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There are two key types of selection in a plant breeding program, namely selec-
tion of hybrids for potential commercial use and the selection of parents for use in fu-
ture breeding. Oakey et al. (in Theoretical and Applied Genetics 113, 809–819, 2006)
showed how both of these aims could be achieved using pedigree information in a
mixed model analysis in order to partition genetic effects into additive and non-additive
effects. Their approach was developed for field trial data subject to spatial variation. In
this paper we extend the approach for data from trials subject to interplot competition.
We show how the approach may be used to obtain predictions of pure stand additive
and non-additive effects. We develop the methodology in the context of a single field
trial using an example from an Australian sorghum breeding program.
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tion; Pure stand; Pedigree information; Parental effects.

1. INTRODUCTION

It is widely recognized that data from plant breeding trials often exhibit spatial varia-
tion due to the spatial location of plots in the field. Model-based analyses that focus on
controlling spatial variation have been shown to result in substantial gains in response to
selection. Most of the current spatial approaches involve a direct modeling of trend using a
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correlation model, the basic premise being that plots that are closer together are more sim-

ilar (more highly correlated) than plots that are further apart. One such approach is that of

Gilmour, Cullis, and Verbyla (1997) which has been used successfully for the analysis of

grain yield data from Australian cereal breeding programs for many years. However, these

models are not appropriate for traits measured in trials that exhibit interplot competition.

An important example of this type in Australia is yield from sorghum breeding trials. Hunt

and Jordan (2009) examined sorghum yield (in tonnes per hectare t/ha) for 36 such trials

and found evidence of interplot competition in one third of those trials. They suggested

that for this type of data a joint modeling approach that can accommodate both interplot

competition and spatial trend is desirable.

Stringer (2006) discussed a number of approaches for the joint modeling of interplot

competition and fertility trends. In one of these approaches interplot competition was mod-

eled using a random effects analogue of the Besag and Kempton (1986) treatment inter-

ference model (TIM). In this model an individual variety is assumed to have both a direct

effect (on the plots in which it is grown) and a neighbor effect (on adjacent plots). In the

random effects setting these are regarded as (correlated) genetic effects so that competition

is modeled at the genetic level. Stringer (2006) analyzed a number of early stage sugar-

cane trials and found that the random effects treatment interference model (R-TIM) (or a

reduced rank version there-of) provided a good fit to the data in many cases. In terms of

hybrid yield performance the key trait of interest is yield in a pure stand, that is, the yield

from a hybrid that is not surrounded by hybrids of differing genetic background. Predic-

tions of hybrid effects for this trait are easily obtained from the R-TIM as a simple linear

combination of the predictions for direct and neighbor effects.

In Australian sorghum breeding programs the aim is primarily to develop new (fully

in-bred) parental lines for commercial companies to use within their hybrid breeding pro-

grams. Oakey et al. (2006) demonstrated that this aim is best met using a statistical analysis

in which pedigree information is incorporated. Oakey et al. (2006) proposed a mixed model

for field trial data in which genetic effects are partitioned into additive and non-additive

components using an additive relationship matrix while error variation is simultaneously

modeled using the spatial techniques of Gilmour, Cullis, and Verbyla (1997). In this paper

we propose an extension of the approach in Oakey et al. (2006) that incorporates an R-

TIM to accommodate interplot competition. The resultant model enables the partitioning

of pure stand genetic effects into additive and non-additive components. Here we consider

the analysis of a single trial. Extensions for the analysis of multiple trials will be considered

elsewhere.

The paper is arranged as follows. First we introduce a motivating example (Section 2).

In Section 3 we present a sequence of statistical models for the analysis of a single field

trial. We commence with a base-line analysis then build to an analysis that incorporates

pedigree information and accommodates both spatial variation and interplot competition.

Results of the application of these methods to the example are given in Section 4.
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2. MOTIVATING EXAMPLE

Our motivating example is taken from the Queensland Department of Agriculture, Fish-

eries and Forestry sorghum breeding program. This program runs what is analogous to two

separate pedigree breeding programs, one for female parents and one for male parents.

All field evaluation of lines within these programs is undertaken using F1 hybrids of com-

binations between the two pedigree programs. We consider a trial grown in 2008 at the

Hermitage Research Station in Warwick Queensland. The trial is a preliminary yield trial

for males (PYTM).

The trial contained 791 F1 hybrids, comprising 783 test hybrids, being the result of a

cross between a single unreleased female and 783 male parental lines, six commercial F1

hybrids two checks, being F1 hybrids close to release. The experimental design for the

trial was a resolvable p-rep design (Cullis, Smith, and Coombes 2006). Test and check F1

hybrids were sown in either one or two plots in the trial, while most commercial F1 hybrids

had additional replication.

The sorghum breeding program plants trials in a rectangular array of plots in which we

notionally index plots by two factors, namely Rows and Columns. Plots are 1.5 × 10 m

comprising two plot-rows of plants. Plots which are row-neighbors (i.e., within the

same column) share the longest plot boundary. The prevalence of midge necessitates

the inclusion of spray-out rows to allow for access of spraying machinery. These spray-

out rows occur at regular intervals across the trial, in pairs every 10 rows. Thus rows

(11,12), (23,24), . . . , (12n − 1,12n), where n depends on the total number of rows in

the trial, will be spray-out rows. The PYTM trial we consider as an example consisted

of 64 rows and 20 columns. The resolvable blocks were aligned so that block 1 occupied

rows 1 to 31 and block 2 occupied rows 32 to 64, for all columns. The sizes of the blocks

differed due to the occurrence of extra spray-out rows in block two.

The genetic design was determined by the aim. The aim of the PYTM trial is to select

roughly 10 % of the F4 male parental lines for promotion to Advanced trials. The PYTM

trial represents the first opportunity for selection on yield and therefore the breeder is in-

terested in both family and individual performance. A total of 783 F4 males were crossed

with one female. The 783 F4 males were distributed across 48 full-sib families. The num-

ber of lines per family varied from 1 to 70 with an average of 17.4. In addition to the

phenotypic data from the trial there was pedigree information on 1778 lines, including 61

founder lines (i.e. lines with unknown parents). The average inbreeding coefficient of the

F1 hybrids was 0.07, ranging from 0 to 0.24, while the average inbreeding of the ancestral

lines was 0.985. The genetic connectivity in the design was high with an average additive

correlation of 0.499 between the F1 hybrids. The availability of pedigree information is

fundamental to the analysis that follows.
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3. STATISTICAL METHODS

3.1. EXCLUDING INFORMATION ON PEDIGREES

We begin by considering the analysis which does not use information on pedigrees. Our
approach uses the enhanced spatial modeling ideas found in Stefanova, Smith, and Cullis
(2009). They describe an approach to the analysis of individual trials using a “hybrid”
approach which includes terms in the linear mixed model to account for spatial variation
and randomization processes used in the design.

The model for data vector yn×1 = vec(Yr×c) can be written as

y = Xτ + Zgdo
ugdo

+ Zpup + e (3.1)

where the vectors τ ,ugdo
,up represent fixed effects, random variety direct effects and

random non-genetic (or peripheral, i.e. design and additional) effects, respectively. The
vec( ) operator stacks the columns (here 1,2, . . . , c) of its matrix argument into a vector of
length n = rc, where r is the number of rows in the trial and c is the number of columns.
The additional subscript o and d , for the vector of direct effects ugdo

has been used to
distinguish that this vector contains direct effects for entries which are in the data-set, as
opposed to entries which are in the pedigree but are not in the data-set. We shall denote the
vector of the latter direct effects by ugdp

(see Section 3.2) and we also introduce neighbor
effects in Section 3.3.

All random effects are assumed to follow a Gaussian distribution, with mean zero and
each of the three random effect vectors are assumed pair-wise independent. Variance mod-
els used for the random and residual effects are given by

var(ugdo
) = σgdd

Imo,

var(up) =
b⊕

l=1

σ 2
pl

Iql
,

var(e) = R = σ 2�c ⊗ �r

(3.2)

where we use In to denote an identity matrix of order n. mo represents the number of
hybrids present in the data-set. The symbol ⊗ denotes the Kronecker product and is defined
for example in the appendix in Smith, Cullis, and Thompson (2005). The symbol ⊕ denotes
the direct sum and is a shorthand method for expressing a block diagonal matrix. For
example,

b⊕

l=1

σ 2
pl

Iql
=

⎛

⎜⎜⎜⎜⎜⎝

σ 2
p1

Iq1 0 . . . 0

0 σ 2
p2

Iq2

. . .
...

...
. . .

. . . 0
0 . . . 0 σ 2

pb
Iqb

⎞

⎟⎟⎟⎟⎟⎠
. (3.3)

The variance models in (3.2) allow for a genetic variance component (σgdd
), a maxi-

mum of b random non-genetic terms, with the lth term (l = 1 . . . b) having ql effects and
an associated variance component (σ 2

pl
), a residual variance parameter (σ 2) and residual
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(scaled) covariance structure expressed as a Kronecker product of two (scaled) covariance
matrices for the factors which enumerate the two dimensions of the field layout (typically
called rows and columns; the factor rows is assigned, by default to the largest dimension of
the array). The correlation structure is modeled using a first order separable autoregressive
process (AR1) in each direction. The submatrices �r and �c are the scaled covariance
matrices for columns and rows, respectively, and are functions of vectors of unknown pa-
rameters denoted by φr and φc , respectively.

3.2. INCLUDING INFORMATION ON PEDIGREES

The extension of (3.1) to include pedigree information has been described in Oakey et al.
(2006) for single trials and Oakey et al. (2007), Beeck et al. (2010) and Cullis et al. (2010)
for multi-environment trials. These papers fully describe the partitioning of the genetic
variance into additive and non-additive parts. This method has been used extensively, see
for example Burgueno et al. (2007), de los Crossa et al. (2010), Piepho et al. (2008) to
name a few.

In the following we present a brief overview of the models described by Oakey et al.
(2006) and Oakey et al. (2007) but extend their models to explicitly account for the parti-
tioning of the vector of (total) genetic effects into two sub-vectors. That is, if we let ugd

be the vector of (total) genetic direct effects, then we assume that ugd
= (uT

gdp
,uT

gdo
)T . The

vector ugdp
is the vector of genetic direct effects of entries in the pedigree but not present

in the data-set and as before the vector ugdo
is the vector of genetic effects for entries in the

pedigree and present in the data-set. These vectors are of length mp and mo, respectively,
and m = mp + mo.

We use the genetic model for ugd
which assumes that

ugd
= uad

+ ued
(3.4)

where uad
represents the vector of entry additive genetic direct effects and ued

represents
the vector of residual genetic direct effects. Each of these vectors are partitioned con-
formably with ugd

with respect to the present/not present in the current data-set (the third
suffix, viz p for “parent” and o for “offspring” present in the data-set). Our model includ-
ing pedigree information is derived by replacing ugdo

in (3.1) with ugd
of (3.4) so is given

by

y = Xτ + Zgd
(uad

+ ued
) + Zpup + e (3.5)

where Zgd
= [0 Zgdo

].
We assume that each of the vectors of genetic direct effects namely uad

and ued
are

(pair-wise) independent and are Gaussian with zero mean, with variance matrices σadd
A,

and σedd
Im.

The matrix A = {aij } is the relationship matrix and its elements are given by aii = 1+Fi

and aij = 2fij where Fi is the inbreeding coefficient of entry i and fij is the coefficient of
parentage between entries i and j . The inbreeding coefficient is the percentage of similarity
a genotype will have when crossed with itself. The coefficient of parentage is the genetic
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distance between two genotypes calculated as the sum of all the coefficients for all common
ancestors between the genotypes.

All computations including the matrix A−1 are computed in the R (Development Core
Team 2008) package ASReml-R (Butler et al. 2009). The matrix A−1 is calculated using
the asreml.Ainverse function which uses the algorithms of Meuwissen and Luo (1992)
and Henderson (1976) with modifications to adjust for selfing. Details are given in an
unpublished report (Gilmour, pers comm.).

3.3. INCLUDING INFORMATION ON PEDIGREES AND COMPETITION

To allow for interplot competition in the row direction we incorporate the random effects
treatment interference model (R-TIM) of Stringer, Cullis, and Thompson (2011). Each
entry is assumed to have a direct genetic effect (for each of the components) on the plot
into which it was sown and a neighbor effect on the adjacent row-neighbor plots. Hence
(3.5) can be extended as follows

y = Xτ + Zg(ua + ue) + Zpup + e (3.6)

where ua = (uT
ad

,uT
an

)T , and ue = (uT
ed

,uT
en

)T , where the subscripts d and n represent the
direct and neighbor effects, respectively. The associated genetic design matrix is given by
Zg = [Zgd

NgZgd
], where Ng = Ic ⊗ Nr and Nr is the within-row first order neighbor

incidence matrix.
Stringer, Cullis, and Thompson (2011) proposed two variance models for the R-TIM.

In the first, more general model, the variance matrices for the vectors of genetic effects are
given by

var(ua) =
(

σadd
σadn

σadn
σann

)
⊗ A = Ga ⊗ A,

var(ue) =
(

σedd
σedn

σedn
σenn

)
⊗ Im = Ge ⊗ Im.

The second form for the R-TIM corresponds to the model of Draper and Guttman (1980) in
which the neighbor effects are assumed to be a scalar multiple of the direct effects. In terms
of our notation this leads to reduced rank forms (with rank 1) for the variance matrices Ga

and Ge. This model can be fitted in ASReml-R using the algorithm described in Thompson
et al. (2003).

All models in this paper were fitted using the ASReml-R package (Butler et al. 2009).
This provides residual maximum likelihood (REML) estimates of the variance parameters,
empirical best linear unbiased estimates (E-BLUEs) of the fixed effects and empirical best
linear unbiased predictions (E-BLUPs) of the random effects.

It is important to note that the design of this trial did not allow for the genetic relation-
ships and therefore there may be a chance that neighboring plots contain hybrids that are
genetically related. In this case the yields may display similarities that are not due to in-
terplot competition but rather to the genetic relationship. This demonstrates that it is vital
that the pedigree relationships be allowed for in order to assess competition effects and
appropriate pure stand yields.
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Table 1. Summary of the models fitted to the PYTM trial. The notation RR() denotes the Draper and Guttman
variance model for the terms in brackets, D—direct effects, N—neighbor effects. All models also
include a random Block term.

Model Add Nonadd Other logl Test P -value

1 D D −453.02
2 D D Row, Column −430.80
2a D D Column −450.83 M2a v M2 0.000
2b D D Row −434.93 M2b v M2 0.002
3 RR(D,N) RR(D,N) Row, Column −420.48
3a RR(D,N) D Row, Column −422.41 M3a v M3 0.049
3b D RR(D,N) Row, Column −426.67 M3b v M3 0.000

Table 2. REML estimates of variance parameters from three models fitted to PYTM data. Model 1: base-line
spatial with pedigree information; Model 2: base-line spatial with pedigree information plus random
row and column effects; Model 3: joint spatial and competition with pedigree information. Genetic
parameters are above the line and non-genetic below. σ 2

p1
, σ 2

p2
and σ 2

p3
are the variance components

for blocks, columns and rows, respectively.

Variance Model 1 Model 2 Model 3
parameter estimate estimate estimate

σadd
0.281 0.239 0.137

σann 0.020
σadn

−0.052
σedd

0.241 0.248 0.120
σenn 0.006
σedn

−0.027

σ 2 0.630 0.525 0.449
σ 2
p1

0.312 0.307 0.304

σ 2
p2

0.017 0.016

σ 2
p3

0.092 0.087
φc 0.17 −0.01 0.05
φr −0.11 −0.18 0.12

4. RESULTS AND DISCUSSION

Table 1 presents the summary of the sequence of models fitted to the PYTM trial. Our
analysis commenced by fitting a base-line model following the approaches recommended
by Gilmour, Cullis, and Verbyla (1997) and recently modified by Stefanova, Smith, and
Cullis (2009). This model included direct (D) effects for both additive and non-additive
genetic effects, as well as a Block term to respect the resolvability of the design, and lastly
used a separable first order autoregressive variance model for the residuals.

The base-line spatial analysis for the PYTM trial resulted in the estimated variance
parameters as given for Model 1 in Table 2. The negative auto-correlation (−0.11) for the
row dimension is indicative of the existence of interplot competition (Stringer and Cullis
2002). A standard tool for examining the adequacy of an assumed spatial model is the graph
of the sample variogram Gilmour, Cullis, and Verbyla (1997). In order to focus on the effect
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Figure 1. Plots of the row and column faces of the empirical semi-variogram for the residuals (solid line) for
the PYTM trial from model 1 (panels (a) and (d)), model 2 (panels (b) and (e)) and model 3 (panels (c) and (f)).
These plots are augmented with the mean and 95 % point-wise coverage intervals of the row and column faces of
the empirical semi-variogram from a parametric bootstrap sample of size 100.

of competition we restrict our attention to the slice of the variogram corresponding to zero
column separation. This is given in Figure 1 for row separations up to 15. In the case of
spatial trend (that is, with a positive auto-correlation) this graph should increase smoothly
to a plateau. However the large spike at a row separation of one in Figure 1(a) means that
adjacent plots (one row apart) have a higher semi-variance than those that are further apart.
This suggests that adjacent plots have a negative effect on each other.

Figure 1 (panels (a) and (d)) present the diagnostic plots suggested by Stefanova, Smith,
and Cullis (2009). These are the row and column faces of the sample values of the empir-
ical semi-variogram of the residuals from model 1 in Table 1. These plots are augmented
with the mean and 95 % point-wise coverage intervals of the faces of the empirical semi-
variogram from a parametric bootstrap sample of size 100. This procedure is fully de-
scribed in Stefanova, Smith, and Cullis (2009), essentially the current model is simulated
100 times using the current variance components and the sample variogram is calculated
for each simulation. The 2.5 % and 97.5 % percentiles are obtained and included in Fig-
ure 1. There are clear and systematic discrepancies between the mean row and column
faces of the parametric bootstrap sample and the residuals from model 1. In both figures
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Figure 2. Pair-wise scatter plot (lower left), simple correlation coefficient (upper right) and histograms (diago-
nals) of the E-BLUPs of the pure stand effects from model 3, and the E-BLUPs of the direct effects from model
2 for the top 10 % of additive effects for the F4 male parents in the PYTM trial.

the mean is generally higher for all lags. This indicates the presence of both row and col-
umn effects.

Model 2 investigates this possibility by including random effects for both rows and
columns. There is a substantial increase in the residual log-likelihood for model 2 over
model 1. Models 2(a) and 2(b) drop the Row and Column terms, respectively, to formally
test the need for these terms. Both terms are deemed significant (p < 0.05) using Residual
Maximum Likelihood Ratio Tests (REMLRTs). Figure 1 (panels (b) and (e)) present the
diagnostic plots for the residuals from model 2. There is generally good agreement between
the row and column faces of the empirical semi-variogram with the mean of the parametric
bootstrap sample.

The noteworthy feature of these plots is the presence of a sharp “spike” at lag one for the
row-face of the empirical semi-variogram. The REML estimate of the row auto-correlation
parameter for model 2 was −0.18. This suggests that there is competition present in this
direction (i.e. between neighboring plots within the same column, sharing a common long
boundary).
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Our approach for modeling this (apparent) competition is to fit the reduced rank version
of the R-TIM to both terms, denoting this by RR(D,N).

Model 3 provided a substantial improvement in fit over model 2, with both non-additive
and additive competition deemed significant (using a REMLRT for models 3a and 3b vs.
model 3, respectively).

The diagnostic plots of the empirical semi-variogram of the residuals from model 3 are
satisfactory (panels (c) and (f) in Figure 1). Note that the level of these plots has dropped
quite appreciably from the previous model (panels (b) and (e)), reflecting the amount of
variation explained by the competition effects, this is also reflective in the reduction of
σ 2 (see Table 2). Also note that the large spike in the row-face of the empirical semi-
variogram has been removed. The REML estimate of the row auto-correlation parameter
for this model was 0.12, compared with −0.18 for model 2 (Table 2).

Figure 2 presents a plot of the top 10 % of the empirical BLUPS (E-BLUPs) of the pure
stand yield (ũad

+ 2ũan) from model 3 versus the E-BLUPs of the direct effects for model
2 for the F4 male parents. The simple correlation coefficient, displayed in the top right
panel shows a correlation of 0.56 for the top 10 % of the E-BLUPs from these two models.
This suggests that the selection of male parents from each model is noticeably different, in
fact the top 10 % of the E-BLUPs from both models only have 77 % of the male parents in
common. Additionally, the E-BLUPs of the pure stand effects are substantially smaller in
magnitude than the E-BLUPs of the direct effects. This is due to the negative relationship
between the direct and neighbor effects.

[Received March 2012. Accepted October 2012. Published Online November 2012.]
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