063 0.161 0.056 0.148 0.216 0.059 0.211
D3 0.062 0.159 0.054 0.151 0.215 0.057 0.215
D4 0.074 0.184 0.059 0.172 0.218 0.068 0.211
D5 0.070 0.178 0.060 0.165 0.230 0.063 0.223

Table 4. Observed α-levels for Ti , i = 1,2,3, for testing H0 : μ = 1, under imperfect ranking for the Logistic
distribution.

BTR1 BTR2

D AT T1 T2 T3 T1 T2 T3

σε = 0.5 D1 0.061 0.098 0.043 0.092 0.065 0.051 0.064
D2 0.067 0.170 0.061 0.157 0.141 0.067 0.137
D3 0.063 0.173 0.054 0.166 0.1304 0.056 0.128
D4 0.064 0.187 0.048 0.179 0.126 0.056 0.130
D5 0.073 0.177 0.059 0.190 0.144 0.069 0.161

σε = 1 D1 0.065 0.104 0.048 0.098 0.094 0.052 0.090
D2 0.071 0.164 0.065 0.159 0.163 0.065 0.159
D3 0.068 0.177 0.058 0.167 0.164 0.061 0.161
D4 0.062 0.179 0.052 0.173 0.149 0.055 0.149
D5 0.059 0.182 0.054 0.184 0.173 0.062 0.184

σε = 2 D1 0.063 0.109 0.047 0.093 0.128 0.052 0.121
D2 0.073 0.169 0.066 0.157 0.205 0.066 0.197
D3 0.066 0.170 0.059 0.158 0.199 0.061 0.190
D4 0.071 0.173 0.056 0.162 0.179 0.057 0.175
D5 0.062 0.170 0.055 0.167 0.199 0.058 0.197

Sweden is divided into seven agricultural regions (production areas) and the trials are per-
formed randomly inside the regions. Due to several factors, including barley varieties and
soil, this data are right-skewed. Forkman, Amiri, and von Rosen (2012) evaluated the im-
portance of the region used in the Swedish variety trail program. It is of interest to study the
proposed method with these data. We consider the yield data as a population and produce
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Table 5. Power comparison for Ti , i = 1,2,3, and parametric bootstrap (PB) under location shift H1 : μ = δ,
for the Normal distribution.

BTR1 BTR2 PB

D AT T1 T2 T3 T1 T2 T3 T1 T2 T3

δ = 0.1 D1 0.146 0.247 0.104 0.226 0.137 0.124 0.128 0.134 0.126 0.134
D2 0.150 0.274 0.102 0.253 0.144 0.126 0.136 0.121 0.116 0.126
D3 0.162 0.278 0.121 0.259 0.168 0.145 0.153 0.141 0.120 0.131
D4 0.152 0.294 0.026 0.300 0.115 0.103 0.119 0.110 0.096 0.102
D5 0.146 0.260 0.082 0.269 0.128 0.122 0.150 0.123 0.115 0.119

δ = 0.2 D1 0.406 0.564 0.316 0.539 0.406 0.356 0.368 0.400 0.370 0.395
D2 0.363 0.544 0.291 0.493 0.383 0.329 0.351 0.336 0.316 0.348
D3 0.398 0.562 0.311 0.541 0.414 0.361 0.386 0.372 0.326 0.356
D4 0.333 0.501 0.088 0.501 0.278 0.251 0.275 0.281 0.233 0.251
D5 0.364 0.523 0.224 0.522 0.342 0.303 0.367 0.329 0.288 0.325

δ = 0.3 D1 0.709 0.820 0.615 0.794 0.714 0.653 0.671 0.708 0.671 0.706
D2 0.650 0.812 0.547 0.771 0.692 0.601 0.639 0.633 0.585 0.648
D3 0.667 0.812 0.577 0.788 0.681 0.623 0.660 0.654 0.589 0.631
D4 0.549 0.734 0.194 0.7403 0.491 0.446 0.487 0.525 0.436 0.471
D5 0.605 0.758 0.431 0.758 0.597 0.540 0.593 0.598 0.529 0.574

Table 6. Power comparison for Ti , i = 1,2,3, and parametric bootstrap (PB) under location shift H1 : μ = 1+δ

for the Exponential distribution.

BTR1 BTR2 PB

D AT T1 T2 T3 T1 T2 T3 T1 T2 T3

δ = 0.1 D1 0.221 0.317 0.125 0.224 0.243 0.152 0.150 0.208 0.111 0.106
D2 0.224 0.291 0.102 0.146 0.212 0.123 0.078 0.218 0.107 0.110
D3 0.255 0.394 0.153 0.338 0.299 0.193 0.243 0.203 0.090 0.099
D4 0.281 0.446 0.069 0.427 0.280 0.191 0.236 0.194 0.075 0.077
D5 0.233 0.356 0.104 0.271 0.247 0.149 0.182 0.218 0.090 0.096

δ = 0.2 D1 0.439 0.541 0.261 0.392 0.461 0.305 0.301 0.433 0.234 0.241
D2 0.427 0.516 0.235 0.296 0.407 0.269 0.200 0.436 0.253 0.263
D3 0.417 0.568 0.291 0.499 0.477 0.339 0.391 0.393 0.190 0.218
D4 0.401 0.597 0.127 0.530 0.420 0.284 0.342 0.350 0.136 0.137
D5 0.375 0.525 0.192 0.393 0.398 0.247 0.280 0.381 0.170 0.187

δ = 0.3 D1 0.639 0.744 0.423 0.583 0.663 0.481 0.471 0.676 0.422 0.429
D2 0.659 0.724 0.402 0.488 0.647 0.469 0.376 0.696 0.448 0.487
D3 0.576 0.736 0.418 0.660 0.658 0.476 0.555 0.594 0.314 0.374
D4 0.533 0.716 0.197 0.643 0.559 0.400 0.461 0.496 0.215 0.255
D5 0.557 0.691 0.328 0.561 0.585 0.415 0.439 0.582 0.324 0.342

URSS/RSS with replacement samples from this data using the balanced RSS design D1

as well as the URSS designs Di , i = 1, . . . ,4, as explained earlier in Section 4. We then

carried out the proposed methods using these designs on our data set. Table 9 shows the

observed α-levels for testing H0 : μ = 430.4. Here again, we observe that BTR2-T2 per-
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Table 7. Power comparison for Ti , i = 1,2,3, and parametric bootstrap (PB) under location shift H1 : μ = 1+δ

for the Logistic distribution.

BTR1 BTR2 PB

D AT T1 T2 T3 T1 T2 T3 T1 T2 T3

δ = 0.1 D1 0.104 0.177 0.061 0.170 0.090 0.088 0.094 0.068 0.085 0.086
D2 0.087 0.190 0.048 0.182 0.084 0.070 0.091 0.064 0.065 0.069
D3 0.121 0.212 0.079 0.205 0.109 0.107 0.110 0.072 0.088 0.087
D4 0.117 0.239 0.017 0.255 0.076 0.077 0.095 0.070 0.068 0.069
D5 0.094 0.206 0.041 0.237 0.080 0.069 0.113 0.066 0.059 0.065

δ = 0.2 D1 0.171 0.284 0.121 0.261 0.163 0.148 0.157 0.145 0.1547 0.154
D2 0.158 0.304 0.107 0.283 0.170 0.136 0.168 0.143 0.132 0.142
D3 0.198 0.306 0.139 0.296 0.194 0.177 0.193 0.137 0.138 0.147
D4 0.176 0.316 0.030 0.329 0.135 0.121 0.148 0.124 0.110 0.117
D5 0.171 0.307 0.081 0.324 0.151 0.130 0.195 0.120 0.129 0.139

δ = 0.3 D1 0.292 0.427 0.205 0.407 0.286 0.249 0.268 0.274 0.262 0.275
D2 0.279 0.445 0.190 0.417 0.298 0.234 0.281 0.222 0.240 0.254
D3 0.307 0.457 0.241 0.440 0.330 0.284 0.315 0.266 0.238 0.271
D4 0.271 0.424 0.053 0.441 0.219 0.198 0.233 0.216 0.175 0.195
D5 0.264 0.419 0.151 0.435 0.256 0.210 0.296 0.216 0.205 0.230

Table 8. Summary statistics for the values of Spring barley (dry content g/m2).

Min. Q1. Median Mean Q3. Max.

145.8 352.6 408.4 430.4 492.8 810.1

Table 9. Observed α-levels for Ti , i = 1,2,3, for testing H0 : μ = 430.4 for the Spring barley.

BTR1 BTR2

D AT T1 T2 T3 T1 T2 T3

D1 0.056 0.093 0.039 0.099 0.044 0.050 0.047
D2 0.061 0.152 0.054 0.148 0.103 0.052 0.104
D3 0.070 0.160 0.063 0.170 0.093 0.063 0.110
D4 0.091 0.218 0.072 0.238 0.107 0.078 0.136
D5 0.061 0.167 0.056 0.187 0.108 0.057 0.134

forms better than the other methods in terms of maintaining its α-level for different URSS
designs.

6. CONCLUDING REMARKS

While CBS (2004) and Modarres, Hui, and Zhang (2006) provide resampling methods
for RSS, they do not offer algorithms for URSS. This article explores two methods of re-
sampling an unbalanced ranked set sample. We discuss resampling a URSS by transform-
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ing it to a balanced RSS and extending the existing algorithms to obtain resamples from
the resulting RSS. We describe the two algorithms and investigate their properties. A sim-
ulation study is conducted to compare the two methods against parametric bootstrap. The
results show that test statistic T2 under algorithm BTR2 maintains the significance level
and provides power values that are comparable with the power of the parametric bootstrap
test, which uses more information.

APPENDIX

A.1. PROOF OF PROPOSITION 1

Applying the Glivenko–Cantelli theorem to Xr , we can show that supt∈R{F̂(r)(t) −
F(r)(t)} −→ 0 a.s. ∀t , mr −→ ∞. Since qmr − qr and qmr F̂(r)(t) − qrF(r)(t) converge to
zero a.s. as mr approaches ∞, ∀t , one can show that

∣
∣F̂qn(t) − Fq(t)

∣
∣ =

∣
∣
∣
∣
∣

k∑

r=1

qmr F̂(r)(t) −
k∑

r=1

qrF(r)(t)

∣
∣
∣
∣
∣

≤
k∑

r=1

∣
∣qmr F̂(r)(t) − qrF(r)(t)

∣
∣.

Therefore, we establish |F̂qn(t) − Fq(t)| −→ 0, a.s. ∀t .

A.2. PROOF OF PROPOSITION 2

To show the result we use the following lemma, the proof of which can be found in
Bickel and Freedman (1981) and Belyaev (1995).

Lemma A.1. Let Gn,G ∈ �p . Then dp(Gn,G) converges to zero if and only if Gn

converges to G in distribution and
∫ |x|p dGn(x) converges to

∫ |x|p dG(x) as n goes
to ∞.

Proposition 1 proves the first condition of Lemma A.1 while the second condition fol-
lows from

∫

t2 dF̂(r)(t) =
∑

qmr

mr∑

j=1

X2
(r)j

mr

→
∑

qr

∫

t2 dF(r)(t)

=
∫

t2 d
∑

qrF(r)(t)

=
∫

t2 dFq(t).

Therefore, d2(F̂qn,Fq) −→ 0 a.s.
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A.3. VALIDATING THE BOOTSTRAP TRANSFORMATION

To validate the use of the bootstrap transformation RSS = BTR(URSS,N) to transform
a URSS to a balanced RSS we use the following lemma which can be easily proved using
the Glivenko-Cantelli theorem (see Bickel and Freedman 1981).

Lemma A.2. Suppose X�
r = {X�

(r)1, . . . ,X
�
(r)N } are i.i.d. samples from F̂(r)(x) and

let F̂ �
(r)(t) be the EDF of X�

(r). Then ‖F̂ �
(r) − F̂(r)‖∞ = supt∈R |F̂ �

(r)(t)− F̂(r)(t)| converges
to zero a.s. for all r = 1, . . . , k, as N approaches ∞.

We pursue with the following result.

Proposition A.1. If F ∈ �2 and F̂ �
N is the EDF defined in (2.6), then d2(F̂

�
N,F ) con-

verges to zero a.s. as N approaches ∞.

Proof: Lemma A.2 shows F̂ �
(r)(t) converges to F̂(r)(t) ∀t a.s. as mr approaches ∞. It

follows that

sup
t∈R

{
F̂ �

(r)(t) − F(r)(t)
} = sup

t∈R

{
F̂ �

(r)(t) − F̂(r)(t) + F̂(r)(t) − F(r)(t)
}

= sup
t∈R

{
F̂ �

(r)(t) − F̂(r)(t)
} + sup

t∈R

{
F̂(r)(t) − F(r)(t)

}

= A1 + A2.

Since A1 converges to zero (a.s.) under Lemma A.2 and A2 converges to zero (a.s.) under
Glivenko–Cantelli theorem, we have supt∈R{F̂ �

N(t)−F(t)} −→ 0 as mr −→ ∞ (a.s.). The
second condition is satisfied because

∫

t2 dF � =
k∑

r=1

1

k

mr∑

j=1

x�2
(r)j

N

a.s−→
k∑

r=1

1

k

mr∑

j=1

x2
(r)j

mr

a.s−→
k∑

r=1

1

k

∫

t2 dF(r)

=
∫

t2 d

k∑

r=1

1

k
F(r) =

∫

t2 dF.
�

The next corollaries follow from Propositions 2 and A.1, respectively.

Corollary A.1. If F ∈ �2 and F̂n is the EDF in (2.3), then d2(F̂n,F ) converges to
zero (a.s.) as n approaches ∞.

Corollary A.2. If F ∈ �2 and F̂ �
N is the EDF in (2.6), then X̄∗� converges to μ (a.s.)

as N approaches ∞, where X̄∗� = 1
Nk

∑Nk
i=1 X∗�

i and X∗�
i

i.i.d.∼ F �
N(·).
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