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Understanding how species distributions respond as a function of environmental
gradients is a key question in ecology, and will benefit from a multi-species approach.
Multi-species data are often high dimensional, in that the number of species sampled
is often large relative to the number of sites, and are commonly quantified as either
presence–absence, counts of individuals, or biomass of each species. In this paper,
we propose a novel approach to the analysis of multi-species data when the goal is
to understand how each species responds to their environment. We use a finite mix-
ture of regression models, grouping species into “Archetypes” according to their en-
vironmental response, thereby significantly reducing the dimension of the regression
model. Previous research introduced such Species Archetype Models (SAMs), but only
for binary assemblage data. Here, we extend this basic framework with three key
innovations: (1) the method is expanded to handle count and biomass data, (2) we
propose grouping on the slope coefficients only, whilst the intercept terms and nui-
sance parameters remain species-specific, and (3) we develop model diagnostic tools
for SAMs. By grouping on environmental responses only, the model allows for inter-
species variation in terms of overall prevalence and abundance. The application of our
expanded SAM framework data is illustrated on marine survey data and through simu-
lation.
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1. INTRODUCTION

Understanding how species respond as a function of environmental variables (hereafter
“environmental response”) is a key question in ecology. Ecosystems, by definition, consist
of many species, and ecological survey data are frequently stored as an N × S matrix
of data for S species at N sites. A corresponding matrix of environmental variables e.g.,
temperature and altitude/depth, is also observed, and the task is to relate the species data to
these variables. Species data are usually recorded as a presence–absence, counts (number
of individuals of each species) or biomass (total mass of each species). Count data are
common in terrestrial systems (e.g., Novotny et al. 2007), whereas biomass are common
in marine systems (e.g., Bax and Williams 2000).

Two key properties often present in the species matrix are high-dimensionality (often
S is similar in size, or bigger, than N ), and sparsity (species are often encountered in-
frequently), both of which complicate analysis. For example, the marine fish survey data
analyzed in Section 4 consist of 70 species which were sampled at 180 locations. Only 28
species were found at more than 30 % of sites. Datasets with similar properties are found
not only in marine systems but also in terrestrial assemblages of insects (e.g., Novotny et
al. 2007), plants (Ross et al. 2012) and mammals (Thibault et al. 2011).

Multi-species analysis of such data is an important but challenging task. Modeling
each species separately using univariate regression tools like Generalized Linear Mod-
els (GLMs; McCullagh and Nelder 1989) is impractical and can be difficult to inter-
pret in a multi-species context. Instead, a common approach to multi-species analysis
in ecology uses an algorithmic, site-based approach, where differences in species com-
position and abundance between sites are analyzed (Anderson et al. 2011; Li, Ban, and
Santiago 2011). Such an approach does not consider that species may not vary as a
“community” but rather as a set of independently varying entities. Furthermore, failure
to explicitly account for important statistical properties in the data such as the mean-
variance relationships of each species can lead to undesirable and unexpected proper-
ties (Warton, Wright, and Wang 2012). Hence there has been recent interest in model-
based approaches to multi-species analysis (Yee 2010; Ovaskainen and Soininen 2011;
Ives and Helmus 2011). A challenge however is constructing a model which characterizes
multi-species environmental response, but does so in a parsimonious and interpretable way.

Recently, Dunstan, Foster, and Darnell (2011) proposed a new approach to the analysis
of multi-species data, using finite mixture of regression models (McLachlan and Peel 2000)
to simultaneously model and group species based on presence–absence data. Specifically,
the environmental response of each species is modeled as a finite mixture of K logistic
regressions, with each component characterizing a different type of “archetypal” response.
This can be understood as dimension reduction, and is attractive from both statistical and
ecological perspectives: it reduces the number of regression parameters to only Kp � Sp

where p is the number of regression parameters per archetype, and it provides simpli-
fied interpretation via the K archetypal responses. We refer to these models as “Species
Archetype Models” (SAMs). These models represent a significant departure from the tradi-
tional types of analyses for high dimensional datasets in ecology. Each archetypal response
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represents a group of species that respond to the environment in a statistically similar way.
The groups should not be confused with traditional community concepts, rather we be-
lieve that communities observed at a site are comprised of multiple overlapping species
distributions, and hence archetypes, that generate a unique assemblage at that one location.

An important limitation of Dunstan, Foster, and Darnell (2011) was that it considered
the analysis of presence–absence data only, yet multi-species survey data often arise as
counts or biomass. Moreover count and biomass data typically have a very strong mean-
variance relationship, and variances of replicate observations may differ across species by
a factor of a hundred thousand or more (Warton, Wright, and Wang 2012). Hence it is
crucial to carefully model this mean-variance relation and the potentially differing patterns
of overdispersion between species. One must also consider how to estimate any nuisance
parameters not directly involved in describing the archetypal responses, a problem which
did not arise in Dunstan, Foster, and Darnell (2011) with presence–absence data.

A second issue with the model defined in Dunstan, Foster, and Darnell (2011) was that
species were grouped by mixing on all the parameters including the intercept. This implies
the archetypes could in part be defined by species prevalence rather than environmental
response. The problem is exacerbated for count and biomass data, where species have
inherently different social habits, physiological characteristics, and overall levels of abun-
dance. This could lead to different mean counts and biomass across a group of species,
even when they share similar forms of environmental response.

In this work, we propose a novel approach to the analysis of count and biomass data
when the aim is to understand how each species responds to their environment. Like in
Dunstan, Foster, and Darnell (2011), our approach uses a finite mixture of regression mod-
els to group species based on environmental response, but we present three key advances to
address the limitations discussed above: (1) the method is extended to count and biomass
data via a generalized linear modeling framework, (2) we propose mixing on slope coef-
ficients only, and not intercept terms nor nuisance parameters, and (3) we discuss residual
analysis for SAMs to help assess a model’s adequacy. In a companion paper (Hui et al.
2013), we show that this extended model, with species-specific intercepts, predicts rare
species better than univariate models based on a single species. This is due to the borrow-
ing of information (borrowing strength) from species where information is available.

2. SAMS FOR COUNT AND BIOMASS DATA

Let yj = (y1j , . . . , yNj )
� be the vector of data (presence–absence, count, or biomass)

for species j ∈ {1, . . . , S}, observed at each of N sites indexed by i ∈ {1, . . . ,N}. At each
site we also have a set of environmental variables xi used to model the mean of yij . The yj

are assumed to be distributed as a type of finite mixture of regression models (McLachlan
and Peel 2000), with the j th species being classified into one of K ≤ S species archetypes
with probability function and mean model as follows:

K∑

k=1

πk

N∏

i=1

f (yij ;μijk,φj ); h(μijk) = β0j + x�
i βk (2.1)
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where f (·) is a probability distribution function from the exponential family (McCullagh
and Nelder 1989), h(·) is a known link function relating the mean for the kth archetype
(μijk) to xi , and πk is the kth mixing proportion with πk ∈ (0,1) and

∑K
k=1 πk = 1.

Equation (2.1) may be regarded as a mixture of GLMs (Wedel and DeSarbo 1995),
but with some important distinctions: we are mixing on vectors of N observations (to
classify species into archetypes), and we are mixing on a subset of regression parameters.
In particular, note the intercept β0j is indexed by species and not archetype, meaning we
allow each species to have different levels of abundance irrespective of their archetype.
The nuisance parameters φj are also chosen to be species-specific, allowing each species
to have varying amounts of overdispersion. Only the slope parameters βk are indexed by
archetype, implying that we cluster species solely in terms of their environmental response.

The SAM defined here assumes data to come from the exponential family of distribu-
tions, rather than being limited to Bernoulli data as in Dunstan, Foster, and Darnell (2011).
This extension allows the analysis of count or biomass data (although not jointly) in addi-
tion to presence–absence data. On the other hand, extending the distributional assumption
brings additional difficulties in the estimation of species-specific nuisance parameters and
in the assessment of model adequacy. This problem is particularly challenging for mod-
els with overdispersion present, given its misspecification can have substantial impacts on
model outcomes (Warton, Wright, and Wang 2012).

For count data, we model each archetype using a negative binomial distribution via
the NB-2 parameterization (Hilbe 2007), which assumes the mean-variance function
V (μijk) = μijk + μ2

ijk/φj . The nuisance parameter φj > 0 controls the degree of overdis-
persion relative to the Poisson, and can be interpreted as a measure of spatial clustering
(Hilbe 2007). In having φj as species-specific, we permit each species to have its own
degree of overdispersion.

For biomass data, we model the random variation via a Tweedie distribution (see Jørgen-
son 1997), with mean-variance function V (μijg) = φjμ

νj

ijg . The power parameter controls
the shape of the distribution, whilst φj > 0 is a scale parameter. The Tweedie model should
appeal to many quantitative ecologists as the mean-variance relationship is exactly that de-
fined by Taylor’s power law (Taylor 1961). In this work, we also exploit the fact that, for
1 < νj < 2, a Tweedie random variable is a compound Poisson distribution—the sum of
a Poisson number of individuals, each of which has a gamma mass (see Jørgenson 1997;
Foster and Bravington 2013). A practical advantage of using the Tweedie distribution in
our context is that it quite naturally models quantitative data which are scale invariant and
have a point mass at zero. The scale-invariance attribute means that the measurement units
are inconsequential, up to non-linear transformations of the data. Tweedie densities can be
evaluated using the method described in Dunn and Smyth (2005). We chose to pre-specify
the power parameter to be νj = 1.6 for all species. In principle, species’ power parameters
could be estimated from the data through maximization of the likelihood, although this
process is slow and we believe unnecessary here. Previous studies of fisheries data from
the same geographic region as our example dataset have shown νj = 1.6 to be a reasonable
value (Peel et al. 2013; Foster and Bravington 2013). In addition, we performed a small
sensitivity study for 15 individual species examined in Foster and Bravington (2013); there
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was only negligible difference between model residuals from estimated νj and specified
νj = 1.6.

2.1. ESTIMATION

We estimated parameters by maximizing the likelihood

�(β,φ,π;y) =
S∑

j=1

log

(
K∑

k=1

πk

N∏

i=1

f (yij |β0j ,βk,φj )

)
, (2.2)

where β , φ and π store all of the regression, nuisance, and mixing parameters, respec-
tively. Individual species’ responses are assumed to be independent between sites condi-
tional on species archetype. This assumption allows the specification of a GLM within each
archetype. A common approach to maximizing Equation (2.2) is to apply the Expectation–
Maximization algorithm (EM; Dempster, Laird, and Rubin 1977). Although quite robust,
the EM algorithm tends to be relatively slow and is not guaranteed to find a global max-
imum from arbitrary starting values (McLachlan and Peel 2000). To overcome this, we
adopted a hybrid approach for maximization consisting of three parts: (1) find good start-
ing values, (2) perform some initial EM steps, and (3) use a descent-based maximizer until
convergence. This hybrid algorithm is based on the idea of Aitkin and Aitkin (1996).

Starting values were obtained by fitting a separate GLM to each species and clustering
the slope coefficients, then averaging slope coefficients across the species in each cluster.
Clustering was performed using the K-means method (e.g., Venables and Ripley 1999).
Intercepts and nuisance parameters were retained from the separate GLMs fitted to each
species, for use in the second stage of our hybrid algorithm. Next, the starting values were
refined using a small number of EM iterations. The EM-algorithm for mixture models (see
McLachlan and Peel 2000) iterates between calculating the probabilities for each species
belonging to each group and maximizing an augmented likelihood. The group membership
probabilities are

τjk = πkf (yj |β0j ,βk, φj )
∑K

k′=1 πk′f (yj |β0j ,βk′ , φj )

and can be arranged into a S × K matrix whose j th row is denoted by {τ j }. These prob-
abilities are commonly referred to as “posterior probabilities”, despite the non-Bayesian
context.

A problem that arose in the initial E-step was that it tended to produce starting values
of {τ j } which were zero or one to within machine error. This is unwanted, as it would then
not allow for movement away from this initial model and would not provide an adequate
exploration of the parameter space. We therefore shrank the {τ j }’s towards 0.5 using

τ ∗
jk = 2ατjk − α + 1

2α − αK + K
where α = 1 − 0.8K

0.8(2 − K) − 1
. (2.3)

The above transformation prevented any τjk from being bigger than 0.8 or less than
(1 − 0.8)/(K − 1), whilst maintaining the sum-to-one constraint,

∑K
k=1 τjk = 1. An M-

step was next applied, which maximized the complete log likelihood with respect to the
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slope coefficients. The EM-algorithm was run for four cycles before moving to the next
phase of optimization. Subsequent E-steps did not include shrinkage for any τjk . Note
species-specific parameters were not updated during the M-steps, but instead were fixed
at the values obtained from the separate species models. The final part of maximization,
applied across all model parameters, used a quasi-Newton optimization routine (see Nash
and Sofer 1996), which provides super-linear convergence without the need to calculate
computationally expensive second derivatives. However, it can also be sensitive to starting
values—hence the reason we persisted with the first two steps in the estimation routine.

There is a small amount of stochasticity in the estimation process, through randomly
drawing the initial π for the initial E-step. This was introduced as we feel that there is
little information about these parameters in the initial (species specific) analyses. To safe-
guard against unfortunate choices the estimation process can be repeated. This is advisable,
especially when there is little data and/or a complex model.

The number of archetypes K was chosen to minimize a BIC-style criterion, defined as

BIC = −2�(β,φ,π;y) + lnS × (# of parameters), (2.4)

with the number of parameters set to (K − 1) + (q + 1)S + Gp, q being the number of
nuisance parameters per species. The use of S as the sample size rather than N or NS was
based on the fact the fundamental unit being grouped on was species and not site. Choosing
the order K of a mixture model via BIC minimization has been shown to be consistent for
K (Keribin 2000).

2.2. PREDICTION FOR MAPS

We chose to summarize the models through a series of predicted maps, one map for
each archetype. The maps consisted of point predictions made on a high density grid of
spatial locations throughout the prediction area. As they were based on the spatially vary-
ing environmental gradient, these predicted maps allowed the interpretation of results in
terms of the processes structuring the distributions of species and assemblages. Since the
intercepts in our SAM are species-specific, then the archetype predictions are a relative
measure—with an arbitrary intercept. We used β̄0 = ∑S

j=1 β̂0j , the average of all the esti-
mated species intercepts, as our arbitrary intercept. Other choices are possible, but β̄0 puts
the archetypical response on a scale that is likely to be indicative of species responses.
Formally, the predictions for the kth archetype are made via

ŷi·k = h−1(η̂i·k); where η̂i·k = β̄0 + x�
i β̂k.

Based on the above equation, the variance of the linear predictor η̂i·k is then given by
var(η̂i·k) = x�

i 
̂kxi , where 
̂k = var(β̂k). The variance of the point prediction ŷi·k can be
approximated from this via the delta method (see Oehlert 1992).

2.3. MODEL DIAGNOSTICS

We assessed goodness-of-fit using residual plots, having first addressed the non-trivial
question of how to define residuals for a mixture of non-Gaussian variables. We followed
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Dunn and Smyth (1996), who proposed exploiting the probability integral transform to
construct residuals for parametric regression models as follows:

rij = �−1{uijF (yij ;μij ,φj ) + (1 − uij )F (y−
ij ;μij ,φj )

}
, (2.5)

where �(·) is the cumulative distribution function of a standard normal variable, uij are
independent draws from the standard uniform distribution, F(yij ;μij ,φj ) is the cumula-
tive distribution function of the observed yij , and F(y−

ij ;μij ,φj ) is its limiting value as yij

is approached from the negative direction. A key advantage of this definition of residuals is
that, provided the regression model is correct, the rij are identically distributed as standard
normal even though yij are not. Therefore, standard diagnostic tools for linear regression
(e.g., Weisberg 2005) become applicable. The use of uniform random numbers uij in the
transformation ensures this result remains true for discrete data—the uij can be understood
as removing the discreteness inherent in count and presence–absence data, which is an ex-
tra but essential step enabling easy-to-interpret residual plots. In our experience, different
draws of uij tend to produce similar plots.

While not previously extended to the mixture modeling context, Dunn–Smyth residuals
(Dunn and Smyth 1996) can be readily applied, since integrating Equation (2.1) returns the
following cumulative probabilities:

F(yij ;β,φ,π) =
K∑

k=1

πkG(yij ;μijk,φj )

where G(yij ;μijk,φj ) is the kth component cumulative distribution function of yij . Resid-
uals can be readily computed on any software that returns cumulative probabilities for ex-
ponential families, by using Equation (2.5) and substituting estimated parameter values for
β,φ,π . We constructed such residuals and plotted them against fitted values and normal
quantiles to diagnose various features of our SAMs.

Dunn and Smyth (1996) emphasized the assumption of independence of observations
when using their residuals. However, independence is not required in order for the rij

to be standard normal in distribution—the probability integral transform holds irrespec-
tive of dependence. Independence does however simplify interpretation of residual plots—
otherwise, if a pattern were observed, dependence would be a possible explanation as well
as misspecification of F(yij ;μij ,φj ).

3. SIMULATION STUDY

In this section, we use simulation to assess whether the extensions proposed in this ar-
ticle can lead to improved prediction of species distribution. We consider whether analysis
of count or biomass data, using the proposed SAMs, can better predict species presence–
absence than fitting a Bernoulli SAM directly to presence–absence data (Dunstan, Foster,
and Darnell 2011). Results have obvious practical ramifications for ecologists—advantages
of collecting or analyzing one type of data over another provide an incentive to design stud-
ies ensuring the preferred data type is collected.
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We jointly generated biomass (yij , for site i and species j ), count (nij ), and presence–
absence (xij ) data by exploiting the fact that biomass data can be generated as a compound
sum across the nij samples:

yij =
nij∑

k=1

wijk (3.1)

where wijk is a positive random variable representing the weight of the kth individual of
species j at site i. Presence–absence data can be computed directly from the counts as
xij = I (nij > 0), where I (·) is the indicator function. Hence each of the count, biomass,
and presence–absence datasets have exactly the same pattern of presence. We are inter-
ested in how to best model the probability of presence i.e., using presence–absence data
directly, or whether the additional information in count or biomass data can improve pre-
dicted probabilities.

A total of B = 1,000 datasets were generated, each with N = 200 sites and S = 50
species. K = 4 archetypal responses were created for the count data, with each varying
quadratically (on the log scale) in a different manner with a single environmental covari-
ate, as shown in Figure 5. The covariate was simulated as independent standard normal
variates. Species-specific intercepts were drawn from a normal distribution with mean and
variance approximately matching that of the fish data in Section 4. Species-specific disper-
sion parameters were likewise drawn from a gamma distribution.

To simulate biomass data, the count data generated above were combined with weights
wijk using Equation (3.1). The weights wijk were simulated from a gamma distribution
with shape parameter equal to 2/3 and a species mean taken randomly from a uniform
distribution on [0.1,2]. This data-generating model is similar to one which generates a
Tweedie distribution, with the only difference being that the number of individuals for a
Tweedie distribution is given by a Poisson rather than a negative binomial distribution.
The choice of shape parameter reflects this similarity: it corresponds to a Tweedie power
parameter of 1.6.

To each of the 1,000 simulated datasets, we fitted three models: (1) a Bernoulli
SAM defined in Dunstan, Foster, and Darnell (2011), (2) a negative binomial SAM, and
(3) a Tweedie SAM, as proposed in Section 2. Note only the count model matches exactly
with the simulated dataset—the Tweedie model and the Bernoulli model are approxima-
tions to the data generating process. The three models were compared in terms of their
predictive performance on a large test dataset (consisting of Nt = 10,000 observations),
drawn from the same data generating mechanism as used to model the sample data. The
test dataset was large to reduce the randomness in our measures of predictive performance,
described below. The different models were compared in terms of posterior predictions of
presence in the test data, which in the case of a model for count data, were computed as:

p̂ij = P̂r(nij > 0) =
K∑

k=1

τ̂jkP̂r(nij > 0|archetype k),
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with similar definitions for biomass (yij ) and presence–absence data (xij ). Posterior predic-
tions of presence for a given model (p̂ij ) were compared to the true probability of presence
(pij ) using two summary statistics:

RMSE The average root mean squared error between the model’s prediction of Pr(nij > 0)

and the test data’s true values:

RMSE = 1

B

B∑

b=1

√√√√√ 1

NtS

Nt∑

i=1

S∑

j=1

(
p̂

(b)
ij − pij

)2
.

Cross Entropy The negative of the sum of the expected Bernoulli log-likelihood:

CE =
B∑

b=1

Nt∑

i=1

S∑

j=1

−(
pij log

(
p̂

(b)
ij

) + (1 − pij ) log
(
1 − p̂

(b)
ij

))
.

For both measures, smaller values indicate better fit, with zero being a lower bound.
Simulation results (Table 1) indicated a clear ordering for the different models types.

The best was the negative binomial model, the second best was the Tweedie model and the
worst was the Bernoulli model. There are two possible causes for the poor performance
of the Bernoulli model: either the lack of species-specific intercepts in the Bernoulli SAM
caused a significant lack-of-fit, or the additional information in the quantitative data led to
improved predictive performance.

The superior performance of the negative binomial with respect to the Tweedie model
may, at first, seem to be at odds with intuition. In most applications, outside ecology, one
would expect that continuous data have more information than integer data. However, in
this simulation the data generating mechanism creates, in a natural manner, the biomass
data as a noisy version of the count data—the extra variation is due to the variation of
individual fish masses. Further, the Tweedie model is an approximation to the truth as count
data, used in the generation of a Tweedie variate, are negative binomial and not Poisson.

There was one situation where the Tweedie model performed very similarly to the neg-
ative binomial model in terms of predictive performance—when the true probability of
presence was very high (Figure 1). This remained true when using either summary statis-
tic, although the magnitude of the differences between model types varied with choice of
summary statistic (Table 1, Figure 1). This is due to the squared-error statistic placing less
emphasis on the extreme probabilities, precisely where there was little difference between
the models.

4. APPLICATION—SOUTH EAST FISHERIES SURVEY DATA

We applied the SAM defined in (2.1) to count and biomass data from an ecosystem
research program carried out on the South Eastern continental shelf of Australia (Bax and
Williams 2000), designed to determine the distribution and abundance of demersal fish
species. The survey covered an area from 36 ◦S to 39.3 ◦S on the eastern continental shelf
in depths from 25 to 200 meters. Samples were taken at depth-stratified stations along seven
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Figure 1. Smoothed version of cross-entropy and squared-error contributions for negative binomial and Tweedie
models. The gray lines are realizations for each simulation and the colored lines are their averages. If the models
had equivalent predictive power across probabilities, then the lines would be similar. Smoothing was performed
by binning the probability into 250 classes.

Table 1. Results from simulation study. B = 1,000 datasets were simulated, with the test data containing Nt =
10,000 observations. S = 50 species were considered. See text for definition of summary statistics.
Parenthetic values are standard errors (across simulations).

RMSE Cross Entropy (×105)

Bernoulli 0.232 (0.006) 0.266 (0.006)
Negative Binomial 0.018 (0.002) 0.174 (<0.001)
Tweedie 0.150 (0.004) 0.208 (0.002)

cross shelf transects using a commercial trawl net (Bax and Williams 2000, page 191), and
for each of the species in the sample, the number of individuals and their total mass in
kilograms were recorded. A total of 70 species were used in the analysis.

We used the presence–absence model outlined in Dunstan, Foster, and Darnell (2011)
to help to identify a set of nine environmental covariates for modeling: latitude, depth,
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Figure 2. Plots of BIC vs. number of species archetypes using (a) count data, (b) biomass data. Note that a
minimum is achieved at 11 archetypes for counts, and the 11-archetype biomass model is close to the minimum
BIC.

percent carbonate, percent gravel, percent sand (derived from Geoscience 2009), and the
intra-annual standard deviation in the concentrations of nitrate, phosphate, oxygen, and
temperature derived from the CSIRO Atlas of Regional Seas (Dunn and Ridgway 2002;
Ridgway, Dunn, and Wilkin 2002). The mean values of nitrate, phosphate, oxygen, and
temperature were strongly correlated with depth and provided no additional explanatory
power, whereas the standard deviations reflect seasonal variation in these variables. Trawl
area was estimated from the length of each tow and the known width of the trawl mouth and
(area) used as an offset in the count and biomass models. The number of components was
chosen using BIC in (2.4) for counts and biomass separately, see Figure 2. To safeguard
against convergence to local maxima, we re-fitted each model 20 times, keeping the model
which achieved the highest likelihood value as defined in Equation (2.2).

The BIC dropped steeply from to K = 1 to 5 archetypes, and was minimized at K = 11
(K = 13) for count (biomass) data. Since the 11-archetype biomass model produced a BIC
value close to the minimum achieved (Figure 2), then we opted to use K = 11 archetypes
for both count and biomass SAMs.

Residual plots exhibited little pattern (Figure 3), suggesting the 11-archetype as a po-
tential model for both counts and biomass. In particular, the lack of any funnel-shaped
trend in the residuals suggests our choice of distribution types and model for the mean
and variance relationship are reasonable. However, one noteworthy departure from the as-
sumed model was a small cluster of unusually large residuals (rij > 5), suggesting a group
of observations with yij larger than expected were not adequately captured by the fitted
model. Future analyses could address this apparent departure, perhaps using different pre-
dictor variables or a different functional form for the mean structure, e.g., fitting mixtures
of additive models.

Prediction of archetypes was conducted using broad scale environmental gradient
datasets for south east Australia, using mean area trawled as an offset. Plots of selected
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Figure 3. Residual vs. fits plots (top row) and normal quantile plots of residuals (bottom row) for species
archetype models of (a) count data, using a negative binomial model, and (b) biomass data, using a Tweedie
model. Different species are plotted with different colors. The lack of pattern in the residual plots in conjunction
with the quantile plots suggest a reasonable model fit, with the exception of a small cluster of observations with
small fitted and large residual. Quantile plots suggest this cluster is the main exception to normality of residuals.

archetypes are shown for counts and biomass in Figure 4. The predictions exhibit complex
patterns for both biomass and counts. There were a suite of archetypes associated with
inner shelf areas, with the mid shelf and with the shelf edge and upper slope. The scale of
changes in abundance across these regions was typically large with respect to the standard
errors (see supplementary material). A few of the predictions for both biomass and counts
were very large. These may be due to prediction in extreme and/or unsampled locations
in covariate space. However, it is worth noting that fish catches in the South Eastern Shelf
can be extreme in this region and these values are not that unreasonable.

There were some obvious similarities in some of the spatial patterns from archetypes
based on count data and archetypes based on biomass data. The right-most two columns in
Figure 4 highlight this; that is Figure 4 panels (b) and (e), and panels (c) and (f). However,
it is not guaranteed that the archetypes from the different data types will match up.
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Figure 4. Predictions (log scale) for selected archetypes from the 11-archetype model in south east Australia
for counts (top row) and biomass (bottom row).

We can summarize the connectivity between the two sets of archetype groups by study-

ing their S × K matrices of posterior archetype probabilities. Full tables are presented in

supplementary material (Supplementary Tables 1 and 3), but a species list is presented for

each of the archetypes in Figure 4, listing any species whose posterior probability was

highest for the given archetype. In most cases the maximum posterior probability for a

species was very close to one, meaning that archetypal responses can usually be interpreted

synonymously with species responses, considerably simplifying interpretation. Now com-

pare the species lists (Table 2) across count and biomass models for the three example

archetypes in Figure 4.

• Count Archetype 1 shared three of its seven species with biomass Archetype 9 (Ta-

ble 2). This explains the difference in the maps in Figure 4(a) and (d). Two additional

species were present in the corresponding biomass archetype.
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Figure 5. Archetype responses to the covariate for the simulation study. Each curve represents the archetypal
response of one of the four different archetypes, from which species data were generated.

• Count Archetype 3 had identical composition to biomass Archetype 5, sharing the
same seven species (Table 2). The archetype maps were almost identical, see Fig-
ure 4(b) and (e).

• Count Archetype 9 shared species with biomass Archetype 3 only, see Table 2.
Biomass Archetype 3 also shared species with other count archetypes. This explains
some of the differences in Figure 4(c) and (f). In some respects biomass Archetype 3
is a ‘super set’ of count Archetype 9.

Overall, there was good agreement between the count and biomass archetype models,
with similar estimated archetypes and similar species compositions across the two mod-
els. This level of general agreement should be expected as the two measurement types
are correlated—the simulation model in Section 3 provides one mechanism for induc-
ing this correlation. Some archetypes matched exactly in species composition (e.g., count
Archetype 3 and biomass Archetype 5), while other archetypes only partially matched
(e.g., count Archetype 1 only shared half the species of biomass Archetype 9). Full details
of the fitted values and standard errors for count and biomass models, the matrices {τ j }
for count and biomass models and predictions of each archetype and the standard error of
predictions for both models can be found in the supplemental material.

5. DISCUSSION

In this paper, we proposed a general method for analyzing multi-species data in ecol-
ogy, and applied it to two commonly encountered types of multi-species data: count and
biomass data. The proposed method addresses a clear need in ecology to deal with high-
dimensional, multi-species data. The SAM considerably simplifies the problem of under-
standing the diverse ways in which different species respond to their environment. By
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Table 2. The species belonging to Archetypes 1, 3, and 9 for abundance and 9, 5, 3 for biomass. Values for{τ j }
can be found in supplemental Tables 1 and 3—the relevant posterior probabilities are one in most cases,
to two decimal places.

Abundance

Archetype 1 Archetype 3 Archetype 9

Urolophus paucimaculatus Asymbolus analis Squalus megalops
Neosebastes scorpaenoides Scorpaena papillosa Cyttus novaezelandiae
Chelidonichthys kumu Caesioperca lepidoptera Seriolella punctata
Lepidotrigla vanessa Pagrus auratus
Kathetostoma laeve Nemadactylus douglasi
Synchiropus calauropomus Eubalichthys mosaicus
Diodon nicthemerus Thamnaconus degeni

Biomass

Archetype 9 Archetype 5 Archetype 3

Trygonoptera sp B Asymbolus analis Cephaloscyllium sp A
Myliobatis australis Scorpaena papillosa Squalus megalops
Neosebastes scorpaenoides Caesioperca lepidoptera Zenopsis nebulosus
Lepidotrigla vanessa Pagrus auratus Cyttus novaezelandiae
Diodon nicthemerus Nemadactylus douglasi Hoplichthys haswelli

Eubalichthys mosaicus Lepidoperca pulchella
Thamnaconus degeni Apogonops anomalus

Emmelichthys nitidus nitidus
Nemadactylus macropterus

Kathetostoma canaster
Rexea solandri

Lepidopus caudatus
Seriolella punctata

classifying S species into K different archetypal environmental response types, the analyst
can focus on understanding the nature of environmental response in the K archetypes and,
together with group membership probabilities, build up a picture of the assemblage as a
whole.

In our example analysis of Section 4, we found significant overlap between the spa-
tial distributions of the archetypes, a pattern which has broader ecological implications.
This pattern has been observed over a number of different analyses (e.g., Dunstan, Foster,
and Darnell 2011). It suggests that the archetypes we are modeling can not be understood
as communities, and more broadly, our data are not consistent with the local concept of
community assembly (Ricklefs 2008). If archetypes behaved as communities, they would
be aggregated in coherent patches with little overlap. The lack of patchiness suggests that
perhaps communities per se are not the natural unit to study—which questions the value
of studying the spatial distribution of communities directly as in Anderson et al. (2011)
or Li, Ban, and Santiago (2011). Rather, the communities we have encountered are better
thought of as assortments (or “assemblages”) of co-occurring species which have their own
patterns of distribution. This is classically known as the individualistic concept of commu-
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nity assembly (Gleason 1926), and its implication is that species are the natural unit to be
studied, as in a SAM. A SAM puts a slight twist on this individualistic concept, positing
that many species share similar “archetypal” environmental responses. This reduction in
dimensionality of the fitted model considerably simplifies not just model interpretation,
but potentially, conservation management decisions—the problem of managing hundreds
of species can be simplified to that of managing a small number of archetypes.

Species Archetype Models as proposed here have been demonstrated to provide ade-
quate fits to multi-species data (Figure 3). Additionally, when applied to count or biomass
data, SAMs provide a more nuanced view of the multi-species assemblage than would have
been available in an analysis of presence–absence data only (Table 1). Related work used
the methods proposed in this paper to show that SAMs have enhanced predictive perfor-
mance as compared to using separate regression models for each species (Hui et al. 2013).
Hence SAMs are not only desirable from the perspective of simplifying interpretation, but
also in terms of predictive accuracy.

One important advance in the SAM defined here over the method of Dunstan, Foster,
and Darnell (2011) is the use of species-specific intercepts. Such an extension is essential
here to account for the fact that different fish species have different sizes and social charac-
teristics. Furthermore, it is this extension that allows species within an archetype to share
the same form of environmental response, but have differing absolute count or biomass lev-
els. For counts and presence–absence, it could be argued that while different species may
share a form of environmental response, they need not share the same level of abundance
or prevalence. For this reason, species-specific intercepts could be justified in the analysis
of all types of multi-species data, not just biomass.

There remain considerable opportunities for improvement of the SAM approach used
in this paper. The species-specific intercept parameters introduced S parameters into the
model, and it would have been quite natural to model these using random effects in place
of the fixed effects employed here. This is however a challenging problem from a computa-
tional perspective—essentially, it requires the fitting of finite mixtures of generalized linear
mixed models. Also, as is usual in mixture modeling (McLachlan and Peel 2000), estima-
tion was complicated by the presence of multiple local maxima on the likelihood surface.
One potential solution to this problem is to penalize coefficients in order to regularize the
estimation problem (Khalili and Chen 2007).

An important issue not addressed in this paper, but which would be a valuable exten-
sion of our approach, is extending the model to better handle correlation between species
or between sites. Correlation between species can be anticipated via species interactions.
Correlation between sites can occur due to spatial autocorrelation. The usual consequences
of omitting important sources of correlation from a model are loss of efficiency and biased
estimation of model precision, although unbiased estimates of target model parameters (as
in Figure 4) can usually still be obtained. While it would be desirable to incorporate corre-
lation between species or between sites into a SAM, it would be challenging from a compu-
tational perspective. Inter-species correlation in particular would be very difficult to model
because S is not small compared to N . Ovaskainen, Hottola, and Siitonen (2010) proposed
addressing this issue using a pair-wise likelihood, Ives and Helmus (2011) assumed species
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correlations operate via phylogeny, whilst others (e.g. Warton 2011) assumed working in-
dependence and then resampled clusters of observations to make multivariate inferences
robust to potential failure of correlation assumptions. Constructing plausible models for
inter-species correlation which can be implemented in multi-species analysis is an impor-
tant challenge that remains to be addressed adequately.

A final issue not discussed in this paper is the question of model selection—how to
select the environmental variables to include in a SAM, and how to select the form of
model for the mean of the yij . Diagnostic tools such as Figure 3 can be of some assistance.
But a key issue in the mixture modeling literature for some time (McLachlan and Peel
2000) has been the question of how to formally derive an information criterion with good
properties that can be used to inform concerning model choice for mixture models and
FMRs, including generalizations of FMRs as considered in this paper. Addressing this
deficiency is the subject of current research.

SUPPLEMENTARY MATERIALS

Tables of posterior probabilities, parameter estimates and standard errors, and maps of
predictions and standard errors for all archetypes (pdf file).
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