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Bayesian MCMC calibration and uncertainty analysis for computationally expen-
sive models is implemented using the SOARS (Statistical and Optimization Analysis
using Response Surfaces) methodology. SOARS uses a radial basis function interpola-
tor as a surrogate, also known as an emulator or meta-model, for the logarithm of the
posterior density. To prevent wasteful evaluations of the expensive model, the emulator
is built only on a high posterior density region (HPDR), which is located by a global
optimization algorithm. The set of points in the HPDR where the expensive model is
evaluated is determined sequentially by the GRIMA algorithm described in detail in an-
other paper but outlined here. Enhancements of the GRIMA algorithm were introduced
to improve efficiency. A case study uses an eight-parameter SWAT2005 (Soil and Wa-
ter Assessment Tool) model where daily stream flows and phosphorus concentrations
are modeled for the Town Brook watershed which is part of the New York City wa-
ter supply. A Supplemental Material file available online contains additional technical
details and additional analysis of the Town Brook application.
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1. INTRODUCTION

This paper studies the calibration and uncertainty analysis of computationally expensive
computer models, often called simulators. As an example, we use the SWAT2005 (Soil
And Water Assessment Tool) simulator to model stream flows and total phosphorus in the
Town Brook watershed, a component of the New York City water supply. By “calibration”
we mean estimation of the parameters in the model, while by “uncertainty analysis” we
mean an assessment of the accuracy of these estimates as well as of other quantities of
importance.

Bayesian Markov Chain Monte Carlo (MCMC) is an excellent tool for uncertainty anal-
ysis, but often requires many, e.g., tens of thousands, of simulator runs. Depending upon
the simulator, a single run may take seconds, minutes, or hours, making MCMC difficult
or impossible to implement. To circumvent this problem, computationally efficient tech-
niques using interpolation of the log-posterior have been developed. We call this method-
ology SOARS (Statistical and Optimization Analysis using Response Surfaces). SOARS
enables uncertainty analysis both for parameters and scientifically relevant functions of the
parameters. SOARS uses the GRIMA (GRow and IMprove the Approximation) algorithm
of Bliznyuk, Ruppert, and Shoemaker (2012). GRIMA provides an efficient design for
the computer experimentation by concentrating simulator evaluations in the high posterior
density region (HPDR).

SOARS is a very general methodology and is applicable to any Bayesian analysis where
the likelihood is computationally expensive; see Bliznyuk, Ruppert, and Shoemaker (2011)
for another example. This paper focuses on watershed models. SOARS has already been
applied to a watershed model with one constituent, that is, where the data are a univariate
time series (Bliznyuk et al. 2008, 2011). This paper expands SOARS to multiple con-
stituents (multivariate time series), and introduces an additional step using Latin hyper-
cube sampling (LHCS) to improve SOARS’s efficiency. The application here to a model
with multiple outputs (flow and total dissolved phosphorus) is more complex than previ-
ous applications for one constituent, since the relationship between constituents depends
on a sequence of biological and physical processes. To model phosphorus, one must also
model flow, so one cannot use a simple single output analysis. Moreover, we demonstrate
that SOARS, with the improvements in efficiency reported here, is computationally feasi-
ble with 8 parameters in the simulator, whereas earlier work used fewer parameters. An-
other novel feature here is the development of a model inadequacy function (Kennedy and
O’Hagan 2001; Bayarri et al. 2007a, 2007b) for total phosphorus using a penalized spline
fit to residuals.

Let # € © be the vector containing all unknown parameters in the simulator and the
noise model. The noise model specifies random variation about the simulator output (see
Section 3). The data consists of outcomes Y and covariates (inputs to the simulator). In our
application, we use daily time series of two “outcomes” or “constituents,” stream flows and
dissolved phosphorus concentrations at a single location. The inputs are rainfall amounts.

The simulator and the noise model together specify the likelihood 7 (Y'|#). The goal is
to determine the set of likely values of 8. We adopt a Bayesian approach. In our application,
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the amount of prior information is small relative to that in the data, so we use a “noninfor-
mative” prior on @, but more concentrated priors could be used. Given the likelihood and
prior, one can in principle calculate the posterior density, 7 (0]Y).

Since exact calculation of the posterior is often impossible, often Markov Chain Monte
Carlo (MCMC) is used. Because of the positive serial correlation usually present in an
MCMC sample, to achieve a given level of accuracy, a Markov chain may need a much
larger sample size than needed for an independent sample. The sample size requirement
depends on the amount of serial correlation, which is difficult to know in advance. In
a standard implementation of MCMC, a large Monte Carlo sample size requirement is
problematic since each MCMC sample requires evaluation of the likelihood and therefore
of the simulator.

A way around this computational problem is to use an “emulator” £ of the log-posterior.
Typical emulators use either radial basis functions (RBFs) (Buhmann 2003) or Gaussian
process models (kriging) (Kennedy and O’Hagan 2001; Rasmussen 2003). We used RBFs
although kriging could have been used. We initially build the emulator response surface
by interpolation using simulator evaluations from the optimization search for the posterior
mode, plus some additional Latin hypercube samples (LHCS). The MCMC is done using
only the inexpensive emulator so that lengthy MCMC runs are computationally feasible.

To construct the emulator, one must evaluate the simulator at a set of values of @ called
“evaluation points.” Because the simulator is expensive, the evaluation points must be care-
fully chosen. Approximation over the entire parameter space is wasteful, since most of the
expensive simulator evaluations will be outside the HPDR, but SOARS only approximates
the log-posterior on the HPDR. The RBF emulator interpolates the log-posterior at a set
of “knots” (evaluation points in the HPDR). In our applications, the HPDR is less than
1 % of the volume of the entire parameter space. Initially the location, size, and shape of
the HPDR are unknown. SOARS is a methodology for locating the HPDR and then de-
termining its size and shape with as few simulator evaluations as necessary. The design of
computer experiments has a large literature; see Levy and Steinberg (2010) for a review.
There exist designs to minimize the number of simulator evaluations in other contexts
(Santner, Williams, and Notz 2010, Chapter 6), but these designs sample the entire param-
eter space. With one exception, we are not aware of any competing methods for locating
and characterizing the HPDR and concentrating the sampling on that region. For exam-
ple, Higdon et al. (2004) mention that the choice of the evaluation points “is an important
question, but is not the focus of this paper.” Other authors, e.g., Qian and Wu (2008), Qian
(2009), and Cumming and Goldstein (2009), study design when there is a choice between
low-cost, low-accuracy and high-cost, high-accuracy simulators. In our application, the
only available simulator is the expensive SWAT program. The exception just mentioned
is Rasmussen’s (2003) method which requires the user supply derivatives of the posterior
density and is not applicable here since SWAT output is not differentiable.

One of the main advantages of MCMC sampling is that it can be implemented us-
ing only the unnormalized posterior density. This is important, because estimation of the
marginal likelihood of the data (the normalizing constant in Bayes’ theorem) is often infea-
sible prior to MCMC sampling. SOARS retains this advantage, since all stages of SOARS,
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optimization, emulation, as well as MCMC, require only the unnormalized posterior den-
sity.

To test the SOARS on a realistic and difficult problem, we apply the multiple constituent
version of SOARS to a widely used watershed simulator, SWAT. One of the challenges of
uncertainty analysis of the SWAT model is that SWAT output, and therefore 7 (#|Y), is a
very irregular function of the model parameters, especially in the region of low posterior
density. The SWAT output is more regular in the HPDR, but finding this region is particu-
larly difficult because of the irregular nature of the posterior density elsewhere. As a case
study, we use the Town Brook watershed which flows into NYC’s Cannonsville Reservoir.

The SOARS model is introduced in Section 2.1; the residual noise model that accom-
modates heteroscedasticity, non-Gaussian errors, and serial correlation is presented in Sec-
tion 3; Section 4 discusses the watershed application; the computational requirements of
SOARS and conventional MCMC are compared in Section 5; and limitations of SOARS
are in Section 6. One limitation of the current implementation of SOARS is that it cannot
handle multiple modes that are important (have high posterior density) and well-separated.
Finally, Section 7 provides a summary and conclusions.

2. THE SOARS METHODOLOGY

2.1. INTRODUCTION TO SOARS

The statistical model has two components. The first is a deterministic simulator model
which, in the absence of all errors, would give the exact values of the observed data. The
second is a model for the errors (noise). It is well known that fitting a model by ordinary
least squares (OLS) is often not appropriate. OLS assumes that the errors are independent,
normally distributed, and have a constant variance. In practice, none of these assumptions
is likely to be true. In watershed modeling, we have found the observations to be right-
skewed with a non-constant variance and serial correlation. The statistical noise model that
we employ includes all of these features found in the data, so a Bayes’ estimate using our
noise model will be more efficient than OLS. The noise model is discussed in detail in
Section 3.

The level-o HPDR is the set Cgr(x) :={0 € ® : w(0|Y) > c(«)} where c(«) is chosen
so that P{Cr(@)|Y} =1 — o and « is some small value, e.g., 0.01 or 0.001. As outlined
in the introduction, SOARS determines c(«), locates and characterizes Cg(«), builds an
emulator of log-posterior log{m (#|Y)} on Cgr(«), and uses the emulator to generate an
approximate MCMC sample from 7 (0|Y).

SOARS has several steps which we first list and then describe in more detail in the
following subsections: (1) Search for location of the posterior mode, which will be in
the interior of Cr(«), using a global optimization algorithm such as DDS (Dynamically
Dimensioned Search) developed by Tolson and Shoemaker (2007a); (2) Exploration of the
region around the mode using the GRIMA algorithm (Bliznyuk, Ruppert, and Shoemaker
2012) to find the size and shape of Cg(«); (3) Construction of an RBF interpolant (an
“emulator”) of log{w(#|Y)} on Cg(); and (4) MCMC using the emulator in place of
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the computationally expensive exact log-posterior. We used an autoregressive Metropolis—
Hastings (AR-MH) algorithm (Tierney 1994).

By “mode” we mean the global maximizer (assumed unique) of the posterior density.
The posterior density may also have local maxima, and, to avoid misidentifying a local
maximum as the mode, a global optimizer is used in Step 1. If the model is known to be
unimodal, then faster results can obtained using a derivative-free local optimization method
like ORBIT (Wild, Regis, and Shoemaker 2007; Wild and Shoemaker 2011).

Often the posterior has multiple local modes maxima, and this is true of the Town Brook
application. Local modes that are well outside the HPDR are unimportant as they have low
probability. Local modes inside the HPDR will be found by GRIMA and sampled by the
MCMC after GRIMA provided that the HPDR is (topologically) connected (Bliznyuk,
Ruppert, and Shoemaker 2012). When the parameter space is 8-dimensional it is challeng-
ing to discover whether the HPDR is topologically connected, but our explorations of the
posterior indicate that it is.

One case where an important local mode will not be included in the posterior obtained
by SOARS is when the HPDR is disconnected, e.g., where two modes of near-equal pos-
terior density are separated by a low probability region. We have explored the Town Brook
posterior density and believe that all important modes are in the HPDR. MCMC with mul-
tiple modes has been studied by, for example, Tjelmeland and Hegstad (2001), but the
extension of SOARS to case of well-separated important modes is an interesting area await-
ing future work. Some suggestions can be found in Section 6 of Bliznyuk, Ruppert, and
Shoemaker (2012).

A referee mentioned that the Laplace approximation (Tierney and Kadane 1986) paral-
lels Steps 1 and 2, since it requires searching for the posterior mode and then using local
properties of the distribution around the approximate mode. However, the Laplace approx-
imation computes the Hessian either analytically or numerically, whereas SOARS does not
assume that the posterior is differentiable and instead uses an RBF approximation.

2.2. LOCATING THE POSTERIOR MODE

In Step 1, the objective function is —log{z(#|Y)} which is minimized. Evaluations of
the simulator during the global optimization step are used in the construction of the emu-
lator. It is not necessary to locate the minimizer with great accuracy, only to locate Cg(«),
so the design of the optimization step should focus on obtaining an “informative” set of
evaluation points. Evaluation points that are close to other evaluation points are redundant
and provide little additional information about —log{m (#|Y)}. Evaluation points outside
of Cg(w) are also wasteful since the emulator will only be built on Cg (). Therefore, an
informative set of evaluation points is one that is concentrated in and evenly distributed
across Cg(w). A space-filling design across the entire parameter space would be very in-
efficient since Cg(«) is often less than 1 % (by volume) of the parameter space. Since
DDS (Tolson and Shoemaker 2007a) is a global optimization algorithm that was designed
to provide a near-optimal solution with relatively few function evaluations and has worked
well on watershed examples, we used DDS.
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2.3. GRIMA

GRIMA expands the set of evaluation points beyond those found during optimization.
A detailed description of GRIMA and an illustrative example can be found in Bliznyuk,
Ruppert, and Shoemaker (2012), so here we give only a summary. After optimization, but
before starting GRIMA, we found it helpful to evaluate the emulator at a moderate number
of evaluation points, e.g., 500, chosen by Latin hypercube sampling (LHCS), centered at
the posterior mode located during optimization. The mode, of course, is guaranteed to
be inside Cg(c). For reasons already mentioned, the simulator was not evaluated at any
point in the LHCS that was close to an existing evaluation point. The LHCS provides
additional information about the shape of —log{m(#]Y)} on Cg(«) and this information
enables GRIMA to expand the set of evaluation points more efficiently. Let Dy be the
set of evaluation points from the optimization step and the LHCS, except that evaluation
points with very low probability density (e.g., outside the HPDR) are excluded. LHCS was
not needed in previous applications of GRIMA where the number of parameters was four
or less. Based on this study, we recommend the inclusion of LHCS after optimization and
before GRIMA for higher dimensional problems.

GRIMA produces a nested sequence Dy, D4, ... of sets of evaluation points. Given the
current set D;, let C be the set of parameter values whose distance from D; is exactly r.
Here r is a tuning parameter that varies with i (see below) and the distance from a point x
to a set S is defined to be inf{||x — y|| : y € S}. Let Z; be the emulator of the log-posterior
on D;.

The candidate for the next evaluation point is the point in € where —¢; is minimized.
Because this point is exactly at distance r from D;, it is neither redundant (e.g., too close
to the current evaluation points) nor too far from the evaluation points; an evaluation point
very detached from the other evaluation points should be avoided since, in our experience,
it can cause an inaccurate emulator. If the candidate next evaluation point appears too far
outside the current estimate of Cg(«), it is not accepted (so D;4+1 = D;). Instead r is
replaced by pr, where 0 < p < 1. We used p = 0.9. The reason r is reduced is that the set
of parameter values whose distance from ; is at most  has grown and appears to cover
much, if not all, of Cg (). The next task will be to fill in gaps in the coverage of Cr(«) by
evaluation points by reducing r.

On the other hand, if the candidate for the next evaluation point is accepted, then up to
J — 1 additional candidate points are tried, where J is a user-selected tuning parameter. We
used J = 4. If any of these additional candidate points are rejected, then no new candidates
are tried and r is reduced as described above. If all J candidates are accepted, then r is
expanded by replacing it by p~!r. This expansion of r facilitates a more rapid coverage
of Cg(«) by the evaluation points. The name “GRIMA” comes from the initial “GRowth”
stage (where r tends to increase) and the subsequent “IMprove the Approximation” stage
(where r is more likely to decrease), although there is not a sharp boundary between the
two stages because the algorithm can oscillate between decreasing and increasing r.

Thus, up to J evaluation points can be selected during a single GRIMA iteration. The
emulator, Cg (o), and the scaling matrix (Section 2.4) are updated at the end of any iteration
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such that the simulator has been run on at least M new evaluation points since the last
update. These evaluations could be run in parallel; see Section 6. We used M = 12.

The criterion for stopping GRIMA uses the estimated marginal posterior distributions
of the components of @ at each iteration. When these distributions stop changing, as de-
termined using the approximate total variation norm between densities at intermediate and
terminal iterations, GRIMA stops. See Section 4.4.2 and Appendix A.3 of Bliznyuk, Rup-
pert, and Shoemaker (2012).

2.4. RADIAL BASIS FUNCTION INTERPOLATION

The emulator is constructed by RBF interpolation as discussed in detail in Appendix A.3
of Bliznyuk et al. (2008). An efficient algorithm for updating the RBF surface, which must
be done repeatedly during GRIMA, is in the Appendix of Bliznyuk, Ruppert, and Shoe-
maker (2012). Radially symmetric interpolants such as RBFs are sensitive to the parame-
terization and are improved by “sphering” which, at the ith iteration of GRIMA, replaces
0 by Hl._10 where H; is a square root, e.g., a Cholesky factor, of the posterior covariance
of 6. We call H; the scaling matrix.

3. THE NOISE MODEL

For concreteness, we will assume that the data are a d-dimensional multivariate time
series of length n, ¥;, i =1,...,n, where Y; = (¥;1..., Y,-,d)T is a (column) vector of
observations at time i. In the application to the Town Brook watershed in Section 4, d = 2,
Y; 1 is the flow on day i, and Y; > is the concentration of the dissolved phosphorus that day.
It is assumed that, in the absence of noise and systematic errors, Y; = f,;(B), i=1,...,n,
where f;(8) = (fi1(B). ..., fi.a(B))" is the simulator output for time i and S is the vector
of unknown parameters in the simulator. Of course, noise will be present, so one should
expand the model to Y; = f;(B) + €;. The term €; represents all sources of discrepancy
between the data and the model, including modeling error, measurement error in Y;, model
inadequacy, and error in model inputs, e.g., rainfall in a watershed model. The expanded
model is a nonlinear regression model (Bates and Watts 1988). Such models are often
fit by nonlinear least-squares, but least-squares is not appropriate here because the €; are
non-normally distributed with a non-constant variance and serial correlation.

We use a variant of the Box—Cox (1964) transformation to induce approximate nor-
mality and constant variance. The Box—Cox family for y > 0 is hpc(y, 1) = (y* — 1)/A
if A # 0 and hpc(y, A) = log(y) = limy_,o(y* — 1)/A if » = 0. A technical problem
is that for A # 0, the transformation is bounded below by —2~ 1 so the transformed
data cannot be Gaussian. This problem is remedied by perturbing hpc slightly using
the log transformation to obtain A(y,A) := (I — A) - hpc(y, A) + Alog(y), where A
is a small and fixed positive constant (e.g., 10~%). The small term Alog(y) makes the
transformation unbounded but close to a Box—Cox transformation. Each constituent of
Y needs its own transformation parameter, so we define the multivariate transformation
h(y, M) ={h(y1,21)---h(yq, Ad)}T, where A = (A1, ..., Ag)" is the vector of transforma-
tion parameters. To accommodate auto- and cross-correlations, we assume that (Y ;, A) =
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h{f;(B), L} + €; where €; is a Gaussian vector AR(1) [VAR(1)] process (Hamilton 1994);
€; =®e;_1 +u;, where ® is ad x d matrix and u;, i =1, ..., n, is an independent se-
quence of Gaussian vectors with mean 0 and covariance matrix X,. The noise parameters
are integrated out of the posterior, so using a bivariate VAR(1) model, rather than simply
modeling each outcome separately using scalar AR(1) processes, does not increase the di-
mension of the RBF emulator. This is important, since RBF approximation suffers from
the curse of dimensionality.

Because the same transformation is applied to both Y and f;(B), the median of Y; ;
is f; ;j(B) regardless of the value of A;. Therefore, the physical meaning of the simulator
f(B) is preserved under transformation (Carroll and Ruppert 1984, 1988).

Let n = (A, ®, X)) be the noise parameters and 6§ = (8, 5) the set of all parameters.
Define €;(0) = h(Y;, A) — h{f;(B), A} and u;(0) =€;(0) — Pe;_1(0), i =2,...,n. Let
(@) be the prior density. Then the log of the posterior density is

—1
logw(0|Y) = const + log 7 (§) — <nT) log(1Z.)

d

——Zu(é’)TZ u(0)+ZZl ah(a?”“. (3.1)
i=1j=1 bJ

The constant is the log of the normalizing factor. We drop it so 77(#|Y) is an unnormalized
density. The last term in (3.1) is the log of the Jacobian of the transformation of Y;.

Since our primary interest is in the simulator parameters 8, we would like to integrate
the noise parameters 5 out of the posterior density to obtain the marginal posterior density
of B. There is a substantial computational advantage to working with only B rather than
the full parameter vector @, since the number of evaluation points needed for accurate RBF
interpolation grows rapidly with the dimension. In the Town Brook example in Section 4,
the dimensions of B and @ are 8 and 17, respectively. However, analytic integration is not
always possible and numerical integration can be computationally challenging, although in
some cases it is possible to analytically integrate out a subset of the noise parameters. In our
noise model, we could and did integrate out X, ; see Section 6 of the Supplemental Material
for the technical details. The noise parameters A and ® were maximized out of the posterior
using FMINCON in Matlab. Maximizing over noise parameters as an approximation to
integrating them out has been shown to introduce very little error (Bliznyuk et al. 2008).

As mentioned, the noise model in this section is suitable when the data are a multivariate
time series. Appropriate modifications can be made for spatial or spatial-temporal data.

The initial optimization steps performed better if we assumed no serial correlation by
taking @ = 0. This makes sense, since it is impossible to estimate the noise correlation
well without reasonable estimates of the watershed parameters. The simulator output f; (8)
used initially for the objective function with no serial correlation can be reused after switch-
ing to VAR(1) noise, so there is no waste of expensive simulator evaluations.



UNCERTAINTY ANALYSIS FOR COMPUTATIONALLY EXPENSIVE MODELS 631

4. APPLICATION TO THE TOWN BROOK WATERSHED

4.1. BACKGROUND

The Town Brook watershed is a 37-km? subwatershed of the Cannonsville watershed
(1200 km?) in New York State. There are 2192 daily observations (from October 1998
to September 2004) based on readings by the U.S. Geological Survey. The data are the
multivariate time series Y of measured stream flows and total dissolved phosphorus (TDP)
concentrations in water entering the West Branch of the Delaware River from the Town
Brook watershed.

The water from the Town Brook and the rest of the Cannonsville watershed collects
in the Cannonsville Reservoir. The reservoir water is piped hundreds of miles to New
York City for drinking water. Phosphorus pollution is a concern. If the water quality is not
protected, New York City might need to build a water filtration plant estimated to cost over
$8 billion.

The input information of the Town Brook simulator is discussed briefly in Tolson and
Shoemaker (2007a) and in more detail in Tolson and Shoemaker (2004, 2007b).

4.2. DETAILS OF THE SWAT MODEL

The value of f;(B) in (1) is the multivariate output of the SWAT watershed model
on day i. We chose the SWAT model for this study because it is an example of widely
used simulation models for which there is a need for computationally efficient uncertainty
quantification. The SWAT model is the predominant model used for analysis of rural wa-
tersheds, and it is currently being used around the world (U.S., Africa, Canada, South
America, Europe, and Asia) for determining the impacts of land use and climate on water
supply and water quality. There are currently over 800 articles in the peer reviewed scien-
tific literature related to SWAT model development (e.g., Eckhardt et al. 2002; Grizzetti et
al. 2003; Shoemaker, Regis, and Fleming 2007; Tolson and Shoemaker 2007b). The ini-
tial SWAT article (Arnold et al. 1998) has been cited over 1300 times. In addition to its
influence on academic research, the SWAT model has been used by over 85 government
agencies and 25 companies to study alternative policies and to make regulatory decisions
about water quality protection.

The SWAT2005 Town Brook watershed model has multiple parameters. Among them,
4 flow-related parameters and 4 total dissolved phosphorous (TDP) related parameters
were chosen to be estimated. They are denoted as S, ..., Bs; and their physical mean-
ing, lower bounds and upper bounds, are in Table 1 of the Supplemental Material. These
bounds were set in the original calibration of the model (Tolson 2005) based on physical
conditions in the watershed. During optimization and GRIMA computations, each param-
eter was re-scaled to [0, 1] to avoid numerical scaling problems. When desired, it is easy to
convert results back to the original scale. The other parameters in the model were of lesser
interest and were fixed at values determined by a subject matter specialist.
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4.3. LIKELIHOOD AND PRIORS

The likelihood came from the noise model described in (3.1) of Section 3 and the SWAT
model. We used uniform(0, 1) priors on Sy, ..., Bg. In this problem, the likelihood is con-
centrated on less than 1 % (by volume) of the parameter space. Any prior on S, ..., B3
that is not sharply peaked will be nearly constant on the HPDR, and the effect of changing
the prior will be quite small.

We also used uniform(—2, 1) priors on A1 and A. For X~ I we used a Wishart prior
with 2 degrees of freedom and scale matrix 1071 where I is the 2 x 2 identity matrix. As
discussed in Section 6 of the Supplemental Material, this choice of prior for Zu’l makes
the effect of the prior upon the posterior negligible.

We used uniform(—0.8, 0.8) priors on the four entries of ®; we call this “Prior 1.” We
found that at the posterior mode, ® was on the boundary of the support of Prior 1 because
both diagonal elements were 0.8. We then tried “Prior 2”” which used uniform(—2, 2) priors
on the four entries of ®; for all other parameters, Priors 1 and 2 are identical. The HPDR is
well inside the interior of the support of Prior 2. See Section 3 of the Supplemental Material
for more discussion of the priors, especially the sensitivity to Prior 1 versus Prior 2.

4.4. RESULTS
4.4.1. Optimization

As mentioned in Section 2.1, the first step of SOARS uses a global optimization al-
gorithm, DDS (Tolson and Shoemaker 2007a), to locate the posterior mode and roughly
approximate Cg(«). During the optimization stage, f(8) was computed at 1900 evalua-
tion points (values of §), 400 using the sum of squares (with transform-both-sides) and
then 1500 using the log-posterior. The mode found by DDS will be denoted by B OPT-

To visualize the posterior surface, 800 additional simulator evaluations were run, 100
for each B, to create profile plots, which are in Figure 7 of the Supplemental Material.
The profile plots are not necessary and could be omitted. Except in one case (see below),
we did not make further use of the function evaluations used to produce the profile plots,
because we wanted to mimic the case where the profile plots would not be generated. In the
profile plots, the kth component of BOPT is varied over a small neighborhood of ,@opT while
keeping all the other components fixed. Then we plotted —2 x log-posterior versus the S;
the “—2” converts the log-likelihood into a deviance. The kth component of B opT»> Shown
as a triangle, should be the minimizer in each subplot, but this is not the case for ,37. This
shows that 1900 function evaluations were not sufficient for DDS to locate the maximum
of the posterior; this problem is due, at least partially, to the nonsmooth SWAT output.
Fortunately, GRIMA was able to improve upon DDS; see below. Initially, we set Cr (o) as
{BeCra):—-2(B) < —ZI(BOPT) + X§_99(8)}, where Xg_99(8) is the 0.99-quantile of the
x? distribution with dim(8) = 8 degrees of freedom.

DDS needed 1900 simulator evaluations. It was noticed that 7 was nearly constant
during DDS, so we used the 100 simulator evaluations from the profile plot of 87. This gave
us a total of 2000 simulator evaluations. We recommend that in practice, any parameter that
has varied little during optimization be varied after optimization in this way, with the other
parameters fixed at their values in B OPT-
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Table 1. Values of 8 that maximize the profile log likelihood of the VAR(1) model and found by optimization

via DDS and after GRIMA.
Stage Bi B2 B3 B4 Bs Bs B7 Bs
DDS 0.4318 0.0747 0.0114 0.0511 0.1643 0.0019 0.0113 0.0099

GRIMA 0.3836 0.0978 0.0125 0.0459 0.3796 0.0066 0.0000 0.0002

LHCS was used to select an additional 500 evaluation points centered at and concen-
trated near BDDS. As mentioned before, the LHCS provided GRIMA with information
about shape of the log-posterior in the HPDR. After the optimization and LHCS, our al-
gorithm automatically selected 264 knots within Cg(«) for the RBF emulator of the log-
posterior.

A major benefit of the optimization and subsequent LHCS was to approximate the
HPDR. This region in the Town Brook example includes less than 1 % of the volume
of the full parameter domain. As a result the GRIMA algorithm could search over a much
smaller region, which increases its efficiency tremendously.

4.4.2. GRIMA

After optimization and LHCS, we started GRIMA to improve our approximation of
the log-posterior within Cr (). In each iteration, up to J = 4 simulator evaluations were
made and we generated an MCMC chain of length 20,000 based on the approximate pos-
terior surface. A diagnostic MCMC chain of length 60,000 and a tuning MCMC chain of
length 40,000 were generated. GRIMA went through 468 iterations and needed a total of
1017 simulator evaluations, so the number of updates of the RBF surface could be at most
1017/12 = 84.75; in fact, the RBF surface was updated 78 times. The new estimate of the
posterior mode was the maximizer of the log-posterior over the total of 3517 evaluation
points from optimization, the profile plots, LHCS, and GRIMA. Table 1 compares the esti-
mates of B obtained by DDS and GRIMA.. Recall that DDS did not provide a good estimate
of the mode of the posterior, particularly of the value of 87 at the mode; see Figure 7 of the
Supplemental Material. Table 1 shows that GRIMA is able to improve the estimate of the
mode because 7 changed from 0.0113 to 0.0000 and the latter is where the profile plot for
B7 in Figure 7 of the Supplemental Material is minimized.

The stopping criterion terminated GRIMA after 1017 simulator evaluations. Figure 1
compares the approximate total variation distances between the marginal posterior densi-
ties of B at termination, with 1281 knots, and earlier iterations. For each S, the approxi-
mation seems to improve little after the number of knots reaches 1100.

4.4.3. Checking MCMC Convergence and the Noise Model

We checked for convergence of the MCMC sampling and for goodness-of-fit of the
noise model. Since these diagnostics are routine, they are not included here but can be
found in Sections 2 and 4 of the Supplemental Material.
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Figure 1. Approximate Total Variation norm between intermediate and terminal steps.

4.5. MODEL ADEQUACY

To check for simulator adequacy, one can plot the residuals against the predicted values
or covariates. Here the only covariates are the rainfall amounts, and since these are mea-
sured with sampling error and have only short-term effects, we did not use them. A plot of
the residuals versus the predicted values for TDP can be found in Figure 2(b). A penalized
spline (Ruppert, Wand, and Carroll 2003) was added. All except one predicted value lie to
the right of the vertical dashed line, so we will only interpret the spline to the right of this
line. The simulator correctly, under, and over predicts TDP when the prediction is small,
moderate, or large, respectively. The spline is a model inadequacy function (Kennedy and
O’Hagan 2001) and can be added to the predicted TDP to improve the predictions; doing
this, reduces the mean squared prediction error for TDP by 22 %. A similar analysis found
little model inadequacy for flow, except for small predicted values; see Figure 2(a).

Other authors, e.g., Kennedy and O’Hagan (2001) use an additive model inadequacy
function that is independent of the model output. For example, Bayarri et al. (2007a, 2007b)
use model inadequacy functions of time. This approach is applicable where time is repeat-
able, as in the pedagogic example (Bayarri et al. 2007a) where time is measured from the
initiation of a chemical reaction. In our example, a model inadequacy function that de-
pended on time would not be extendable into the future and so would not be useful for
predictions or management of the watershed. In a spot welding example (Bayarri et al.
2007a), the model inadequacy function of these authors in a function of load, direct cur-
rent, and gauge.

4.6. IMPLICATIONS FOR WATERSHED MANAGEMENT

In this section, we show how SOARS can compute the posterior distributions, not only
of the model parameters, but of interesting model outputs as well.

During the optimization and GRIMA stages, with each of the 1281 evaluations of the
expensive simulator, we stored the average daily stream flow, the amount of transported
phosphorous, and other outputs of interest. This information was used to generate the RBF
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Figure 2. Residual plots for flow and TDP with model inadequacy functions as red curves.
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Figure 3. Posterior densities of three model outputs.

surface for each of these output variables. These RBF surfaces were evaluated at MCMC
samples from the posterior of § to obtain samples from the posteriors of the model outputs.

Figure 3 shows the estimated posterior distributions of annual amounts of dissolved
phosphorus, particulate phosphorus, and sediment transported out of the watershed. The
particulate phosphorus posterior is not a symmetric function, which demonstrates that the
methodology can be applied to irregularly shaped function. Note that uncertainty about
particulate phosphorous is greater than for the dissolved phosphorous. This is expected
since the biogeochemical and physical processes involved in the transport of particulate
phosphorous are considerably more complex than for the transport of the dissolved phos-
phorous.

5. COMPUTATIONAL REQUIREMENTS FOR SOARS VERSUS
CONVENTIONAL MCMC

SOARS was developed to enable uncertainty analysis for complex models that are too
computationally intensive for conventional MCMC or related uncertainty methods. This
section summarizes information in other sections on the distribution of a computational
budget.
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For the Town Brook problem we used 1900 exact simulations for the optimization
search using DDS. We needed 500 more exact simulations to compute the LHCS, us-
ing the RBF emulator from the optimization points to locate the LHCS in the HPDR. We
then needed additional 1017 exact simulations during the 468 GRIMA iterations. Hence,
SOARS required a total of 3517 exact simulations. In contrast, a conventional MCMC
sample would have required tens of thousands of exact simulations.

In this problem, the ratio of CPU time for conventional MCMC to SOARS is
(80,000)T/ (3517T + @), where ® is the computational time for calculation done on
the emulator. ® is independent of the time 7 for the simulator. For costly simulation
model, T > &. So the ratio would be high.

5.1. COMPARISON OF POSTERIOR DENSITIES COMPUTED WITH SOARS AND
CONVENTIONAL MCMC

As a computationally feasible alternative to SOARS, one could generate fewer MCMC
runs using the exact posterior. To see how this works, we took 60,000 MCMC samples
from the exact posterior after 20,000 MCMC samples as a burn-in period and extracted
subsample of the first 3500 from the 60,000 draws. The size 3500 sample used nearly
the same number of expensive simulator evaluations as SOARS, if one ignores the burn-in.
(SOARS uses the emulator, not the simulator, for burn-in, so including burn-in would make
the following comparisons more favorable to SOARS.) We plotted the marginal posterior
densities estimates from these samples, as well from the 60,000 MCMC runs from the
SOARS emulator, in Figure 4. The estimates from 60,000 runs from the exact posterior are
taken as a “gold standard” and plotted as thick solid reference lines. We see that SOARS
provides more accurate estimates of the marginal posterior densities of f1,..., g than
an MCMC sample from the exact posterior using the same number of expensive simula-
tor evaluations. In particular, for the important phosphorus-related parameters, Bs, ..., B3,
especially for the last three, 3500 simulations from the exact posterior underestimate un-
certainty. This can be seen in the density estimates which are narrower and more pointed
than the estimates from either SOARS or 60,000 runs from the exact posterior.

6. LIMITATIONS OF SOARS

The main limitation of SOARS is the number of simulator evaluations needed for higher
dimensional problems, especially when using a simulator such as SWAT that has nons-
mooth output. For the 8-dimensional SWAT study here, thousands of simulator evaluations
were needed. However, when SWAT was used for a 4-dimensional problem, the number of
simulator evaluations was only in the hundreds (Bliznyuk, Ruppert, and Shoemaker 2012).

More than half of the simulator evaluations are needed for calibration alone, even using
state-of-the-art optimization software such as DDS here or CONDOR (Vanden Berghen
and Bersini 2005) which was used by Bliznyuk, Ruppert, and Shoemaker (2012). In ad-
dition, uncertainty analysis using only the simulator evaluations from optimization can be
quite inaccurate; see Bliznyuk, Ruppert, and Shoemaker (2012) or Figure 8 of the Supple-
mental Material. Therefore, we see no way to reduce the number of simulator evaluations.
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Figure 4. Kernel estimates of the marginal densities of S ’s. The SOARS results from 3517 evaluations on the
exact posterior (to construct the emulator) and 60,000 evaluations of the emulator-based approximate posterior
(for MCMC sampling) are given by the dashed line. The non-SOARS results from 60,000 evaluations on the exact
posterior (for MCMC sampling) is in heavy solid line and from 3500 evaluations on the exact surface (again for
MCMC sampling) is in thin solid line.

Fortunately, SOARS can be parallelized. DDS and Stochastic RBF (Singh 2011; Regis
and Shoemaker 2009) are examples of efficient global optimization methods that can be
parallelized. LHCS is easily implemented in paralle]l. GRIMA can also be parallelized.
As mentioned in Section 2.3, the emulator is updated only after at least M new evaluation
points are selected. The simulator can be run simultaneously on all of these points. GRIMA
worked well on our example with M = 12 and it is likely that it will work adequately for
larger values of M.

A larger watershed model might take one hour to run. With a moderate parallelization
speedup by a factor of 12.5, the simulator could be evaluated at 300 points per day or 12
days for 3600 evaluations. A 12-day run is not convenient, but it is feasible.

In our work, we have used sufficient evaluations of the simulator so that the RBF
approximation to the log-posterior is, for all intents and purposes, error-free. For higher
dimensional problems and simulators that are especially computationally expensive, one
might need to settle for less accuracy. Trading off between the accuracy of the emulator
and the computation time is a topic well worth exploring.

7. SUMMARY AND CONCLUSIONS

We have extended the application of SOARS to watershed research beyond that pre-
sented previously and improved computational efficiency for this more difficult problem
by adding an LHCS between optimization and GRIMA. SOARS performed very well for
a simulator with up to eight parameters and two model outputs. A model inadequacy func-
tion where the bias is a function of the output, improved the predictive performance of the
model. In other applications, the model inadequacy function could be independent of the
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output and depend on time, date, or other covariates. Calibration and uncertainty analysis
with SOARS on the Town Brook problem required less than twice the evaluations as cali-
bration alone, since SOARS used a total of 3517 simulator evaluations of which 1900 (or
54 %) were used for optimization. Town Brook uncertainty analysis done with MCMC on
the exact SWAT simulator required more than twenty times of CPU time than with SOARS.
Because of computational demands, models with many parameters would benefit from par-
allel processing. Fortunately, SOARS is very suitable for parallel implementations.

SUPPLEMENTAL MATERIAL

The supplemental materials file available online contains the following items:

Radial Basis Function Approximation

Checking MCMC Convergence and the Effective MCMC Sample Size

Sensitivity to the Prior

Checking the fit of the noise model

Analysis of MCMC Output

Integrating ¥, Out of the Posterior

Supplemental Table: Table giving the physical meanings and ranges of the variable pa-
rameters of the Town Brook SWAT simulator.

Supplemental Figures: Figures giving additional information about the Town Brook study.
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