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Insects are among the most significant indicators of a changing climate. Here we
evaluate the impact of temperature, precipitation, and elevation on the tree-killing abil-
ity of an eruptive species of bark beetle in pine forests of British Columbia, Canada. We
consider a spatial-temporal linear regression model and in particular, a new statistical
method that simultaneously performs model selection and parameter estimation. This
approach is penalized maximum likelihood estimation under a spatial-temporal adap-
tive Lasso penalty, paired with a computationally efficient algorithm to obtain approx-
imate penalized maximum likelihood estimates. A simulation study shows that finite-
sample properties of these estimates are sound. In a case study, we apply this approach
to identify the appropriate components of a general class of landscape models which
features the factors that propagate an outbreak. We interpret the results from ecological
perspectives and compare our method with alternative model selection procedures.

Key Words: Autoregressive models; Bark beetle; Lattice model; Model selection; Pe-
nalized maximum likelihood; Spatial-temporal process.

1. INTRODUCTION

Insects are among the most significant indicators of a changing climate, as tempera-
ture is inextricably linked to activities such as foraging and reproductive success in these
cold-blooded organisms. Deviations from seasonal precipitation norms, such as summer
drought, can stress host plants and facilitate access by insects to host pools that would oth-
erwise be inaccessible (Raffa et al. 2008). In forest ecosystems, rapid increases in insect
populations facilitated by suitable climatic conditions can result in dramatic range shifts of
herbivorous insects, affect subsequent host utilization patterns, and alter the frequency and
severity of natural disturbance regimes such as wildfire (Battistia et al. 2006; Jenkins et al.
2008; Bentz et al. 2010).
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Bark beetles comprise a group of forest insects that reproduce within the stems of ma-
ture trees. While the majority of species colonize and cull weakened trees, some species
can erupt into immense populations that can kill otherwise healthy hosts over large regions
(Raffa et al. 2008). Currently, for example, there is an enormous outbreak of mountain pine
beetle [Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae; alt.: Scolytinae: Cur-
culionidae)] covering more than 17 million hectares of mature lodgepole pine forest in the
provinces of British Columbia and Alberta, Canada. This outbreak has been exacerbated
by two factors; first, an abundance of susceptible pine, caused in part by altered disturbance
regimes such as fire suppression; and second, a changing climate. The outbreak, exerting
carbon impacts at a scale in the order of mega tonnes (Kurz et al. 2008), has expanded
with each annual generation of insects. In the past five years, the beetles have breached
a historic geoclimatic barrier of the Rocky Mountains into northwestern Alberta and now
threaten to expand their range across the boreal forest to the east coast of North America
(Safranyik et al. 2010; De la Giroday et al. 2011).

The scientific questions of interest and importance such as the nature of factors that
propagate outbreaks can be addressed via building a general class of landscape models and
identifying the most appropriate components of the general model. These include the most
important covariates and, with strong temporal and spatial dependence through ecological
processes of reproduction and dispersal, suitable spatial, temporal, and/or spatial-temporal
dependence patterns as well. To address these scientific questions, we consider a general
modeling framework for spatial-temporal lattice data and a likelihood-based approach to
statistical inference. In particular, we apply a new method for the simultaneous selection
of covariates and spatial-temporal dependence structure.

Spatial lattice models are important tools for the analysis of spatial lattice data and
have been applied to many disciplines (see, e.g., Schabenberger and Gotway 2005). How-
ever, development of spatial-temporal lattice models is not as advanced as spatial lattice
models. Although it has been an area of active research, the modeling and inference frame-
work is generally Bayesian hierarchical modeling which is flexible and powerful (see, e.g.,
Banerjee, Carlin, and Gelfand 2004). In our opinion, however, Bayesian inference tends
to be computationally intensive (see, e.g., Zheng and Zhu 2008) and model selection is
not always adequately addressed in spatial-temporal modeling, possibly because of the
high computational cost. In this regard, we take an alternative, maximum likelihood-based
approach for the selection of spatial-temporal lattice models.

Variable selection via penalized methods for standard linear regression has gained pop-
ularity in the last decade or so. Innovations include least absolute shrinkage and selection
operator (Lasso) (Tibshirani 1996), adaptive Lasso (Zou 2006), and penalized least squares
or maximum likelihood under nonconcave penalty (Fan and Li 2001). For efficient com-
putation, Efron et al. (2004) proposed least angle regression (LARS) algorithms, whereas
Zou and Li (2008) developed one-step sparse estimation for approximation of solutions.
While most penalized methods assume independence, some are becoming available for
dependent data such as time-series data (see, e.g., Wang, Li, and Tsai 2007a) and spatial
lattice data (see, e.g., Huang et al. 2010; Zhu and Liu 2009; Zhu, Huang, and Reyes 2010).

For selection of spatial-temporal lattice models, however, the methodology available
is limited. To the best of our knowledge, our work is the first to employ penalized meth-
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ods to spatial-temporal lattice models for simultaneous selection of covariates and spatial-
temporal dependence structures. Furthermore, we tailor our new model selection technique
toward the analysis of MPB outbreak data and evaluate the impact of climatic variables on
the outbreaks across space and over time. In particular, we utilize innovations such as
LARS algorithms and one-step sparse estimation when devising our computational algo-
rithms to ensure computational efficiency. In addition, we contrast the new method with
alternative approaches taken by practitioners.

The remainder of the paper is organized as follows. In Section 2, we introduce a general
class of spatial-temporal lattice models with a flexible parameterization of spatial-temporal
neighborhood. In Section 3, we describe spatial-temporal Lasso for model selection and re-
lated computational issues. A simulation study is given in Section 4. A detailed description
of the scientific background and data analysis using spatial-temporal Lasso is given in Sec-
tion 5, as well as comparison against alternative approaches in practice. A summary is
given in Section 6.

2. STATISTICAL MODEL

2.1. SPATIAL-TEMPORAL LATTICE MODEL

Let DI = {s1, . . . , sI } ⊂ R
d denote a spatial grid consisting of I sites si , for i =

1, . . . , I , which are sometimes viewed as representatives of the grid cells that parti-
tion a spatial domain of interest. Let yi,t = y(si , t) denote the response variable at site
si ∈ DI and time t , for i = 1, . . . , I, t = 1, . . . , T . Further, xi,t = (x1,i,t , . . . , xJ,i,t )

′ is a
J -dimensional vector of covariates at site si time t . Consider a linear regression model

yi,t = x′
i,tβ + εi,t , (2.1)

where β = (β1, . . . , βJ )′ is a J -dimensional vector of regression coefficients. We model
the error term by a spatial-temporal autoregressive model (Section 6.8, Cressie 1993). In
particular, let

εt =
L∑

l=0

Clεt−l + νt , (2.2)

where εt = (ε1,t , . . . , εI,t )
′ denotes an I -dimensional vector of errors at time t for t =

1, . . . , T , L ≥ 0 is a pre-specified maximum time lag, and Cl for l = 0, . . . ,L are I × I

matrices consisting of c
(l)

i,i′ with i, i′ = 1, . . . , I . The matrices C0 and Cl (l > 0) com-
prise autoregressive coefficients among spatial neighbors at the same time point and at two
time points that are l time lags apart, respectively. Furthermore, νt = (ν1,t , . . . , νI,t )

′ ∼
iidN(0, σ 2I I ) consists of iid noise with mean 0 and variance component σ 2. Under this
assumption, the error term in (2.1) follows a zero-mean Gaussian process with

ε ∼ N(0,�), (2.3)

where ε = (ε1,1, . . . , εI,T )′ denotes an N -dimensional vector of errors, and � is an N × N

covariance matrix consisting of cov(εi,t , εi′,t ′), for i, i′ = 1, . . . , I , t, t ′ = 1, . . . , T , and
N = IT .
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There are different ways of setting the initial values of ε1−l for l = 1, . . . ,L. One ap-
proach is to set them to zero ε1−l = 0, but this would result in different equations (2.2) for
the initial L time points and, thus, possible bias. Another approach that circumvents this
boundary effect is to let ε1−l = εT +1−l for l = 1, . . . ,L. It can be shown that, under the
zero initial values for the error terms, the covariance matrix is

� = σ 2(IN − C)−1(IN − C′)−1
, (2.4)

where C is a block-lower-triangular matrix with C0 as the diagonal blocks and Cl as the
lth subdiagonal blocks for l = 1, . . . ,L, whereas under the alternative initial values for the
error terms, the covariance matrix is

� = σ 2(IN − C − G)−1(IN − C′ − G′)−1
, (2.5)

where G = ( G1 G2
G3 G4

)
, G2 is an IL × IL upper-triangular matrix with CL as the diagonal

blocks and CL−l as the lth subdiagonal blocks for l = 1, . . . ,L − 1, and G1, G3 and
G4 are matrices of zero’s with dimensions IL × I (T − L), I (T − L) × I (T − L), and
I (T − L) × IL, respectively.

2.2. SPATIAL-TEMPORAL NEIGHBORHOOD STRUCTURE

For a given site i, we let N (i) be its neighborhood and let N (i) = ⋃K
k=1 Nk(i), where

{Nk(i) : k = 1, . . . ,K} are neighborhoods that partition N (i), i = 1, . . . , I (Zhu, Huang,
and Reyes 2010). On a regular grid, the kth-order neighbors in Nk(i) of a given site i

can be defined as the kth-nearest neighbors in terms of distance between two sites, for
k = 1, . . . ,K . For example, N1(i) consists of the four nearest neighbors in the north, south,
west, and east, N2(i) consists of the four second-nearest neighbors in the northwest, north-
east, southwest, and southeast, etc. The number of neighbors is not necessarily four at
higher orders.

We consider the following parameterization for modeling spatial-temporal dependence:

Cl =
K∑

k=0

θk,lW k,l, (2.6)

where l = 0, . . . ,L, θk,l is an unknown spatial-temporal coefficient, and W k,l = [wk,l
i,i′ ]Ii,i′=1

is an I × I matrix consisting of pre-specified spatial-temporal weights for the kth-order
neighborhood and lth-order time lag, where k = 0, . . . ,K and l = 0, . . . ,L. We assume
that the weights are symmetric in the sense that w

k,l
i,i′ = w

k,l
i′,i for all i′ �= i; k = 1, . . . ,K

and l = 0, . . . ,L. We set θ0,0 ≡ 0 and W 0,l ≡ I I for l ≥ 1 in order that at time lag l = 0,
C0 = ∑K

k=1 θk,0W k,0 features spatial autocorrelation among neighbors via spatial-only co-
efficients θk,0 for k = 1, . . . ,K ; and that at time lag l ≥ 1, Cl = θ0,lI I + ∑K

k=1 θk,lW k,l

features spatial-temporal autocorrelation via temporal-only coefficients θ0,l for l =
1, . . . ,L and spatial-temporal coefficients θk,l for k ≥ 1 and l ≥ 1.

The parameterization (2.6) is general and quite flexible. It features spatial-temporal in-
teraction, as it allows autocorrelation between site i at time t and site i′ at time t ′, provided
that sites i and i′ are spatial neighbors and t and t ′ are within L time points apart. This
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general form will be referred to as a space-time interaction model. Moreover, by con-
straining the individual spatial-temporal coefficients {θk,l}, (2.6) gives rise to other simpler
spatial-temporal models. For example, by letting the spatial-temporal coefficients θk,l = 0
for k ≥ 1, l ≥ 1, the space-time interaction model in (2.6) is reduced to a space-time separa-
ble model, where temporal autocorrelation is allowed, but only for a same site. By setting
θk,l = 0 for k ≥ 1, l ≥ 1 and furthermore θ0,l = 0, spatial autocorrelation is allowed but
there is no temporal autocorrelation.

3. STATISTICAL INFERENCE

3.1. SPATIAL-TEMPORAL LASSO

Let θ = (θ1,0, . . . , θK,0, . . . , θ1,L, . . . , θK,L, θ0,1, . . . , θ0,L)′ denote an R-dimensional
vector of spatial-temporal coefficients, where R = (K + 1)(L + 1) − 1. Henceforth, we
replace the double index in θk,l with a single index θr , for r = 1, . . . ,R, except where
double indexing aids interpretation. Let γ = (θ ′, σ 2)′, we sometimes use �γ to empha-
size the parameterization of � by γ . Let y = (y1,1, . . . , yI,T )′ denote an N -dimensional
vector of response variables and let X = [x1, . . . ,xJ ] denote an N × J design matrix,
where xj = (xj,1,1, . . . , xj,I,T )′ denotes an N -dimensional vector of the j th covariate with
j = 1, . . . , J . Thus, by (2.1) and (2.3),

y ∼ N(Xβ,�γ ). (3.1)

We now consider selection of covariates and spatial-temporal dependence structure. For se-
lection of covariates, our method will determine which regression coefficients are nonzero.
For selection of a spatial-temporal dependence structure, we utilize the parameterization in
(2.6) and determine which of the spatial-temporal coefficients are nonzero.

Let η = (β ′,γ ′)′ denote a (J + R + 1)-dimensional vector of model parameters con-
sisting of both regression coefficients and spatial-temporal coefficients. Under (3.1), the
log-likelihood function is

logL(η;y,X) = const − (1/2) log |�γ | − (1/2)(y − Xβ)′�−1
γ (y − Xβ)

≡ const + �(η).

We let η̂MLE = arg maxη �(η) denote the maximum likelihood estimates (MLE) of η.
We consider the following penalized log-likelihood function:

Q(η) = �(η) − N

J∑

j=1

λj |βj | − N

R∑

r=1

τr |θr |, (3.2)

where the last two terms are adaptive Lasso penalty on the coefficients, {λj }Jj=1 are regu-

larization parameters for the regression coefficients β , and {τr}Rr=1 are regularization pa-
rameters for the spatial-temporal coefficients θ . We let η̂PMLE = arg maxη Q(η) denote the
penalized maximum likelihood estimates (PMLE) of η.
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Let η̂(0) = (β̂
(0)′

, γ̂ (0)′
)′ denote an initial value of η, which is set to the MLE η̂MLE.

Given that η ≈ η̂(0), we approximate the penalized log-likelihood function (3.2) up to a
constant by

Q∗(η) = (
η − η̂(0)

)′ ∂�(η̂(0)
)

∂η
− (1/2)

(
η − η̂(0)

)′
I
(
η̂(0)

)(
η − η̂(0)

)

− N

J∑

j=1

λj |βj | − N

R∑

r=1

τr |θr |, (3.3)

where I(η) = Eη{− ∂2�(η)
∂η∂η′ } is an expected information matrix (Zhu, Huang, and Reyes

2010). We propose to approximate η̂PMLE by

η̂(1) = arg max
η

{
Q∗(η)

}
. (3.4)

Since the expected information matrix is block diagonal with I(η) = diag{I(β),I(γ )},
we obtain β̂

(1)
and γ̂ (1) separately. That is,

β̂
(1) = arg min

β

{
−(

β − β̂
(0))′ ∂�(η̂(0)

)

∂β
+ (1/2)

(
β − β̂

(0))′
I
(
β̂

(0))(
β − β̂

(0))

+ N

J∑

j=1

λj |βj |
}

. (3.5)

It can be shown that the solution of (3.5) can be attained equivalently by

β̂
∗(1) = arg min

β∗

{
(1/2)

(
y∗ − X∗β∗)′(

y∗ − X∗β∗) + N

J∑

j=1

∣∣β∗
j

∣∣
}

, (3.6)

where y∗ = (A−1)′{ ∂�(η̂(0)
)

∂β + I(β̂
(0)

)′β̂(0)}, X∗ = Adiag{λ−1
j }Jj=1, β∗ = diag{λj }Jj=1β ,

and I(β̂
(0)

) = A′A. Hence, β̂
(1) = diag{λ−1

j }Jj=1β̂
∗(1)

.
Next,

γ̂ (1) = arg min
γ

{
−(

γ − γ̂ (0)
)′ ∂�(η̂(0)

)

∂γ
+ (1/2)

(
γ − γ̂ (0)

)′
I
(
γ̂ (0)

)(
γ − γ̂ (0)

)

+ N

R∑

r=1

τr |θr |
}

. (3.7)

Given that σ 2 is not subject to any penalty, we let

X∗∗
r = τ−1

r (Br − crBR+1), r = 1, . . . ,R, and X∗∗
R+1 = BR+1,

where cr = B ′
R+1Br/B

′
R+1BR+1, for r = 1, . . . ,R, and I(γ̂ (0)

) = B ′B . It follows that

X∗∗′
R+1X

∗∗
r = 0 for r = 1, . . . ,R. Let y∗∗ = (B−1)′{ ∂�(η̂(0)

)
∂γ +I(γ̂ (0)

)′γ̂ (0)}. It can be shown
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that the solution of σ 2 in (3.7) has a closed form (σ̂ ∗2)(1) = X∗∗′
R+1y

∗∗/X∗∗′
R+1X

∗∗
R+1, where

σ ∗2 = ∑R
r=1 crθr + σ 2. Furthermore,

θ̂
∗(1) = arg min

θ∗

{
(1/2)

(
y∗∗ − X∗∗θ∗)′(

y∗∗ − X∗∗θ∗) + N

R∑

r=1

∣∣θ∗
r

∣∣
}

, (3.8)

where X∗∗ = [X∗∗
1 , . . . ,X∗∗

R ] and θ∗ = diag{τr}Rr=1θ . Hence, θ̂
(1) = diag{τ−1

r }Rr=1θ̂
∗(1)

and (σ̂ 2)(1) = (σ̂ ∗2)(1) − ∑R
r=1 cr θ̂

(1)
r .

Let η̂APMLE = η̂(1) denote the approximate penalized maximum likelihood estimates

(APMLE) of η, where η̂(1) = (β̂
(1)′

, γ̂ (1)′
)′. Equations (3.6) and (3.8) can be solved by a

LARS algorithm, and thus the computation is efficient. Although Equation (3.4) can be
iterated until convergence, a one-step solution is preferred here because it is computation-
ally efficient and the estimates still possess desirable asymptotic properties, as is explained
in the next section.

3.2. STANDARD ERRORS AND OTHER COMPUTATIONAL ASPECTS

In Reyes (2010) Chapter 3, the existence, consistency, and sparsity of the PMLE were
established. In addition, a central limit theorem for the PMLE of the nonzero-valued re-
gression and spatial-temporal coefficients were given. Furthermore, the consistency of the
APMLE and its asymptotic normality at the rate of N1/2 were established, with the same
limiting distribution as that of the PMLE. Thus, although η̂APMLE obtained from our com-
putational algorithm is a local optimum and is not necessarily a global optimum, it has
the desirable asymptotic properties. Interestingly, the asymptotic framework requires that
either the number of time points of observation tend to infinity or the spatial lattice, but not
necessarily both. Thus it includes the practical situation where the spatial lattice is fixed,
but observations are made repeatedly over longer periods of time. Accordingly, we have

var(β̂) ≈ I(β)−1, var(γ̂ ) ≈ I(γ )−1,

where I(β) and I(γ ) are obtained from the expected information matrix I(η).
Since Eη{−∂2�(η)/∂β∂γ ′} = 0, the expected information matrix becomes

I(η) = diag
{
I(β),I(γ )

}
, (3.9)

where I(β) = Eη{− ∂2�(η)

∂β∂β ′ } = X′�−1X and the (r, r ′)th entry of I(γ ) = Eη{− ∂2�(η)
∂γ ∂γ ′ } is

(1/2)tr(�r��r ′
�), with �r = ∂�−1

∂γr
for r, r ′ = 1, . . . ,R+1 where, for ease of presentation,

γR+1 = σ 2. Evaluating (3.9) at the APMLE, we obtain estimates of the covariance matrix,
which are used in Section 5.2 to compute the standard errors of AMPLE.

To estimate the regularization parameters, {λj }Jj=1 and {τr}Rr=1, we let

λj = λ log(N)
(
N |β̂j |

)−1
, τr = τ log(N)

(
N |θ̂r |

)−1
, (3.10)

where β̂j and θ̂r are the entries of β̂MLE and θ̂MLE. The dimension reduction in (3.10) is
useful, as now only two regularization parameters instead of J + R need to be estimated
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(Zhu, Huang, and Reyes 2010). To determine λ and τ , we compute Bayesian information
criterion (BIC),

BIC(λ, τ ) = −2�(η̂;λ, τ) + e(λ, τ ) logN, (3.11)

where e(λ, τ ) = ∑J
j=1 I {β̂j �= 0} + ∑R

r=1 I {θ̂r �= 0}, for all combinations of λ and τ

(Wang, Li, and Tsai 2007b). We select the combination that has the smallest BIC value.
Since we utilize a LARS-type algorithm, we may obtain parameter estimates at different λ

and τ in one path.

4. SIMULATION STUDY

We conduct simulation to examine the finite-sample properties of APMLE. Consider
two square lattices with sizes 5 × 5 and 10 × 10. The corresponding lattices sizes are
I = 25 and 100. For each lattice size, we consider two total time points T = 5 and 10.
That is (T = 5, I = 25), (T = 10, I = 25), (T = 5, I = 100), and (T = 10, I = 100),
corresponding to sample sizes N = 125,250,500, and 1,000, respectively. For the sample
size N = 500, we consider an additional case of (T = 20, I = 25) to compare with the case
of (T = 5, I = 100).

For linear regression, we set seven covariates to follow a standard normal distribu-
tion. Covariates are constructed as follows to have spatial, temporal and cross-covariate
correlation. First, generate the j th covariate uj = (uj,1,1, . . . , uj,I,T )′, such that it has
an exponential covariance function with no nugget and range parameter 1. That is,
cov(uj,i,t , uj,i′,t ) = exp{−d(si , s

′
i )}, where d(si , s

′
i ) is the distance between sites i and i′,

i, i′ = 1, . . . , I . Next, we construct zi,t = (z1,i,t , . . . , z7,i,t )
′ by letting zi,t = Aui,t , where

ui,t = (u1,i,t , . . . , u7,i,t )
′, AA′ = [ρ|j−j ′|

A ]7
j,j ′=1, and ρA = 0.5. Finally, the temporal corre-

lation is induced by letting xj,i = Bzj,i , where xj,i = (xj,i,1, . . . , xj,i,T )′ for the j covari-

ate at site i, zj,i = (zj,i,1, . . . , zj,i,T )′, BB ′ = [ρ|t−t ′|
B ]T

t,t ′=1, and ρB = 0.5. The regression
coefficients are set to β = (4,3,2,1,0,0,0)′. We standardize each covariate to have mean
0 and variance 1, as well as the response variable to have mean 0. Thus there will be no
intercept term.

The error term is assumed to have mean 0 and follow the covariance function (2.4). The
spatial-temporal coefficients are set to θ = (0.2,0,0.05,0,0.1)′. That is, for both time lags
l = 0,1, the true neighborhood structure is of the first order, and the true temporal structure
is of the first order. In model fitting, however, we allow both first and second order for the
spatial neighborhood structure.

For each combination of I and T , a total of 100 data sets are simulated. We compute
APMLEs by the algorithm in Section 3. Table 1 summarizes the results. In particular, we
compute an average number of correctly identified non-zero values coefficients, as well as
zero-valued coefficients, for both regression and spatial-temporal coefficients. For a non-
zero-valued coefficient, we compute an average of the APMLE and compare that with
the true parameter value for evaluating accuracy of the APMLE. From the APMLEs, we
also compute a standard deviation for assessing precision of the estimates. We present the
estimate of the variance component even though it is not subject to penalty.
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Table 1. Average number of correctly identified zero and nonzero regression coefficients {βj } and spatial-
temporal coefficients {θk,l}, mean approximate penalized maximum likelihood estimate (MAPMLE),
and standard deviation (SD).

Grid size I 25 25 25 100 100
Time points T 5 10 20 5 10
Sample size N 125 250 500 500 1000 Truth

Regression coefficients
Selection of covariates

# nonzero βj 4.00 4.00 4.00 4.00 4.00 4
# zero βj 1.76 1.78 1.81 1.86 1.79 3

MAPMLE and SD
β1 3.99 3.99 4.00 4.00 4.00 4.00
SD 0.0106 0.0075 0.0043 0.0044 0.0021
β2 3.02 3.02 3.00 3.01 3.00 3.00
SD 0.0377 0.0170 0.0077 0.0051 0.0029
β3 1.98 2.01 2.01 2.00 2.00 2.00
SD 0.0389 0.0121 0.0052 0.0057 0.0031
β4 0.99 0.99 1.00 0.99 1.01 1.00
SD 0.0197 0.0071 0.0039 0.0064 0.0031

Spatial-temporal coefficients
Selection of spatial-temporal dependence
# nonzero θk,l 1.86 2.19 2.52 2.37 2.86 3

# zero θk,l 1.45 1.48 1.50 1.66 1.23 2

MAPMLE and SD
θ1,0 0.20 0.20 0.20 0.20 0.21 0.20
SD 0.0011 0.0004 0.0002 0.0002 0.0004

θ1,1 0.02 0.04 0.04 0.03 0.05 0.05
SD 0.0024 0.0023 0.0014 0.0013 0.0006

θ0,1 0.06 0.09 0.10 0.08 0.12 0.10
SD 0.0096 0.0081 0.0058 0.0054 0.0051

Variance component
MAPMLE and SD

σ 2 0.92 0.98 0.99 0.98 1.02 1.00
SD 0.0226 0.0085 0.0040 0.0044 0.0046

As the lattice size I increases or the number of time points T increases, variable se-

lection improves in terms of identification of both zero-valued and non-zero-valued coeffi-

cients. Our method seems to identify the non-zero-valued coefficients with more accuracy

than the zero-valued coefficients. There appears to be no major difference in the results

between the combination of I and T for the sample size N = 500. For estimation of the

non-zero-valued coefficients, both accuracy and precision improve as sample size increases

when either the lattice size I increases or the number of time points T increases.
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5. IMPACT OF CLIMATE ON A MOUNTAIN PINE BEETLE
OUTBREAK

5.1. SCIENTIFIC BACKGROUND

The mountain pine beetle (MPB) is an insect native to western North America. Approx-
imately the size of a grain of rice, female beetles tunnel into the bark of mature pines, emit-
ting aggregation pheromones that attract mates. Eggs are laid in galleries underneath the
bark, where the developing progeny feed within the water-conducting tissues. This feed-
ing, in concert with fungi vectored by the adult beetles, can kill mature trees when beetles
are at outbreak levels. Outbreaks typically occur when there is an abundance of suitable
host trees and environmental conditions permit beetle populations to increase. Temperature
is typically the most critical factor, serving as a cue for emergence of the annual flight of
adults and governing overwintering success. The insects overwinter as larvae within the
trees, where prolonged periods of temperatures under −40 ◦C may exert lethal mortality
to the population. Ongoing research is aimed at elucidating the nature of various factors
in outbreaks of MPB, such as habitat heterogeneity, climate, reproduction, and dispersal.
Identifying and understanding the key factors could result in reliable models that would
greatly facilitate management and planning of pine forests.

Our case study concerns an outbreak of MPB in a study region of British Columbia,
Canada, from 1977–1986, which spread over almost 800,000 ha of mature pine for-
est before collapsing due to abnormally cold autumnal weather (Stahl et al. 2006;
Aukema et al. 2008). We present the MPB data as a case study for five reasons. First,
it allows study of a recent outbreak from initiation to spread and propagation to collapse
phase. Second, the geographic area is relatively uniform with mean elevation across the
Plateau region of 1345 m (Aukema et al. 2008), which may foster uniform dispersal and,
consequently, be captured by spatial dependence. Third, temporal dependence may be
suitable for modeling the annual generation times exhibited by the majority of the pop-
ulation during this outbreak. Fourth, temperature variation is extreme, spanning more than
70 ◦C, which allows good inference on environmental covariates. Finally, alternate analyti-
cal frameworks exist for this data set, which provide a valuable comparative basis (Aukema
et al. 2008). Robust statistical tools that can provide inference and prediction of outbreak
spread behavior are critical to providing management advice, especially given the scope of
the current outbreak (Safranyik et al. 2010).

5.2. DATA DESCRIPTION

The data were collected as follows. Annual aerial surveys of killed trees, whose crowns
fade to red within a year of being killed by mountain pine beetle, were overlaid on a spa-
tial lattice of 469 cells at approximate 12 km resolution sensu Aukema et al. (2008). The
covariates we consider in our model include the average elevation of the cell and sev-
eral temperature terms. The temperature terms are defined from interpolations of observed
climate station data according to Stahl, Moore, and McKendry (2006). Variables include
the minimum, mean, and maximum temperatures for each cell over each calendar year.
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As well, we include variables defined according to the ecology of MPB per Safranyik,
Shrimpton, and Whitney (1975). We calculate the mean August temperature for each cell,
as beetles typically emerge to seek new hosts during late summer. Two degree day terms,
DD and DDEG, reflect accumulated heat days above 5.5 ◦C from August to the end of
the growing season (e.g., 50 % egg hatch requires 306 ◦C degree days) and from previ-
ous August through current July (e.g., a single annual generation requires approximately
833 ◦C degree days). Finally, a precipitation term is included, although is of uncertain
utility given the low reliability of interpolating precipitation from point weather stations
across mountainous regions.

In previous work, the focus was on binary data that represent presence and absence of
outbreak in any given cell as the response variable. While such a coarse response yielded
useful results at a landscape scale, we seek to take advantage of finer details of the spa-
tial pattern that may be indicative of the eruptive potential of the insect. In the previous
approach using binary data aggregated to the cell level, a cell with several dozen small
point infestations across a 10 km cell appears the same as a cell with only one patch of
trees killed by this insect. Here, we count the number of patches of trees killed by MPB
to obtain an infestation intensity per cell. For the binary data, spatial-temporal autologis-
tic regression was applied to construct landscape models, where Monte Carlo maximum
likelihood estimation was developed for parameter estimation (Aukema et al. 2008; Zhu
et al. 2008), an improvement over the pseudolikelihood estimation (Zhu, Huang, and Wu
2005). For model selection, a two-step approach was taken. First, an information criterion
was used to determine a suitable order for the spatial and temporal neighborhood, and then
covariates were selected by backward elimination.

Here, in contrast, we expand these previous analysis and use intensity of infestation
in each cell. This is a more ecologically realistic approach to studying outbreak dynam-
ics of bark beetles, because outbreaks typically commence as a single mass-attacked tree,
growing to patches of 10–20 trees in subsequent years, before coalescing into large gray
areas where trees have lost their needles. Moreover, equipped with the new method, we
are able to identify the more important covariates and appropriate spatial-temporal neigh-
borhood structure by penalized maximum likelihood. There are at least two advantages of
our new approach. First, our model selection procedure has desired asymptotic properties
in terms of consistency, sparsity, and asymptotic normality; and second, the accompanying
computational algorithm for our method is efficient and thus more feasible for practical
use. Because the previous algorithm required Monte Carlo simulation, even though com-
putation was faster than Bayesian inference, it was still time consuming and sometimes
numerically unstable (Zheng and Zhu 2008).

Figure 1 shows the geographic location of the study region and the average digital el-
evation in the 12 km by 12 km cells of the grid in our study area. The MPB infestation
intensity on the log scale is mapped for each of the 10 years from 1977 to 1986 in Figure 2.
The infestation level intensified in the early 1980s and dropped sharply after 1985. For the
analysis, infestation intensity on the log scale is used as response variable to compensate
for the skewness and the possible non-normality of infestation intensity. Among the co-
variates, strong collinearity exists. For example, elevation tends to be negatively correlated
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Figure 1. Top: Study region in British Columbia of Canada; bottom: map of elevation on a spatial lattice over-
laying the study region.

Figure 2. Map of log intensity of mountain pine beetle infestation from 1977 to 1986. The size of a circle reflects
the magnitude of log intensity. Unmarked cells correspond to absence of infestation.

with temperature and different metrics of warm temperature are positively correlated with

each other. As before, we standardize each covariate to have mean 0 and variance 1, as well

as the response variable to have mean 0.
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Table 2. Nonzero approximate penalized maximum likelihood estimate and standard error in parentheses of
model parameters in the study of a mountain pine beetle outbreak with selection of both covariates
and spatial-temporal dependence structure, covariates only, and spatial-temporal dependence structure
only.

Model Selection Covariates & Covariates Dependence
Dependence Only Only

Covariates
Elevation β1 −0.11 (0.07) −0.29 (0.04) −0.29 (0.07)

Temp min β2 – 0.01 (0.06) 0.01 (0.06)
Temp max β3 0.13 (0.06) 0.34 (0.06) 0.34 (0.06)

Temp mean β4 – 0.28 (0.11) 0.28 (0.10)
August temp mean β5 – −0.23 (0.08) −0.23 (0.07)

DD β6 – −0.12 (0.08) −0.12 (0.07)
DDEGG β7 – −0.12 (0.07) −0.12 (0.08)

Precip β8 – 0.06 (0.03) 0.06 (0.03)

Time Lag 0

Spatial 1st θ1,0 0.17 (0.005) 0.16 (0.005) 0.17 (0.005)
2nd θ2,0 – −0.05 0.004 –

Time Lag 1 θ0,1 0.61 (0.02) 0.21 (0.02) 0.61 (0.02)

Spatial 1st θ1,1 – 0.04 0.008 –
2nd θ2,1 −0.10 (0.008) −0.12 (0.007) −0.10 (0.008)

Time Lag 2 θ0,2 – 0.21 (0.02) –

Spatial 1st θ1,2 – 0.09 (0.009) –
2nd θ2,2 – −0.14 (0.008) –

Variance component
σ 2 0.75 (0.02) 1.27 (0.03) 0.75 (0.02)

BIC 3660 5366 3741

5.3. MODEL SELECTION VIA SPATIAL-TEMPORAL LASSO

Now, we apply the PMLE method described in Section 3 to perform model selection and
parameter estimation. For spatial-temporal dependence, we consider up to two time lags
and up to two orders of neighbors. Regarding the initial values of ε1−l for l = 1, . . . ,L,
the results under the zero initial values are shown in Table 2, as they outperformed the fit
under the alternative, boundary-effect adjusted initial values, based on BIC values. Three
practical situations are considered for model selection. In the first case, covariates and
spatial-temporal dependence structures are selected simultaneously. In the second case,
only covariates are selected, but the spatial-dependence structure is fixed at the highest
order two for both time lags and neighborhoods. In the third case, only spatial-temporal
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dependence structures are selected, but not the covariates. Among the three situations, the
first one has the smallest BIC value. Regarding the normality assumption made here, a
graphical inspection of the residuals did not produce evidence against it.

In the first case where both covariates and spatial-temporal dependence structures are
selected, two covariates are selected: elevation and maximum temperature. The APMLE
of the coefficient for elevation is −0.11 with an estimated standard error (SE) of 0.07,
whereas the APMLE of the coefficient for maximum temperature is 0.13 with an estimated
SE of 0.06. That is, there is a negative relationship between elevation and MPB infestation
intensity, but the relationship is positive between maximum temperature and MPB infesta-
tion intensity. It suggests that higher elevations are associated with fewer patches of trees
killed by MPB, possibly because regions at higher elevations tend to have a cooler climate
and less pine. It also supports the hypothesis that warmer temperatures are associated with
more MPB infestation, as flights of adult bark beetles in search of new trees are modulated
by warmer temperature thresholds (Powell et al. 2000). In the second case where only the
covariates are selected, all the covariates are kept and the parameters estimates are close to
the third case where covariates are not selected. However, signs of some of the regression
coefficient estimates are counter-intuitive. For example, the APMLE of the coefficient for
August mean temperature is −0.23 with a SE of 0.08. This may well be a consequence of
collinearity among the covariates. Moreover, the BIC value for the second case is larger
than the other two cases. Although the first and the third cases have similar BIC values, the
first case has smaller BIC, and appears to be the better model.

For spatial and temporal dependence structure, the two cases involving spatial-temporal
dependence selection choose the same neighborhood structure. Only the first-order spatial
neighbors are selected for time lag 0 (i.e. within a same year), whereas only the same
site and the second-order spatial neighbors are selected at time lag 1 (i.e. from a previous
year). At time lag 2 (i.e. from the year before last), none of the coefficients are selected.
Clearly, there is spatial-temporal interaction and a lack of space-temporal separability in
the sense that not all θk,l = 0 for k ≥ 1, l ≥ 1. Furthermore, the shift from the first-order
to the second-order spatial dependence gives some evidence of gradual dispersion over
time. The negative coefficient associated with second-order spatial neighbors may seem
counter-intuitive for a building outbreak, but could reflect a tradeoff with the other larger
positive coefficients of time lag 0 and 1 as discrete patches of dead trees begin to coalesce
into larger areas.

5.4. COMPARISON AGAINST OTHER APPROACHES

In the presence of complex spatial-temporal dependence structure, there currently is no
standard technique for model selection. For comparison, we consider a two-step approach.
First, BIC is used to choose an appropriate spatial-temporal dependence structure from a
list of candidates. Then, with the chosen spatial-temporal dependence structure in the error
model, a backward elimination based again on BIC is applied to select covariates.

We consider this alternative technique for several reasons. First, it is common practice
to combine linear regression with information criteria (Venables and Ripley 2002). Second,
BIC is a widely used information criterion for model assessment and backward elimination
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is commonly used for the selection of covariates. Third, without separating the selection
of covariates and dependence structures, it is impractical to rely solely on BIC for model
selection especially when the number of covariates is large. Finally, in previous work, a
similar approach taken has produced reasonable results for binary responses (see, e.g.,
Aukema et al. 2008; Zhu et al. 2008).

For the error model in (2.2), there are many candidate spatial-temporal dependence
structures that can be specified. However, for each of the possible dependence structures,
all of the model parameters need to be estimated and the BIC values computed. Such a
task can be not only computationally costly, but also numerically unstable, especially for
complex models. Thus, for simplicity, we focus on only two types of dependence structure,
namely, a spatial autoregressive (SAR) model and a temporal autoregressive model up to
the Lth order (AR(L)). The SAR model can be defined by setting L = 0 and C0 = δW ,
where W = [wi,i′ ]Ii,i′=1 is an I × I matrix consisting of spatial weights according to a
neighborhood structure. The AR(L) model can be specified by C0 = 0 and Cl = ρlI I for
l = 1, . . . ,L.

Candidate models can be specified by changing the neighborhood structure for the SAR
model and by proposing different values of L for AR(L). Here, for W on a regular grid,
we consider a first-order neighborhood that comprises the four nearest neighbors (north,
south, west, and east), or combine the first-order and the second-order neighborhoods that
comprise the nearest and the second-nearest neighbors (northwest, northeast, southwest,
and southeast). For the temporal case, either L = 1 or L = 2.

Maximum likelihood was used for estimation of the parameters of candidate models.
The resulting MLEs are presented in Table 2. Based on BIC, models with only spatial de-
pendence are better than models with only temporal dependence. In fact, the model with
the smallest BIC is a SAR model that includes the first-order and second-order neighbors.
Using this dependence structure, we then applied a backward elimination to select covari-
ates which excluded elevation from the model. The estimates produced are presented in the
last column of Table 3.

On the one hand, with positive estimated coefficients, higher mean temperature and Au-
gust mean temperature appear to be associated with higher levels of MPB infestation. The
estimated spatial coefficient shows a positive dependence between neighboring sites, which
is supported by the pattern seen in Figure 2. In fact, this is not unexpected, as temperature
works to synchronize populations with the same density-dependent structure across broad
spatial areas (Aukema et al. 2006), and these insects can disperse several kilometers in
search of new host trees when at outbreak levels (Robertson et al. 2009; De la Giroday et
al. 2011). On the other hand, with negative estimated coefficients, higher values of mini-
mum and maximum temperature, DD, DDEG, and precipitation are associated with lower
levels of MPB infestation. Some of these results are counter-intuitive.

Although the BIC value of the model developed by this alternative approach is smaller
than the BIC of the best model selected by spatial-temporal Lasso, the latter resulted in a
simpler model. It is also ecologically tractable and does not suffer as much from counter-
intuitive interpretation of the regression coefficients likely induced by collinearity among
the covariates. Similar climatic signatures are apparent in analogous spatial-temporal lat-
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Table 3. Maximum likelihood estimate and standard error in parentheses of model parameters in the study of
a mountain pine beetle outbreak. The errors are assumed to independent, AR(2), or SAR(2). Also, a
two-step model selection is applied such that the dependence structure is selected first and then the
covariates via backward elimination.

Independent AR(2) SAR SAR 1st & SAR 1st &
Model Error 1st order 2nd order 2nd order

Backward

Covariates
Elevation β1 −0.25 (0.03) −0.29 (0.05) −0.27 (0.05) 0.04 (0.04) –

Temp min β2 0.19 (0.04) 0.34 (0.04) 0.15 (0.08) −0.40 (0.08) −0.60 (0.07)
Temp max β3 0.48 (0.05) 0.49 (0.04) 0.47 (0.10) −0.41 (0.10) −0.15 (0.08)

Temp mean β4 0.28 (0.08) 0.08 (0.07) 0.28 (0.16) 1.22 (0.15) 1.31 (0.12)
August temp mean β5 −0.39 (0.06) −0.43 (0.05) −0.38 (0.12) −0.11 (0.13) 0.17 (0.11)

DD β6 −0.15 (0.06) −0.18 (0.05) −0.15 (0.12) 0.23 (0.13) −0.35 (0.11)
DDEG β7 −0.18 (0.05) −0.04 (0.05) −0.19 (0.12) −1.02 (0.13) −0.50 (0.11)
Precip β8 0.07 (0.02) 0.04 (0.02) 0.05 (0.05) −0.61 (0.06) −0.26 (0.05)

Dependence Structure
Time Lag 1 ρ1 0.30 (0.01)
Time Lag 2 ρ2 0.29 (0.02)

Spatial δ 0.19 (0.003) 0.11 (0.001) 0.11 (0.001)

Variance σ 2 1.93 (0.04) 1.51 (0.03) 1.21 (0.03) 0.85 (0.02) 0.60 (0.01)

BIC 7842 6722 4232 3835 3287

tice models examining effects of climate change within the current, ongoing outbreak
(Sambaraju et al. 2011).

6. CONCLUSIONS

We have considered a spatial-temporal linear regression model and in particular, a new
statistical method that simultaneously performs model selection and parameter estimation
via a spatial-temporal adaptive Lasso. In a case study, we have evaluated the impact of
climate conditions on the tree-killing ability of an eruptive species of bark beetle in pine
forests of British Columbia, Canada. In particular, we have applied this approach to identify
the appropriate components of a general model that features the factors that propagate an
outbreak of MPB and interpret the results from ecological perspectives. A comparison has
been made against an alternative, two-step model selection procedure.

The new method requires specification of the model in its most general form. The tech-
nique produces estimates of a reduced model, where covariates and dependence structures
can be selected simultaneously. The resulting estimates have good asymptotic and finite-
sample properties that other ad-hoc procedures may not possess. In addition, alternative
approaches like the one described in Section 5.4 involve a great deal of trial and error and
the results still seem to be unstable. Depending on whether the covariates or the depen-
dence structure is selected first in a two-step procedure, the final results may vary.
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